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Abstract: COVID-19 has had a significant impact on a global scale. Evident signs of spatial-explicit
characteristics have been noted. Nevertheless, publicly available data are scarce, impeding a complete
picture of the locational impacts of COVID-19. This paper aimed to assess, confirm, and validate
several geographical attributes of the geography of the pandemic. A spatial modeling framework
defined whether there was a clear spatial profile to COVID-19 and the key socio-economic character-
istics of the distribution in Toronto. A stepwise backward regression model was generated within a
geographical information systems framework to establish the key variables influencing the spread of
COVID-19 in Toronto. Further to this analysis, spatial autocorrelation was performed at the global
and local levels, followed by an error and lag spatial regression to understand which explanatory
framework best explained disease spread. The findings support that COVID-19 is strongly spatially
explicit and that geography matters in preventing spread. Social injustice, infrastructure, and neigh-
borhood cohesion are evident characteristics of the increasing spread and incidence of COVID-19.
Mitigation of incidents can be carried out by intertwining local policies with spatial monitoring
strategies at the neighborhood level throughout large cities, ensuring open data and adequacy of
information management within the knowledge chain.

Keywords: COVID-19; Toronto; spatial analysis

1. Introduction

A growing amount of literature has surged in recent months on the novel coronavirus
COVID-19. SARS-CoV-2 may lead in severe cases to acute respiratory distress (Mehta et al.,
2020) and has been classified as the latest worldwide pandemic, with an unprecedented
impact on the health sector [1], global economy [2,3], and epidemiology [4,5]. With the first
cases identified in late 2019 at an epicenter in Wuhan, China, it has spread at an alarming
rate throughout the rest of the world. A new epicenter was identified early March 2020 in
Italy [6], with incidence rising exponentially worldwide, reaching a total of 6,140,934 cases
as of 2 June 2020 according to the WHO dashboard [7]. The number of cases in China
has subsided since early March, with China preparing to ease the drastic containment
measures taken months earlier [8]. The spread of the virus itself, particularly with the
global nature of transmission of the disease and the new epicenters generated throughout,
has created an upsurge in literature as well as planning structures to address this global
concern. It is expected that the virus will be controlled. Not since the great depression
have the impacts on key economic drivers and regional effects been this significant. It is
expected that a paradigm shift will occur, impacting (1) education (Wang et al., 2020),
(2) geographies of proximity [9], (3) urban agglomeration, and (4) the liveability of cities [10].
With the incremental impacts on commercial activity and the retail sector, and the rise
of technological integration for remote work, the virus will, with a growing amount of
certainty, reshape the world that we have known since the beginning of the millennia, in an
unpreceded fashion that applies to all sectors worldwide [11].

Significant amounts of data have been reported at a global level, allowing a more
consistent understanding of the spread of COVID-19 throughout the world. [12,13]. At local
level, however, only a few, often unorganized sources exist where information is shared.
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In the case of Canada, no federal initiative exists that informs on the exact locations
of cases. While this issue raises a series of privacy concerns, such an initiative would
provide a vital information pool for the general public and governance. The importance of
locational information of COVID-19 sets a framework for further epidemiological analysis
of transmission characteristics. Understanding the social, environmental, and economic
determinants that have rarely been studied today for this pandemic will permit the creation
of an explanatory model that directly enables mitigation and spatial decision support.
Furthered by the iteration of environmental and geodemographic data, the interactions
between the surrounding landscape and environment can be shaped, constituting a crucial
link to public health [5].

