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Abstract: The present study focuses on the application of large-format thermal ceramic conditioning
panels (TCPs) containing polypropylene (PPR) capillary tube mats in dwellings on the Mediterranean
coast. The thermal and energy behaviours were examined once the underfloor heating was installed,
and they were compared with an alternative wall application. The system was implemented in
a single-family house located on the Spanish Mediterranean coast. After having monitored the
house during a complete one-year cycle, the annual energy demand was quantified using the Design
Builder tool. TCP panels applied to radiant floors reduced energy demand by 5.15% compared to
the wall-layout alternative. Significant reductions in CO2 emissions were also achieved, as well
as a 25.19% reduction in energy demand compared to convection systems. The incorporation of
24 m2 of solar thermal panels into the system, combined with solar cooling systems based on lithium
chloride, was also analysed. A reduction in energy demand of 57.46% was obtained compared to
all-air convection systems. Finally, the amortisation periods of the investments in TCP panels and
solar panels were calculated and compared to a convection system. Underfloor TCP panels proved to
be more cost-effective than a wall installation. The additional cost of EUR 21,844 could be amortised
over approximately 14 years with the radiant underfloor TCP system, while the wall TCP would be
amortised over 17.4 years.

Keywords: integration energy and architecture; thermal ceramic panel; capillary tube mats; solar
thermal panels; energy saving; renewable energy; investment amortisation

1. Introduction

Conditioning systems using radiant surfaces—floors, ceilings, or walls—provide high
standards of comfort and can lead to significant energy savings. They have been used since
ancient times, mainly underfloor, through hot air distribution. Today’s solutions consist of
various systems of production and distribution of air, water through thermoplastic tubes,
copper wires, or radiant panels. Radiant heating systems are different from usual HVAC
systems [1] because they heat or cool surfaces instead of propelling treated primary air to
counteract internal and external thermal loads [2]. In addition, as pointed out by Feng et al.,
the size of the cooling loads varies substantially between both systems [3]. Underfloor
systems based on hot water circulation through thick tubes, usually made of crosslinked
polyethylene, have proliferated in recent decades because of the high standards of user
comfort they offer [4]. Furthermore, this solution saves energy and allows incorporating
alternative energies into the system, such as solar energy from solar thermal panels, or
geothermal systems [5,6]. When distributing cold water from a chiller—a heat pump or a
LiCl lithium chloride solar cold system—healthy cooling is achieved [7]. In humid climates,
an additional dehumidification system is required.
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A number of recent research projects have been conducted with hydronic radiant
systems, in order to quantify hygrothermal comfort improvements [8,9] and the energy
savings entailed by radiant systems [10]. Following a rigorous study, Lin et al. concluded
that underfloor heating systems provide greater comfort while presenting a lower risk of
airflows and reducing local user discomfort [11]. Mustakallio et al. compared chilled beam
systems, chilled beam systems combined with radiant panels, and chilled ceiling installed
mixing ventilation. They concluded that radiant systems also provide substantial energy
saving and user-perceived comfort improvements [12]. Krzaczek et al. proposed an inter-
esting pipe-embedded wall heating/cooling system in residential buildings which extracts
heat from external enclosures and incorporates pipes through which water circulates [13].
Catalina et al. carried out an interesting study of radiant ceiling panels, concluding that
they present higher comfort levels and consume less energy [14]. Sun et al. designed a flat
heat pipe encapsulated within an aluminium panel used as a radiant surface, providing
high thermal response speed and good thermal uniformity, together with low energy
consumption [15].

When radiant system surfaces operate under humid climates, it is usually necessary
to add a fan coil dehumidification system [16], or other efficient systems. Not only do
such systems clearly improve user comfort, they also avoid moisture from condensing
on cold surfaces. The challenge then becomes that of reducing energy consumption and
limiting the costs of installation [17]. Sun et al. explored the possibility of coupling
outdoor air cooling with underfloor cooling under a warm and humid climate, such
as that of Korea; they achieved cooling energy savings of over 20% compared to usual
cooling systems [18]. Fernández Hernández et al. proposed a prototype of hydronic
underfloor heating integrating radiant floor cooling and an underfloor air distribution
system (UFAD). The floor’s cooling capacity increased, while the risk of floor surface
condensation was averted [19]. Latest studies focus on combinations of these systems with
phase change materials (PCMs) [20], which provide significant energy savings and reduce
CO2 emissions [21,22].

1.1. Radiant Surface Conditioning Systems Based on Capillary Tube Mats

The mid-1980s saw the development of radiant surface conditioning systems that
were an alternative to thick tube systems: systems of mats of capillary tubes made of
polypropylene (PPR). They are made with return manifolds of 20 mm in diameter, from
which PPR tubes of about 3 mm diameter are laid out, approximately 10 mm apart [23].
Hot or cold water circulates through these mats, thus conditioning the buildings both in
winter and summer. An added fan coil dehumidification system is required is summer.
These mats can be applied to any surface indoors—floors, walls, ceilings—through various
plasterboard, false ceilings, false walls or gypsum projection techniques and they procure
healthy, quiet, and comfortable air conditioning. These systems function mainly by radia-
tion, and secondarily by convection [24], as indicated by authors, such as Zhou and He,
in their studies on surface temperature distribution [25]. Sound levels drop dramatically,
because only low flows of indoor air are moved to dehumidify through low-power fan coils.
When applied to cold floors, the impact of direct solar radiation significantly increases the
actual cooling capacity, i.e., up to 1.44 times more than with the ISO 11855 method [26], as
shown by Tang et al. [27] and Feng et al. [28]. This leads to a much greater level of user
comfort [29], and save substantial amounts of energy [30]. Zhao et al. show that by incor-
porating solar energy via solar panels, the underfloor heating system can save significant
amounts of energy and the investments made can be amortised over a short period of
time [31]. Satisfactory results are being obtained from the application of chemical energy
accumulation systems using solar thermal panels, functioning with lithium chloride: their
future is promising [32,33]. The same applies to absorption systems based on solar thermal
panels and geothermal energy systems [34] in which the mats act as ground exchangers at
shallow depth [35]. Other studies propose applications on landscaped roofs [36] or using
seawater [37,38].
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Radiant systems using hot or cold water distribution have also been designed using
prefabricated panels incorporating capillary tube mats. The most widespread finishing
materials consist of laminated plaster, plasterboard, aluminium, steel sheets as shown in
studies conducted by Tian et al. [39], and concrete [40], linoleum or high-density wood
boards. Smoothed concrete solutions have also been developed for flooring. Mikeska et al.
developed radiant concrete panels that incorporate capillary tube mats: they are proving to
be a remarkable solution for high-occupancy areas because they eliminate the most sensible
loads and significantly reduce ventilation airflow requirements [41]. Choi et al. proposed
a vertical radiant panel for hospital room heating which have an impact on convection
currents; they thus demonstrate the panels’ best location for human health and to remove
unpleasant odours [42]. Ručevskis et al. proposed panels or storage units containing
capillary mats with PCMs, which accumulate energy by means of a night cooling system
through natural air currents. The system is capable of absorbing daily thermal loads inside
the room [43]. Ning et al. experimented with panels containing a thin layer of air, obtaining
high efficiency when applying cooler water [44].