In the case of COVID-19, no precedent studies exist that provide a thorough spatial
analysis. A significant number of studies have assessed regional impacts on epidemio-
logical factors at a spatial scale. These studies combine several spatially explicit methods
in the field of health geography. The understanding of spatial distribution is of utmost
importance for understanding environmental and social determinants, and, in particular,
the role of their spatial interactions with the population and the correlation of disease
spread within the Euclidean confinement of set spatial boundaries of geographical in-
teraction [14]. Socio-economic characteristics are intrinsically geographical and permit
calculations between geographical administrative boundaries, where unique features relat-
ing to socio-economic indicators exist [15]. Recognizing the relationship of geography with
socio-economic variables and the spread of COVID-19 will allow for precise quantitative
analytics found using geostatistics and spatial analytical methods, where simple mapping
does not relay a clear picture [16]. By assembling the available data using employing
geocomputation techniques, significant advances to mitigate the spread of the disease can
be made [17]. With regard to the characteristics of spatial data in relation to geography in
particular this would allow for tackling pandemic impacts at both a regional and global
scale in various ways, for example through:

1. The monitoring of the containment of spread using proximity characteristics and
distance relationships,

2. The study of disease interactions with key demographic drivers and spatial contain-
ment strategies,

3. The integration of land use typologies within the spread of the virus to offer insights
into which types of land use configuration justify particular policies and measures.

In this sense, the combination of spatial analytical techniques with landscape metrics
may have an additional role in the containment and monitoring of COVID-19, while of-
fering, through spatial clustering as well as spatial profiling, a combined approach for
landscape research to support policies and governance interactions, mitigating the spread
of the novel coronavirus at the neighborhood level. This paper sets the stage for local-level
analysis of COVID-19 by means of spatial analysis and geodemographics. Further to this
section, the second section explores the study area of Toronto, where the data have been
made available recently at the neighborhood level. Section 3 presents the data and the
integrated methodology, and Section 4 explores the results and paves the way to offer
a robust spatial model that identifies determinants for COVID-19 in large cities such as
Toronto. Section 5 offers concluding remarks on the necessary integration of local-level anal-
ysis towards mitigation and efficient planning for current and future pandemics through
geographical information.

2. Study Area

On 2 June 2020 Canada reported a total of 91,351 cases and a total of 7305 deaths
due to COVID-19. According to the provincial website, Ontario presently holds a total of
28,263 cases and as of 4 June 2020, 90% of all COVID-19 cases were located in Ontario and
Quebec. The city of Toronto represents the densest urban core in the province, and also
is one of the most densely populated regions in North America. At the regional level,
known as the Greater Toronto Area, it has four additional municipalities: York, Peel, Halton,
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and Durham. The region itself extends from its core at 43◦38′33′′ N, 79◦23′14′′ W and has
a total population of over six million inhabitants. Its population density is significantly
higher than Ontario’s average, with a total population density of 850 inhabitants per km2.
Given its population density, this region is at particular risk of an excess of COVID-19 cases.
The public transportation network extending in all directions is served by the municipal
transportation system, and the vast majority of transport users within the Greater Toronto
Area are commuters using either the GO Transit or the Toronto Transit Commission (TTC)
systems by means of trains, buses, and streetcars in the city core.

Toronto’s economic growth has been at the forefront of North American economic
growth. Its retail and commercial sectors have grown markedly in the last decade due
to economic prosperity and demographic changes. The region has a diversified ethnic
and cultural legacy. This cultural diversity has given rise to new economic opportunities,
contributing to the municipal prosperity and the ongoing growth of commercial activity in
the Greater Toronto Area. Still, there is growing concern as commercial activity has been
put on hold since the end of March 2020. Furthermore, as a consequence of this growth,
the region has suffered significant urban sprawl [18]. There is a growing risk of pollution
as population density increases in the neighboring areas within the perimeter of the city
of Toronto. Although this sprawl is still far from reaching Ontario’s greenbelt, it must be
considered and monitored by decision-makers and stakeholders. With rapid urbanization
and the significant growth of real estate prices in the last decade, the city of Toronto shows
a stark amount of economic heterogeneity. It is where geographical clusters of poverty
are evident in some neighborhoods throughout the city. The asymmetry between wealth
and poverty throughout the city has led to escalating issues that directly affect health,
planning, social justice, transportation efficiency, and economic activity [19]. These are
crucial aspects that may inadvertently impact the distribution of COVID-19 cases and
should be systematically assessed.