1.2. Description of TCP Ceramic Thermal Panels

In recent years, major technical improvements have been made to ceramic materials
regarding mechanical strength and extremely low water absorption, especially with the
technological development of porcelain stoneware, regarding both compression and ex-
trusion manufacturing. The recent production of large format and low thickness panels
makes them very light and easy to assemble. Pieces measuring up to 320 cm × 160 cm and
3 to 9 mm thick are obtained.

To solve the problem of uncomfortability due to its high effusivity and thermal
conductivity values, multilayer solutions have been proposed, applied on site or using
prefabricated panels, capable of offering more comfortable ceramic materials. For exam-
ple, joule underfloor heating solutions with copper wire sheets have been patented [45].
Koschenz and Lehmann developed an interesting multilayer roofing system, incorporating
capillary tube mats and PCMs, with a possible ceramic finish [46]. However, no application
solutions had been combined to achieve capillary mat conditioning systems, using new
large-format and low-thickness porcelain stoneware on floors, walls or ceilings [47].

One of the most recent initiatives has come from the research group “Technology
and Sustainability in Architecture”, of the University of Alicante. Together with Spanish
Ceramic Tile Manufacturer’s Association (ASCER) and the Institute of Ceramic Technology
(ITC), the group developed and patented a large-format thermal ceramic conditioning
panel (TCP) in 2010 [48]. It consists of: one or two pieces of large-format and low-thickness
porcelain stoneware with fiberglass on one side; a capillary mat of PPR polypropylene
tubes 3.5 mm in diameter and 10 mm apart; and conductive paste to adhere the capillary
tube mat and ensure good thermal conductivity from the capillary mats to the ceramic
(Figure 1a). The panel could also be made with two ceramic pieces on each face, ensuring
the emission of energy by radiation on both surfaces. It thus allows it, for example, to
be hanged vertically from the ceiling in a baffle-like solution. The solution is ideal for
flooring, floating floors, false modular ceramic ceilings, large-format pieces of wall or
ceiling plasterboard, as well as ceiling coverings generally.

Prototypes of TCP panels were recently made and installed on two adjacent walls, in
two offices belonging to two different buildings of the University of Alicante. In one of
them, which operates with an all-water air conditioning installation, a specific circuit has
been channelled to serve a small 12 m2 office and a management substation was installed.
The existing connections to the fan coil have been directed towards the distribution to
four radiant panels measuring 2.5 × 1 m. (Figure 1b). Home automation was applied to
the installation and the system can be controlled remotely. Modbus EIM3155 63A electric
consumption meters and Modbus MULTICAL 602 KAMSTRUP hot or cold water energy
meters for a nominal flow rate of Qn 0.6 m3/h (Figure 1c) were set up.
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Figure 1. (a) Large-format thermal ceramic conditioning panel (TCP) placed on the floor. Patent application no. P201001626;
(b) installation of the TCP in an office at the University of Alicante; (c) Energy meter for Qn 0.6 m3/h of hot/cold water.
Modbus MULTICAL 602 KAMSTRUP.

1.3. Objectives

This study describes the implementation of large format thermal ceramic conditioning
panels (TCP) in an isolated detached house located at the crossroads of Calle Horacio and
Calle Virgilio in Alicante (Calle Virgilio n◦ 6, 38◦22′03.2′′ N 0◦26′33.5′′ W), 500 m north
of the Albufereta beach (Alicante, Spain). Previous research presented the results after
applying TCP panels on some walls [49] across various combination scenarios, including a
bioclimatic basement environmental tempering technique. For the present work, the TCP
panels were applied as an underfloor heating system, following the experience gained at
the Museum of the University of Alicante [7]. It would be possible to condition the house
in winter and summer, using dehumidification system based on three fan coils. The annual
energy demand and the CO2 emissions deriving from the use stage of these two TCP panel
placement systems—underfloor and wall—were compared both among themselves, and to
conventional convection systems. This is the key research issue of this study, whose novelty
consists of the application of TCP panels, containing capillary tube mats, on underfloor
heating in detached houses on the Mediterranean coast, and its comparison with the
application on walls. It has never been done before, and its contribution to the current
academia can be relevant for the energy savings and CO2 emissions derived. The option of
incorporating a solar thermal panel system on the flat roof was also discussed. It would be
applied to the hot water production system in winter, and water cooling through chemical
energy (solar cold), providing alternative energy to the system. As we will see, significant
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energy savings can be achieved, with adequate amortisation periods of the investments
required. We also sought to test the hypothesis that the amortisation period of underfloor
TCP panels would be shorter than that of wall TCP panels.

The area around Albufereta beach in Alicante is under a Mediterranean climate.
It receives high levels of solar radiation on most summer and winter days, reaching an
average value in August of 380 W/m2 during daylight, and can exceed 600 W/m2 at
certain times during the month. According to the classification of Köpen-Geiger [50], it
corresponds to BSh: a warm semi-arid climate with hot or very hot summers, and mild
winters with little rainfall [51]. During the months of September and October, the cold drop
(gota fría) phenomena can occur, i.e., abundant rainfall at specific times.

2. TCP Panels Used as Underfloor Heating in a Detached House

The detached house under study consists of prism-shape volumes finished in single-
layer white mortar (Figure 2). It includes a basement, a ground floor and a first floor, with
a total constructed area of 346 m2. A 4.2 × 4.2 m side patio runs vertically along the three
floors, from the basement to the first floor. Most of the glazing has been installed in this
courtyard and in two other smaller courtyards located on the ground floor (Figure 2). This
way, the house barely receives thermal loads from solar gains in summer.

Initially, the house was designed with a ground floor and first floor only. Given the
ground’s low resistance, however, a basement was finally built covering the whole of the
floor’s surface area. The moderate temperatures of the basement’s reinforced concrete
walls were used to mitigate the indoor air as well as the surface temperatures of the walls of
the rest of the house. A passive conditioning system was generated by convection currents,
leading to a drop in energy demands and increased hygrothermal comfort (Figure 2e). This
passive system could be combined in summer with the opening of the living room’s large
glass panes on the ground floor, the kitchen patio panes and the bedroom ones on the first
floor, generating convection currents depending on the outdoor air conditions. An all-air
system with a heat pump was designed for summer and winter conditioning. To obtain
satisfactory thermal conditioning in winter, a heating system with hot water radiators was
also installed.

Deficiencies in construction quality and low-standard regulatory requirements proper
to southeastern Spain (NBE-CT-79) were thus compensated. In the region, VRV split-
type air conditioning facilities proliferated in homes, usually years after they were built.
Facades are filled with poorly integrated condensing machines. The latter reflects the
failures of a construction policy that has overlooked passive conditioning techniques.
Compared to standards, such as Passivhaus, with energy demands below 15 kWh/m2yr in
winter, southeastern Spain usually presents ranges between 25 and 50 kWh/m2yr in winter,
and much higher values in summer [52,53]. The energy demand of buildings would be
excessively high if the indoor air’s temperature and relative humidity conditions were not
usually set below the recommended standards. Many people resort to having a second
home in different climatic zones to cope with summer and meet the conditions for their
personal health.
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(e) longitudinal section through the courtyard. The basement acts as a passive bioclimatic system.
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2.1. Constructive Solutions of the Project at Its First Stage

The building’s enclosures were designed in accordance with the requirements of
Spanish regulations (CTE in its Spanish acronym). Table 1 shows the different materials
that make up the building’s walls, floor and roof.

Table 1. Material layers and U-value of different enclosures of the project.

U W/m2 ◦C Material Espesor (cm)

E1 Enclosure 0.435 Single-layer mortar 1.5

Double hollow brickwork 12
Rock wool insulation 5

Air chamber 4
Single hollow brickwork 7

Double plasterboard on steel substructure 3 + 3

E2 Enclosure 0.462 Single-layer mortar 1.5

Concrete block 20
Rock wool insulation 5

Double plasterboard on steel substructure 3 + 3

W Windows 3.10 Large double-glazed sliding windows on
anodised aluminium frames, with thermal break 4

F Floor 0.482 Reinforced concrete foundation slab 60

“Cupolex” plastic pieces to create a camera 60
Waffle slab with reinforced concrete ribs 15

Thermal insulator. Type IV expanded
polystyrene 4

Regulatory layer. Self-levelling cement mortar 10
Wooden strips for laying the floor 4

Canadian oak flooring 2

R Roof 0.403 Gravel diameter 20 mm 5

Protective Geotextile 0.4
Thermal insulation of extruded polystyrene 6

LBM-40 waterproofing bituminous film 0.3
Formation of cellular concrete slopes 10

Reinforced concrete ribbed waffle slab 27
Plasterboard on steel substructure 1.5 + 3

2.2. Installation of TCP Panels as a Conditioning System

During the project phase, we decided to use PPR capillary tube mats in the ceiling,
covering a total surface of 235 m2. A 40 kW heat pump project was drafted, including a
substation with a heat exchanger and secondary circuit. In the second phase of the project,
we studied the application of TCP panels to the radiant floor. A total area of 260 m2 was
laid out, larger than the ceiling area (235 m2) and below what would be required if the
basement’s passive conditioning was not available in summer. The installation of thermal
solar panels on the roof was also contemplated, through a solar cold system using lithium
chloride chemical energy [32]. The technical characteristics of the conditioning system are
shown in Table 2.

Table 2. Technical characteristics of the capillary tube mats and solar energy system.

Units System Components Diameter Power COP EER

1 Air-water heat pump with two inverter scroll
compressors (refrigerant R410A) 40 kW 4.11 2.85

10 Flow circuits of PPR tubes with
thermostatic valves 20 mm

10 Return circuits of PPR tubes with
balancing valves 20 mm

3 Fan coil dehumidifiers 0.5 kW
24 m2 Thermal solar panels for a solar cold system LiCl 27 kW



Sustainability 2021, 13, 588 8 of 26

The new constructive solution adopted is shown in Figure 3. The system complies
with the sound insulation established in the CTE; it also presents high mechanical resistance.
The system is fully recordable in the skirting boards via small aluminium doors throughout
the perimeter, thanks to the width of all spaces being below 6 m. The floors are thus
designed using two TCP pieces and manifolds on both walls (Figure 4).
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Figure 4. Possible on-site application of the TCP panels in its different layers.

1. PPR distribution pipes. Diameter: 32 mm.
2. Aluminium channels to pass the PPR distribution pipes through.
3. Large-format porcelain stoneware piece. 300 × 100 × 2 cm.
4. Adhesive layer. Beka Thermal Conductive Paste V. WLP. 1. Thickness: 6 mm.
5. PPR capillary mat. Diameter: 3 mm. Separation: 10 mm.
6. Polyurethane foam thermal insulator. Thickness: 10 mm.
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7. Regulatory layer. Self-levelling cement mortar. Average thickness: 10 mm.
8. Thermal insulator. Type IV expanded polystyrene. Thickness: 40 mm.
9. Waffle slab with reinforced concrete ribs. Thickness: 270 mm.
10. “Cupolex” plastic pieces to increase and create a camera on the reinforced concrete

slab foundation.

3. Methodology

To achieve the objectives of the research, the house was monitored during the whole
2012 cycle, retrieving data on the thermal behaviour of the interior surfaces, indoor and
outdoor air speed, indoor and outdoor air relative humidity and temperature, and solar
radiation. Air infiltration through the enclosure was measured using the Blower Door
test [54]. Thermal bridges were also evaluated with the AnTherm tool (Vienna, Austria).
The bioclimatic effect of the basement was reflected in the wall surface temperatures and in
the indoor air temperature and relative humidity (RH).

Subsequently, working scenarios were defined to compare the thermal behaviour,
energy demand and derived CO2 emissions. The following scenarios combined different
options regarding the air conditioning system, the use of the basement in the conditioning,
and the installation of thermal solar panels on the roof (Table 3):

1. Scenario 1 (SC1). Current status. Bioclimatic basement supporting the conditioning of
the house. All-air system. Heating-based support system through hot water radiators
and a cold air system in summer with a compression system on the roof and an
evaporator in the bathroom.

2. Scenario 2 (SC2). Bioclimatic basement supporting the conditioning of the house.
Application of TCP panels to walls. Dehumidification in summer through three fan
coils, one on each floor.

3. Scenario 3 (SC3). Bioclimatic basement supporting the conditioning of the house.
Application of TCP panels to radiant floor. Dehumidification in summer through
three fan coils, one on each floor.

4. Scenario 4 (SC4). SC3 conditions but with thermal solar panels on the roof.

Table 3. Working scenarios of this research.