3. Data and Methods
3.1. Data Gathering and Processing

The recent release of information on COVID-19 cases for the city of Toronto has al-
lowed us to conduct a spatial-exploratory approach at the neighborhood level. Each health
unit comprising the Greater Golden Horseshoe shares daily information on COVID-19
cases within its health unit website. A first step consisted of understanding the geospatial
morphology of COVID-19 cases. The cases were downloaded for 8 April 2020. In to-
tal, 2346 cases were compiled within southern Ontario’s health unit network boundary.
Of these, 2086 were considered as part of the Greater Golden Horseshoe, while the re-
maining 260 cases, belonging to the Middlesex-London Health Unit and City of Ottawa
Health Unit, were excluded. Two topological considerations were taken into account
with respect to the administrative boundaries of the counties of Simcoe and the Kawartha
Lakes Division, for which the health unit boundaries differ from those of its northern
limit, holding a larger spatial radius than the municipal extent. The figure below (Figure 1)
shows the distribution of cases per health unit as of 8 April 2020. A radial distribution
is clear, stemming from the City of Toronto and reaching outwards towards the Greater
Toronto Area.
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age group had the highest percentage of cases, with an incidence of 15.8%. The gender 
distribution further shows that the majority of cases occurred in females (54%), with male 
cases representing 44% of the total. A majority of the cases (53%) resulted from close 
contact with a case, while 23.9% were related to community spread. Both close contact 

Figure 1. COVID-19 cases as a percentage of the total number of cases in southern Ontario.

This picture, however, can only be realistically interpreted in function of the prevalent
population density, as distribution of population is a key vector of potential transmis-
sion. As such, COVID-19 density was calculated accounting for population density and
COVID-19 cases as follows (Equation (1)):

COVd =

COVn
p

A
(1)

where the density of COVID-19 cases COVd corresponds to the number of cases of
COVID-19 in the administrative boundary COVn per population p, considering the area
A in km2. This allowed for a more thorough and integrative analysis of the spatial distri-
bution of COVID-19 cases, establishing the preliminary finding throughout the province
of Ontario which suggested a strong spatial clustering of COVID-19 cases throughout
the province. These initial findings allowed for the confirmation of the importance of
further exploration at a spatial level for the city of Toronto and served as a validation of the
preliminary hypothesis, where spatial autocorrelation at a global level for southern Ontario
tested positive. The recent availability at city level released on 28 May 2020 allowed for
a spatial exploration of the neighborhood level of the identified cases, which share the
following characteristics relating to general epidemic dynamics for the city of Toronto
(Table 1):

Table 1. Cases identified within the city of Toronto.

Cases 10,901

Recovered Cases 8086

Deaths 810

Cumulative Institutional Outbreaks 144

Some relevant preliminary findings reported by the city suggest that the 50–59-year
age group had the highest percentage of cases, with an incidence of 15.8%. The gender
distribution further shows that the majority of cases occurred in females (54%), with male
cases representing 44% of the total. A majority of the cases (53%) resulted from close
contact with a case, while 23.9% were related to community spread. Both close contact and
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community spread may be seen as geographically deterministic, and thus require further
inspection at the spatial level (Figure 2).
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3.2. Socio-Economic Data

Wellbeing Toronto (WT) data were used to assess critical variables at the neighborhood
level for Toronto. WT corresponds to an integrative and open approach for visualization of
Toronto’s 140 neighborhoods [20]. As an open data concept, it hosts a significant amount of
data over three reference periods (2008, 2011, and 2014), with crucial variables encouraging
citizen participation, government accountability, and data transparency (Figure 3).

For health analytics, these are vital requisites for successful policy implementation.
The table below shows the variables that were selected from the WT portal (Table 2).

3.3. Modifiable Areal Unit Problem and COVID-19 Data

Performing an assessment at highest resolution is of utmost importance and has gen-
erated a debate within ongoing spatially explicit studies concerning COVID-19. Often re-
sulting in false conclusions, bias relates to the key dimensions assessed by [21]. Rather than
expecting limitations of the modifiable areal unit problem (MAUP), it is thus important to
attempt solutions that through zonal interpolation generate a higher accuracy of popula-
tion density so as to allow a better assessment at a spatial scale. This was performed by
combining urban footprint data from the German Space Agency with Humanitarian Data
Exchange (HDX) data for population density.
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Figure 3. Distribution of neighborhoods within Toronto’s community councils.