Scenario Conditioning System Use of the Basement Thermal Solar Panels

SC1 All-air system in summer
with radiators in winter Bioclimatic basement

SC2 TCP panels as radiant walls Bioclimatic basement
SC3 TCP panels as radiant floor Bioclimatic basement
SC4 TCP panels as radiant floor Bioclimatic basement Solar cold system LiCl

To compare the energy demand and CO2 emissions derived from the different scenar-
ios, the four scenarios were adjusted to an operating temperature To, and a similar relative
humidity (RH) range between 45% and 55% was established in all of them, which guar-
antees a similar level of comfort for users. To can be defined as “the uniform temperature
of an imaginary enclosure in which the body exchanges the same dry heat for radiation
and convection as in the same real environment, regardless of latent loads” [55]. The user’s
sense of comfort will depend on various factors, such as the exchange of heat by convection
and radiation with the indoor air and the surfaces of the environment respectively, the
capacity to emit water vapour into the indoor air by perspiration and breathing, as well as
the quality of the indoor air.

3.1. Calculating the Operating Temperatures To

The parameters that directly determine sense of comfort were analysed, mainly: the
dry air temperature, its relative humidity, the speed of the surrounding air, and the surface
temperature of each of the wall surfaces making up the room [55]. To work with similar
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user comfort levels in this study, in addition to the operating temperature To, the values
of heat loss by radiation and convection were quantified and unified. The usual values of
user sensitive heat emission are around 105 W. Heat losses from convection and radiation
(qrdi and qcvi) were obtained through the Expressions (1) and (2):

qcvi = hc(Ti − Ta)
(

W/m2
)

(1)

qrdi = hr(Ti − Trm)
(

W/m2
)

(2)

The convection factor hc is directly related to air velocity. It usually has an average
value of 3.5 W/m2 ◦C, with an air speed of 0.1 m/s. The air speed was set to 5 cm per
second for TCP panels, obtained on site in the monitored offices, and 15 cm/s in the all-air
installation, as the average value of the area of occupancy obtained on site. Values of
factor hc were obtained through Expression (3). The coefficient of loss by radiation hr had
approximate values of 4.7 W/m2 ◦C with an estimated human body temperature Ti of
30 ◦C.

hc = 14.11× v0.24 (W/◦C) (3)

The values of operating comfort temperature To were calculated according to the
Expression (4), with values of mean radiant temperature Trm according to the Expression (5):

To =
hrTrm + hcTa

hr + hc
(4)

Trm = T1 × FP−1 + T2 × FP−2 + · · ·+ TN × FP−N (5)

3.2. Thermal Loads

The sensible and latent thermal loads were mainly calculated using the Design Builder
tool (Stroud, UK). Some of them, such as the U-value of the enclosures and the loads due
to air infiltration, were carefully calculated with some previous data taken on site.

3.2.1. U-Values: Thermal Transmittance of the Enclosures

Fourier’s law, which applies to parallel layers of materials, of an unlimited surface,
in steady state indoor Ti and exterior Te air temperatures, establishes the temperature
gradient reached by multi-layer enclosures when there is a thermal gap between outdoor
and indoor air temperatures (Equation (6)).

U − value =
1

RT
=

1
1
hi
+ ∑n

0
ei
λi

+ 1
he

(6)

where:

RT Total thermal resistance to the passage of heat.
1/hi Interior surface thermal resistance.
1/he External surface thermal resistance.
e Thickness of each layer.
λ Each layer material’s thermal conductivity.

The usual values of thermal conductivity λ of the materials used in the enclosure,
according to UNE-EN-ISO 10456: 2012 [56]. The thermal inertia of the materials making up
the enclosure alters the linear Fourier process as a function of time, since the thermal gap
between exterior and interior air temperature, the solar radiation that affects the exterior
surface, or the interior air conditioning systems vary according to the weather. Heat flow
thus becomes a dynamic and complex process, which can be solved by specific tools as
Design Builder.
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To perform building behaviour simulations in terms of energy demand and interior
comfort parameters, and to quantify the energetic impact, the transmittance U-values of all
the enclosures obtained through Equation (6) were introduced into the Design Builder tool.

3.2.2. Air Infiltration through the Envelope

The air infiltration value through the enclosure was forecast to be very low thanks to
the construction’s quality, the seals used, and the joinery quality. It was evaluated by means
of the Blower Door test conducted in accordance with the European Standard EN 13829,
using the BlowerDoor GMBH MessSysteme für Luftdichtheit equipment. The impact of
annual energy demand due to air infiltration was evaluated using a simplified model
(Equation (7)), applying the concept of degree-day, which relates the average temperature
outside the house under study and the interior comfort temperature (21 ◦C for heating and
24 ◦C for cooling).

Qinf = Cp × Gt × Vinf, (7)

where:

Qinf Annual energy loss (kWh/yr) due to air infiltration for heating Qinf-H and cooling
Qinf-C.
Cp Air’s specific heat capacity, which is 0.34 Wh/m3K.
Gt Annual degrees-days (kWh/yr), both for heating and cooling.
Vinf Air leakage rate (m3/h).

Sensible and latent heats were quantified by means of the following Equations (8)
and (9):

Qs = Vinf × Ce × ρ × (Te − Ti) (8)

where:

Qs Energy impact value of the sensible heat of the air leak rate Vinf (W).
Vinf Air leakage rate (m3/h).
Ce Specific heat of the air under normal conditions 0.349 Wh/kgK.
ρ Density of air (kg/m3).
Te Outside air temperature in degrees Kelvin (K).
Ti Air temperature inside the house (21 ◦C in winter and 24 ◦C in summer).

Ql = Vinf × Cv × ρ × (We −Wi) (9)

where:

Ql Energetic impact value of the latent heat of the air leak rate Vinf (W).
Cv Heat of water vaporization (0.628 W/gvapour).
We Specific humidity of the external air taken as the annual average value (gvapour/kg).
Wi Specific humidity of the indoor air (gvapour/kg).

3.3. Simulations of Thermal Behaviour: Annual Energy Demand

Energy behaviour simulations and energy demand calculations were performed in
the Design Builder tool for the four scenarios SC1–SC4. The following parameters were set:

1. The winter period covers 1 December to 30 April, and the summer period 1 May to
30 November. These are the usual weather conditions in Alicante.

2. Indoor air set temperatures were 21 ◦C in winter and 24 ◦C in summer. Relative
humidity (RH) remained at 50%.

3. Occupancy, according to the CTE’s regulatory calculation for air renewal, is six people.
Since the interior volume is 302 m3, the requirement for forced air renewal is 0.32 air
changes per hour (ACH), equivalent to 12 L per second per person.

4. Air infiltration through the enclosure was measured using the Blower Door test. The
result was 0.342 ACH, a low value for a detached house [57], far from the Passivhaus
standard (<0.6 ACH).
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5. We estimated load gains or losses due to thermal bridges at 3.5% of total thermal
loads [58] by thermal transmittance U of the enclosures [59,60].

The schematic diagram of the capillary tube mats project was introduced into the
Design Builder model (Figure 5). The surface temperatures of the TCP panels were then
pre-set to 17 ◦C, to avoid the risk of surface condensations. We also introduced the climate
file relating to external air temperatures, relative humidity, and solar radiation levels by
pyranometer throughout a complete one-year cycle. The dehumidification of the three fan
coils was also applied, with a total power of 1500 W.
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To calibrate the model and adjust it to the actual thermal behaviour, the climate file
obtained in situ was used. It was modified until it was adjusted to the air infiltration value
through the envelopes, varying the values in the Design Builder simulation tool. The annual
energy demand obtained was thus adjusted to the real energy consumption obtained from
the meters. The average energy consumption for the period 2012–2014 was 20,559.6 kWh/yr.
Once the value of lighting and household appliance consumption was subtracted, which
was 4.8 kWh/m2yr, the annual energy consumption value of 19,110 kWh/yr for radiator
heating and existing summer conditioning was obtained.

3.4. Energy Contribution of Solar Thermal Panels

As previously mentioned, the TCP system distributes hot and cold water at moderate
temperatures, making it easier to incorporate alternative energies such as solar energy.
Following the comparative analysis of the SC1–SC3 scenarios regarding the energy savings
generated by implementing TCP panels as a radiant floor, combined with the bioclimatic
basement, the application of solar thermal panels on the roof (SC4) was simulated in order
to evaluate the energy savings and the investments’ amortisation period. These solar
thermal panels operate by heating the system’s water in winter or cooling it in summer
by means of an absorption cooling system based on lithium bromide LiBr [61], or LiCl
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chemical energy (solar cold) [62,63]. The solar radiation power data on the roof of the
detached home was collected for the whole 2012 cycle, through a pyranometer (KIPP Model
CMP3 pyranometer ISO second class). The results obtained in August varied between 150
and 600 W/m2 and those obtained in February between 100 and 300 W/m2. These values
bear similarities with the results reported in other recent studies—e.g., the Museum of
the University of Alicante [7]—sources and publications, which include these values for
the Mediterranean and southeast Spain [64]. The performance of an installation of solar
thermal panels, at a 38◦ latitude of location and 45◦ inclination, can be obtained from other
previous studies [65], as well as the overall performance of the installation [66].

3.5. Investment Amortisation Approach

The last section of this comparative analysis focuses on the feasibility of implementing
the TCP panel system and combining it with solar thermal panels in the real estate market.
These technical installations based on capillary tube mats could be introduced into the
same type of single-family homes as those in the Albufereta area. We thus estimated the
system’s return on investments over a building’s life cycle. To make this estimation, we
applied the methodology used in previous studies [7], which could serve as a reference for
other buildings on the Spanish Mediterranean coast. The tool used is the Life Cycle Cost
(LCC), which was applied in accordance with the standard UNE-EN 15459-1:2017 [67]. The
protocol was followed for the four scenarios—SC1, SC2, SC3 and SC4—designed for this
study. The most complex parameter to quantify was the Global Cost, which was obtained
through the following expressions:

Cg(t) = Cl + ∑
j

[
t

∑
i=1

(Ca,i(j)·Rdisc(i))−ValF,t(j)

]
(10)

RR =
Rint − Ri

1 + Ri/100
(11)

Rdisc(i) =
(

1
1 + RR/100

)i
(12)

where:

Cg Global cost.
Cl Initial investment costs including indirect cost too.
Ca,i Annual costs including maintenance, energy and replacement costs.
Rdisc Discount rate. Depends on the real interest rate (RR) and the cost period considered
(number of years from the initial year). Calculated according to expression 3
i years.
ValF,t Residual value of components at the end of the calculation period, considering
depreciation of their initial investment.
RR Real interest rate. Depends on the market interest rate (R) and the inflation rate (Ri),
both may depend on year i, but here they will be considered constant.
Ri Inflation rate.
Rint Interest rate.

The investment costs of building the whole house, including installations and exe-
cution, indirect costs, costs due to periodic maintenance, and replacement costs, over a
30-year period as established by the UNE-EN 15459-1:2017, were obtained from various
databases of companies in the sector in Alicante.

4. House Monitoring

The house was monitored in two stages. The first monitoring system consisted
of sensors (wall temperature, indoor air temperature, outdoor air temperature, relative
humidity (RH), air speed and solar radiation using a pyranometer on the roof) placed at
strategic points of the enclosures. The data collected by the sensors were sent to a data
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logger (analyser), which transmits the signal via General Packet Radio Service (GPRS)
to a database (Figure 6). This information is accessible from a web platform. The GRD
GSM/GPRS data logger allows data to be recorded via analogue or digital channels. Using
its GSM/GPRS modem, data is sent to a server and can be consulted on the web in chart
and table formats. They are downloaded as a comma-separated values (CSV) file. Data
were collected for the whole 2012 cycle.
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In a second phase, monitoring was carried out using a wireless system. Temperature
sensors were connected to small analysers, model “EL-WiFi-TC-Thermocouple Probe
Data logger”. The analysers “EL-WiFi-TH, Temperature and humidity data logger”, with
built-in temperature and relative humidity probes, interpret the recorded data and send
WiFi signals to a laptop. By installing the software “EasyLog WiFi Software”, the data
are received and stored on the computer. Through a custom code you can access the
information from any computer over the network. This second monitoring operation was
carried out during the week of 1 to 7 February 2012, and from 1 to 7 August 2012. Surface
temperature, indoor air temperature, and RH data were taken elsewhere in the house
allowing a faster and more adjusted calibration of the model in Design Builder.

Flyr’s ThermaCam P 25 thermal imaging camera was used to detect thermal bridges.
U thermal transmittance and Ψ linear thermal transmittance values were obtained in
joints, singular points and structural points [68]. They were quantified using the AnTherm
software, and load gains or losses due to thermal bridges were estimated at 3.5% of total
thermal loads due to thermal transmittance U of the enclosures [69], i.e., similar values to
those obtained in previous studies [49].