The Global Urban Footprint (GUF) data consists of a pixel-based classification ap-
proach using TerraSAR-X data as well as with an object-based classification approach using
multitemporal optical Landsat data [22]. The authors adopted the available data from 1975
with a geometric resolution of 59 m (multispectral scanner), from 1990 with a resolution
of 28.5 m (thematic scanner), and from the year 2000 with a resolution of 15 m (enhanced
thematic mapper). The algorithm is based on a temporal backwards-oriented hierarchical
approach as presented in [23–25].
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Table 2. Selected variables from Wellbeing Toronto.

Designation Acronym Year

Green Spaces GreeSp 2011
Pollutants Released to Air PollRel 2011

Traffic Collisions TrafCol 2011
Total Population TotPop 2014

Low Income Families LowIncFam 2014
Visible Minority Category VisMin 2014

Seniors 65 and over Sen 2014
Recent Immigrants RecIm 2014

Low Income Population LowIncPop 2014
Social Assistance Recipients SocAssRec 2014

Social Housing Units SocHous 2014
Seniors Living Alone SenLivAl 2014

Rented Dwellings RentDwell 2014
Drug Arrests DrugArr 2014

Assaults Assaults 2014
Robberies Robberies 2014

The Humanitarian Data Exchange (HDX) data for population density in Canada
at a 1-km spatial resolution were extracted for the Toronto boundary. Both layers were
combined and normalized within a hexagonal bin topology of 100-m hexagons. The usage
of both GUF and HXD data allows for data replicability for other regions throughout the
world as a high spatial resolution performance indicator, creating a density surface and
thus avoiding the restrictions of the MAUP while allowing the assessment of eminent
health issues [26]. This allowed for a local zonal interpolation with a significantly better
performance than traditional neighborhood analysis (Figure 4).
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3.4. Methods
3.4.1. Global Spatial Autocorrelation

Global spatial autocorrelation was tested employing a Moran’s I index per injury
category (Moran). This statistic was conducted to test the null hypothesis (Ho) relating to
the absence of spatial clustering of COVID-19 in Toronto (α = 0.05) (Equation (2)):

I =
j

∑i=n
i=1 ∑i=n

i=1 wij
·
∑i=n

i=1 ∑
j=n
j=1 wij(xi − x)

(
xj − x

)
∑i=n

i=1 (xi − x)2 (2)

where wij corresponds to a binary weight matrix defined with the weight of one, given a
contiguity of adjacency for any value that holds as wij = 1 and any value without adjacency
as wij = 0. The product of the distance is defined as xi for any location i in the distance in
relation to its mean. This holds as a statistic for assessing the entire spatial distribution of
adjacency formed for the city of Toronto. The null hypothesis was rejected in all categories,
suggesting a high spatial autocorrelation for all the COVID-19 categories in Toronto.

3.4.2. Local Spatial Autocorrelation

The Local G∗i statistic was calculated by first determining the injury density [27,28].
While several approaches allow for spatial density estimation, we considered that the
importance of neighborhood demographics should hold. Thus, the neighborhood injury
density resulted from a ratio where density corresponded to the number of COVID-19 cases
found in a neighborhood with respect to the total population count of the neighborhood.
While greater spatial detail could have helped the accuracy of the assessment, one should
note that the objective is related to the potential of participatory interaction of injury with
available open data. In this sense, neighborhoods are the ideal geographic boundary for
governance and city planning.

This approach allowed for a seamless definition of injury density at a spatial level and
calculation of the statistic to determine the locational aggregation of injury hotspots and
coldspots [29]. The calculation of the local G∗i statistic is as follows (Equation (3)):

G∗i (d) =
∑n

j=1 wi,jxi,j−x ∑n
j=1 wi,j

s

√ [
n ∑n

j=1 w2
i,j−(∑

n
j=1 wi,j)

2
]

n−1

(3)

where wij is the spatial weight matrix following a 1-km distance (d), and wij (d) is assumed
as 1. The maps show densities of injury patient residences as hot spots and cold spots,
with red representing the highest concentrations of injury and blue the lowest. The selection
of regional socio-demographic characteristics for this analysis was guided by previous
research and availability of Wellbeing Toronto data.