5. Results

The application of TCP thermal ceramic panels on some of the house’s walls (SC2)
had been simulated in previous studies and the results were published in 2017 [49]. The
application of TCP panels together with the effect of the bioclimatic basement reduced
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annual energy demand by 12%. Results of this parameter were obtained with set operating
temperatures To of 20 ◦C in winter and 24 ◦C in summer, an occupancy of 1 person
per 50 m2, ventilation airflow of 0.63 ACH, and infiltration airflow of 0.342 ACH. The
application of wall ceramic thermal panels was also compared to the all-air conditioning
system in summer, and hot water radiators in winter. The results for user thermal comfort
were equally satisfactory in summer and winter regimes, as the radiant system was capable
of dissipating, by means of radiation and convection, around 60 W of heat per square metre
of body surface in the summer regime [55].

5.1. Calculation of Operating Temperatures To

The indoor air temperature data Ti obtained through the monitoring were obtained
with and without the air conditioning system turned on. The Design Builder tool was used
to simulate indoor air temperature data for the SC3 with underfloor TCP panels with PPR
capillary mats (Figure 7).
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As can be observed in Table 4, the operating temperatures To for the living room on
the ground floor are close to the values of 24 ◦C. In the case of the house under study,
the indoor air temperature in summer from 1 to 3 August 2012 was between 2 and 3 ◦C
higher with the radiant systems compared to the convective systems, and around 1.5 ◦C on
4–7 August.

Table 4. Calculation of operating temperatures To in summer for the 4 Scenarios.

v hc Ta hr Trm To

m/s W/◦C ◦C W/m2 ◦C ◦C ◦C

SC1 0.160 9.088 24.07 4.70 23.98 24.035
SC2 0.082 7.742 26.11 4.70 19.45 23.598

SC3–SC4 0.085 7.759 26.24 4.70 19.28 23.617
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5.2. The Value of Annual Energy Demand

Spanish regulations on energy efficiency in buildings, i.e., the technical document DB-
HE on energy saving, which is part of the Technical Building Code (or CTE by its Spanish
acronym) makes it mandatory to apply the standardised tool Lider–Calener HULC [70] to
architectural projects. The instrument, however, presents notable shortcomings compared
to other simulation instruments, such as Design Builder or TRNSYS. For the present study,
the Design Builder tool was chosen for its proven reliability with the EnergyPlus calculation
engine (Figure 8).
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To perform the simulations of the house’s thermal and energy behaviour, data on
indoor set air temperature Ti, people occupancy, renewal air flow, infiltration air, etc.
exposed in 3.2 were introduced in the Design Builder tool (Figure 9). The schematic
diagram of the capillary tube mats project was introduced into the Design Builder model
(Figure 5). Surface temperatures of TCP panels were then set at 17 ◦C, to avoid the risk
of surface condensation. The climate file relating to external air temperatures, relative
humidity, and solar radiation levels obtained by pyranometer throughout the full cycle of
2012 was also introduced [7,49]. Finally, the infiltration value was adjusted to 0.342 ACH,
so that the model was calibrated by adjusting the indoor air and wall surface temperatures
to the values obtained by monitoring. In a second phase, the actual energy consumption of
19,110 kWh/yr, obtained from the meter [49] were adjusted to the annual energy demand
values. The three fan coils dehumidification system was introduced, with a total power of
1500 W.
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Table 5 lists the results of thermal loads and solar gains obtained during the simulation
through Design Builder for the SC1 (VRV Split system and the currently installed hot water
radiators) and SC3 (TCP panels) scenarios [3,71]. When using radiant TCP panel underfloor
systems, these thermal loads would be reduced by 23.91% in summer and 27.56% in winter.
The heat flows by U transmittance drops from 17.422 to 8.305 kWh/m2yr in summer, and
from 30.758 to 25.250 kWh/m2yr in winter.

Table 5. Calculation of thermal loads and final energy demand in winter and summer.

All-Air
SC1

TCP Radiant Floor
SC2

Summer Winter Summer Winter

Wh/m2yr Wh/m2yr Wh/m2yr Wh/m2yr

Enclosure
Glazing 7568 11,379 4192 10,399

Walls 812 122 392 142
Floors—ground −724 3610 −675 2233

Partitions 0 0 0 0
Rooftops 2539 4034 1179 2741

Outdoor floors 149 95 142 78
Infiltration 7078 12,230 3075 9657

17,422 30,758 8305 25,250
Loads

Lighting 1161 1606 1161 1606
Equipment 1811 1507 586 595
Occupation 4308 3955 4308 3955
Solar gains 18,538 −14,536 18,538 −14,536

25,818 −7468 24,593 −8380
kWh/m2yr kWh/m2yr kWh/m2yr kWh/m2yr

Primary energy 43.24 23.29 32.90 16.87

Table 6 shows the results obtained by simulating summer, winter and annual energy
demands over the four Scenarios SC1–SC4. While PPR capillary tube mat systems have
been shown to produce energy savings ranging between 30 and 35% compared to convec-
tive systems in Central Europe [72], these savings were somewhat lower in the Albufereta
house. The outdoor air RH is obviously higher on the Mediterranean coast than in Central
European countries, and further dehumidification of indoor air is needed. Annual energy
demand in the actual state (SC1) is 66.53 kWh/m2yr for the split system with an evaporator
in the bathroom, distribution of treated air through pipes, and heating through hot water
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radiators in winter. In the case of SC3, with the application of floor TCP panels, annual
energy demand drops to 49.77 kWh/m2yr. The resulting energy savings amount to 25.19%.
These reductions are greater than those obtained in previous studies [47] for SC2 where
TCP panels were applied to the wall, which had amounted to 21.13%.

Table 6. Summer, winter, and annual energy demand over the four scenarios SC1–SC4.

SC1 SC2
TCP Walls

SC3
TCP Floor

SC4
TCP + SOLAR

Energy demand in summer
kWh/m2 37.15 28.63 26.95 17.09

Energy demand in winter
kWh/m2 29.38 23.84 22.82 11.21

Annual energy demand
kWh/m2yr 66.53 52.47 49.77 28.30

Annual CO2 emissions in
use stage 7835.10 kg 6179.28 kg 5861.13 kg 3332.73 kg

Percentage 100.00% 78.87% 74.81% 42.54%

Results shown in Table 6 allow us to conclude that the energy demand of the all-air
system with air-to-air heat pump for air distribution in SC1 is 126.8% higher than water
distribution to TCP panels in radiant walls in SC2, and 133.7% higher than in SC3 with
underfloor TCP panels. If the TCP panels are installed as a radiant floor (SC3), the annual
energy demand is reduced by 5.15% compared to the TCP solution on the wall (SC2). The
radiant floor’s convection currents produce a better temperature gradient in the indoor air
and a slightly lower Trm in summer and somewhat higher in winter, as well as a slightly
higher Ta in summer and somewhat lower in winter, with a To similar to SC2. This brings
about a reduction in heat losses by transmission through opaque and glass enclosures.
Consumption due to dehumidification, with the two 1500 W fan coils in the TCP panels,
is 1547 kWh/yr, a high value that would make these systems a priori less favourable in
summer. However, the savings derived from the much lower amount of energy needed to
transport water compared to air, as well as the thermal load drop thanks to the reduced
thermal gap of the heat flow through the enclosures, means the system as a whole leads to
substantial energy savings compared to SC1. The indoor air temperature Ti in summer is
around 2–3 ◦C higher in SC3 than in SC1.

Furthermore, annual CO2 emissions were quantified during the stage of home use,
in accordance with Spain’s current management of the electrical mix. It was also possible
to make a first estimation of the environmental impacts deriving from the use of the
air conditioning systems analysed in the study. The European Life Cycle Data Network
(LCDN) database was used [73]. We considered that 0.41 kgCO2, 0.00122 kgCH4 and
0.0000465 kgN2O are released to produce 1 kWh of electricity. The annual CO2 emissions
during the home’s use stage could be evaluated by quantifying the simulations of annual
final energy demand in the four scenarios SC1–SC4 set out in Table 6. The system’s final
energy demand and resulting CO2 emissions were calculated using the factors provided by
the Institute for Diversification and Energy Savings (IDAE by its Spanish acronym) [74],
specifically: 2.21 MWhp/MWhf and 0.27 tCO2eq/MWh. The reduction in annual CO2
emissions resulting from these energy savings in the use phase was 4502.37 kg of CO2
(Table 6). If we compare the wall and underfloor application of TCP panels, the annual
CO2 emissions in SC3 are 318.15 kg lower than in SC2, which represents a 5.15% reduction
when TCP panels are used underfloor. These proven benefits of capillary tube mat radiant
systems, such as TCP panels, combined with solar thermal energy production should be
taken into account by public administrations. Pilot implementation support schemes or tax
exemptions could be launched to reduce CO2 emissions and other environmental impacts.
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5.3. Incorporation of Solar Thermal Panels

The installation of solar thermal panels was dimensioned based on loads calculated
using Design Builder. An annual energy demand for conditioning of 49.77 kWh/m2yr,
with a heat pump using 40 kW in a cold regime in summer requires an installation of 24 m2

of thermal solar panels on the roof. The market cost of the installation is EUR 10,889 (euros).
According to previous estimates, these panels contribute 57.5% during energy demand
peaks in summer, with maximum sunshine. In winter, it would be possible to achieve a
value of 68.5%. The performance of an installation with 24 m2 of solar thermal panels,
at a 38◦ latitude and 45◦ inclination, is 71.4%. Given that the overall performance of the
installation is 84.5%, the total power contribution to the TCP panel system is 4508 kWh/yr.

The results obtained by simulation with Design Builder were calibrated and corrected
based on these solar energy results obtained in situ. They were contrasted with previous
research on thermal energy in similar climates [75]. If we compare the two underfloor
TCP panel scenarios SC3 and SC4, annual energy demand drops from 49.77 kWh/m2yr
in SC3 to 28.30 kWh/m2yr in SC4, i.e., an energy saving of 43.14%. In winter, hot water
is distributed to the capillary tube mats from the installation’s accumulation tanks, while
in summer, cold water is sent to the primary circuit distribution network at 7 ◦C–12 ◦C
based on a lithium chloride solar cold system (LiCl), with chemical energy storage [76]. In
cases of insufficient thermal leap, the water can be later cooled in the heat pump, until the
set temperature of distribution to fan coil dehumidification is reached in the heat pump
(7 ◦C). These results support the viability of these underfloor systems through TCP panels
and a thermal solar panel system on the roof, with results similar to those obtained in
previous research.

5.4. Breakdown of the Energy Consumption of the Various Installation Components

To determine the factors that contribute most to reducing the house’s energy con-
sumption, a disaggregated quantification of the energy consumption of each installation
component was performed.

The energy consumption of the three systems analysed is disaggregated in Table 7,
for all equipment, pumps, circulators, fans, fan coils, etc., and elements of the installations,
as well as the solar panel energy contributions. The most significant reductions occur
in the air-supply ventilators in SC1. When TCP panels function with water distribution,
small circulation pumps are needed, not the ventilators. Their consumption amounts to
10.09 MWh/yr (4.82 + 5.27) in SC1, while in SC3 it is 3.066 MWh/yr (1.096 + 1.97). The
equipment also requires greater power and energy consumption when operating with a
greater thermal leap between the outdoor air temperature Te and the indoor air temperature
Ti, in addition to performing air dehumidification. The latter accounts for 13.83 MWh/yr
in SC1 versus 10.02 MWh/yr in SC2 and 9.48 MWh/yr in SC3. These differences are
partly offset by fan coil consumption in SC3 (4.81 MWh/yr), but the final balance is highly
positive, presenting an energy saving of 25.19%.
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Table 7. Calculation of annual energy consumption of each component in the installation. Comparison with convective
systems.

Summer from 1 May to 30 November
Winter from 1 December to 30 April

Occupancy 5 People

SC1
All-Air

SC2
TCP Walls

SC3
TCP Floor

SC4
TCP Floor +
Solar Panels

1 Effective area m2 287.22 287.22 287.22 287.22
2 TCP ceramic panels Area m2 235 260 260
3 Maximum thermal load W/m2 80 75 70 70
4 Minimum flow of air renewal m3/m2 h 1.70 1.70 1.70 1.70
5 Thermal leap of water in summer k 6 3 3 3
6 System’s run time h/yr 5620 5620 5620 5620

Cold pump run time h/yr 2160 2160 2160 2160
Total hours cooling is on h/yr 744 260 246 246
Total hours heating is on h/yr 372 175 168 168
Ventilation

7 Air supply flow m3/hm2 18.32 2.45 2.45 2.45
8 Air supply volume m3/h 2261 317 317 317
9 Ventilator power kW 1.25 0.27 0.27 0.27
10 Power consumption MWh/yr 4.82 1.096 1.096 1.096

Cold pump
11 Water flow L/m2 h 10.70 21.5 20.1 20.1
12 Water volume L/h 3073 6175 5972 5972
13 Power 0.10 0.25 0.24 0.24
14 Power consumption MWh/año 0.45 0.88 0.82 0.82

Ventilators and pumps
15 Power consumption MWh/yr 5.27 2.03 1.97 1.97
16 Comparison % 100% 38.5% 37.4% 37.4%

Fan coil dehumidifiers
17 Power kW 4.69 4.52 4.52
18 Power Consumption MWh/yr 5.05 4.81 4.81