3.4.3. Regression Framework

A backward stepwise regression was conducted to create an optimum selection of
neighborhood variables [13,30]. This stepwise regression approach allowed for the use
of a full list of available neighborhood variables for the city Toronto and the integration
of a step elimination process so as to offer a reduced model with enhanced explanatory
performance. This minimized the possible issue of multicollinearity, thus avoiding any
issues resulting from overfitting. This allowed for a successful preliminary selection of
variables that were applied to three distinct regressions frameworks: (1) the spatial lag
model, (2) the spatial error model as well as a non-spatial model to compare performance,
and (3) the ordinary least squares model [31]. The spatial lag model (SL) (Equation (3))
understands spatial dependency by the addition of a dependent variable that defines the
spatial attribute.

Y = ρWy + Xβ + ε,
ε ∼ N

(
0, σ2 I

) (4)
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where I represents an identity matrix, and the N(0, σ2I) indicates that the errors follow
a normal distribution with mean equal to zero and constant variance. When ρ is zero,
the lag-dependent term is canceled out, leaving the model under the ordinary least squares
(OLS) form. When ρ is not zero, it means that spatial dependency exists, and that non-
random spatial observable interactions are present [32]. As for the spatial error model
(Equation (4)), the spatial dependency ξ is accounted within the error term ε, assuming the
errors of the model as spatially correlated.

Y = Xβ + λWξ + ε,
ε ∼ N

(
0, σ2 I

) (5)

4. Results
4.1. Spatial Autocorrelation
4.1.1. Global Spatial Autocorrelation

Testing for spatial autocorrelation through Moran’s I statistic provides evidence that
there is significant spatial autocorrelation for COVID-19 within Toronto. Despite regional
differences in the dynamics of cases, the spatial patterns of the residences of those assessed
cases were found to be highly spatially autocorrelated (p < 0.01), with a Moran’s I result
of 0.417. This suggested a high spatial clustering that justified further local exploration
and confirmed that the cases of SARS-CoV-2 in Toronto were significantly spatially related.
Further testing of global spatial autocorrelation was performed for all the variables studied
(Figure 5).
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Figure 5. Moran’s I of variables.

The p-value for all variables was significantly high. Of particular interest was the
finding that spatial autocorrelation of COVID-19 cases was very high, with a similar value
to variables known to have very strong geographically explicit clustering, such as crime
and population density. This in itself is a remarkable conclusion with regard to the spatially
explicit nature of COVID-19 throughout cities, suggesting the presence of clearly definable
hotspots throughout the city. Further inspection of local spatial autocorrelation will be
paved by the promising results from global spatial autocorrelation in the following section.
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4.1.2. Local Spatial Autocorrelation

The calculation of Local G∗i allowed for the exploration of spatial distributions of
hotspots and their significance levels for the categories of COVID-19 cases. A weight
matrix was generated of queen contiguity type of order 1 for the 140 neighborhoods, with a
minimum number of neighbors 3 and a maximum number of neighbors of 11. The mean
and median neighbors corresponded to 5.96 and 6.00, respectively, and a total percentage
of non-zero values of 4.26% was found.