Cooling system
19 Emission power W/m2 85 72 70 70
20 Power kW 18.47 14.21 13.77 13.77
21 Summer power consumption MWh/yr 7.77 5.67 5.21 5.21

Heating system
22 Power kW 16.8 15.87 15.49 15.49
23 Winter power consumption MWh/yr 6.06 4.35 4.27 4.27
24 Solar energy supply −6.67

Circulators of water to the system
25 Power 0.12
26 Power consumption 0.51
27 Annual energy consumption MWh/yr 19.11 15.07 14.29 8.13

Comparison % 100% 78.87% 74.81% 42.54%

5.5. Investment Amortisation Approach

The last section of this comparative analysis focuses on the feasibility of implementing
the TCP panel system and combining it with solar thermal panels in the real estate market.
The costs of the energy consumed over those 30 years were based on the estimates of
the simulations made with the Design Builder tool (Table 6), and an electrical mix cost
of 0.142 EUR/kWh [77]. The investment costs in the 160 m2 installation system of TCP
panels, including the cost of the two substations and the three dehumidification fan coils,
together amount to EUR 39,270. The installation cost of 24 m2 of solar thermal panels
was based—in accordance with the experience of companies in the sector—on a ratio of
453.7 EUR/m2, including: labour costs, accumulation or inertia deposits, distribution
equipment, circulation pumps and system management equipment. A total cost of EUR
10,889 was considered. Figure 10 and Table 8 show the results obtained for the whole
investment’s Global Cost in all 4 scenarios.
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Table 8. Global Cost Estimate according to UNE-EN 15459-1:2017.

SC1
€/m2

SC2
€/m2

SC3
€/m2

SC4
€/m2

Investment cost 1320.2 1361.1 1351.7 1390.7
Indirect cost 53.6 61.3 64.0 71.8

Maintenance cost 107.1 90.4 91.5 123.8
Replacement cost 40.2 43.5 47.6 61.0

Energy cost 283.4 223.5 212.0 120.6
Global cost 1804.5 1779.8 1776.8 1767.9

The study’s estimate of the amortisation of investments in air conditioning installations
was based on the experience gained in previous studies [78]. The cost or investment in the
260 m2 installation system of capillary mat TCP panels is between 38.69% (SC3) and 50.24%
(SC2) higher than that of the conventional all-air system in SC1, and in the case of using
solar thermal panels (SC4), up to 77.14% higher. We can estimate the amortisation periods
of these investments according to the energy savings, maintenance costs, and possible
flooring renovations, as shown in Table 9. The same applies to SC4 with the installation of
solar panels and a solar cold production system using lithium chloride (LiCl). Although
this investment leads to an increase in cost of 77.14% compared to SC1, and of 27.73%
compared to SC3, the investment can be amortised within a reasonable period of time.

Table 9. Calculation of the investment amortisation period for scenarios SC2–SC4 versus SC1.

SC1 SC2 SC3 SC4

All-air installation with heat pump € 28,315
Installation of TCP panels on the floor € 42,541 € 39,270 50,159 €
Annual energy demand kWh/año 19,110 15,078 14,290 8135
Annual savings € 572.54 684.4 1558.45
Amortisation Period años 24.85 16.01 14.01

As one can observe in the Global Cost results of the house in Figure 10, the differences
per m2 over the 30-year period is only 36.6 EUR/m2; that is, 2% versus 1804.5 EUR/m2

in SC1. Furthermore, this shows the advantages of SC4, as the cost is 1767.9 EUR/m2.
We may conclude that despite higher upfront costs, the decision of applying TCP panel
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systems combined with solar panels on the roof is ultimately cost-effective over a 30-year
period. If we focus exclusively on radiant underfloor TCP panels (SC3), investments made
compared to the all-air system (SC1) could a priori be amortised within 16 years, while
the wall panel installation (SC2) would be amortised over 24 years, an excessively long
period. If we compare the positioning of TCP panels underfloor (SC3) versus on the wall
(SC2), we can conclude that radiant TCP floors are more cost-effective. The execution costs
were reduced by EUR 3271, while the annual energy demand dropped by 5.15%. When
incorporating solar thermal panels in both systems, the SC3 is more cost-effective. The
investment would be amortised in 14 years, while the TCP wall would be amortised in
17.4 years.

When deciding whether to implement these systems in homes in Spain’s Levante
region, one should take into account the high comfort levels they procure, as well the
significant reduction in CO2 emissions and other environmental impacts they achieve, given
the annual energy demand reductions of 25.19% (SC3) or 57.46% (SC4). These reductions
in CO2 emissions contribute to society’s common good and should be supported by public
administrations through financial incentives. User installations would thus become less
expensive, and investment repayment periods would be shorter, between 8 and 10 years.

6. Conclusions

TCP ceramic panel underfloor conditioning systems bring high standards of comfort
to single-family homes. They also lead to significant energy savings. It was possible to
experiment and evaluate the thermal and energy behaviour of a detached house located
near Albufereta beach in Alicante (Spain). Four scenarios were addressed based on different
air conditioning systems as well as with and without the basement (SC1–SC4). Thermal
and energy behaviours were compared. To validate the comparison, comfort parameters
were adjusted in all scenarios, through the operating temperature To. The following results
were obtained:

• TCP underfloor heating (SC3) systems were more energy efficient and more user-
friendly than the current all-air system combined with winter hot water radiators
(SC1). Annual energy demand was 25.19% lower.

• The radiant underfloor system with TCP panels (SC3), compared to the same panels
positioned on the wall (SC2) is 5.15% more energy efficient. By reducing execution
costs by EUR 3271 (almost 8%), the SC3 is more cost-effective. Investments would be
amortised 3.4 years before the SC2.

• By installing 24 m2 of solar thermal panels on the roof, with water accumulator tanks,
an energy saving of 57.46% would be made with respect to the all-air system (SC1)
and an energy saving of 43.14% compared to the installation of underfloor TCP panels
(SC3). Investments in installation costs could be amortised in just over 14 years, with
a reduction of 4502.37 kg of CO2 emissions per year.

• The increase in investment for the installation of the capillary mat system using
TCP panels could be amortised within a reasonable period of time compared to a
conventional all-air installation (SC1). Regarding the house under study, the additional
cost of EUR 10,955 would be amortised over 16 years, with an annual energy demand
reduction of 4820 kWh/year and a consequent saving of EUR 684.4, with the current
cost value in the electric mix of 0.142 EUR/kWh.

This study demonstrates the feasibility of using radiant surface conditioning systems
in detached homes on the Mediterranean coast. These conditioning systems are healthier
and more environmentally friendly, mainly when they are combined with solar thermal
energy installations. A further step should be the parametric optimization of the radiant
system by simulations.
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