The most intriguing aspect of these distributions, besides the clear evidence of hotspots
and coldspots, was the unique spatial profile of COVID-19 (Figure 6a,b). Red represents
“hotspots”, or areas with high injury density, and blue represents cold spots or areas of low
or no clustering of COVID-19 cases. Six high-clustering areas were found of which several
with high significance, suggesting a clear spatial proxy in certain neighborhoods such as:
York University Heights, Humber Summit, Waterfront communities, Cabbagetown-South
St. James Town, and Rosedale-Moore Park.
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Further inspection at the neighborhood level (https://www.toronto.ca/city-government/
data-research-maps/neighbourhoods-communities/neighbourhood-profiles/) paved a clear
picture of the demographic profile within these communities. Several critical findings were
noted within the comparison of the general city of Toronto profile and the characteristics
of the communities within the neighborhoods. There was a stark contrast with regard to
median household income, where the average salary was on average 22% higher in the
rest of the city. With respect to poverty (Market Basket Measure), a disparity of 4% by
comparison was also suggested. The greatest difference reported was with regard to the uti-
lization of public transportation and the incidence of longer than 1-h commutes within the
identified hotspots. Furthermore, there were significantly fewer individuals with education
to bachelor’s degree-level and above in the identified neighborhoods. Most of the identified
neighborhoods had a higher number of immigrants and a significant number of children
between the ages of 0 and 14. Four silos of geodemographic characteristics were identified
based on these findings: (1) transportation, (2) education, (3) income, and (4) social vulner-
ability. Overall, it is possible to note that these neighborhoods are of concern with regard
to social injustice, where the key drivers are linked to lower education, presence of unem-
ployment, and families with young children. It is crucial that decision-making connects
with these communities efficiently so as to mitigate such disparities.

https://www.toronto.ca/city-government/data-research-maps/neighbourhoods-communities/neighbourhood-profiles/
https://www.toronto.ca/city-government/data-research-maps/neighbourhoods-communities/neighbourhood-profiles/
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4.2. Statistical Analysis

A Pearson correlation matrix was performed to test the correlation of all variables
(Figure 7). This allowed for an initial assessment of correlation between variables. Of par-
ticular interest were the correlations found between COVID-19 density, later explored
through the regression framework.
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Regression Results

The table below (Table 3) shows the result of the OLS regression performed through
backward stepwise regression:
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Table 3. Ordinary least squares (OLS) regression results.

Predictor b
b

95% CI
(LL, UL)

beta
beta

95% CI
(LL, UL)

sr2
sr2

95% CI
(LL, UL)

r Fit

(Intercept) −0.64 ** [−0.84, −0.44]
TotPop 0.00 * [0.00, 0.00] 4.35 [0.86, 7.83] 0.01 [−0.01, 0.03] 0.24 **

LowIncFam 0.00 ** [0.00, 0.00] 1.51 [0.77, 2.26] 0.03 [0.00, 0.05] 0.38 **
VisMin −0.00 * [−0.00, −0.00] −4.43 [−7.83, −1.03] 0.01 [−0.01, 0.03] 0.23 **

Sen 0.00 ** [0.00, 0.00] 0.34 [0.09, 0.58] 0.01 [−0.00, 0.03] 0.10
RecIm 0.00 ** [0.00, 0.00] 0.33 [0.11, 0.54] 0.02 [−0.00, 0.03] 0.28 **

LowIncPop −0.00 ** [−0.00, −0.00] −1.89 [−2.80, −0.99] 0.03 [0.00, 0.05] 0.33 **
SocAssRec 0.00 ** [0.00, 0.00] 0.79 [0.56, 1.01] 0.08 [0.03, 0.13] 0.43 **
SocHous 0.00 [−0.00, 0.00] 0.14 [−0.03, 0.31] 0.00 [−0.01, 0.01] 0.60 **
SenLivAl −0.00 [−0.00, 0.00] −0.13 [−0.31, 0.05] 0.00 [−0.01, 0.01] 0.36 **

RentDwell −0.00 [−0.00, 0.00] −0.17 [−0.40, 0.07] 0.00 [−0.01, 0.01] 0.59 **
DrugArr 0.01 * [0.00, 0.01] 0.24 [0.04, 0.44] 0.01 [−0.01, 0.02] 0.47 **
Assaults −0.00 ** [−0.01, −0.00] −0.45 [−0.76, −0.14] 0.01 [−0.00, 0.03] 0.41 **
PopDens 0.00 ** [0.00, 0.00] 0.64 [0.51, 0.77] 0.17 [0.09, 0.24] 0.73 **

R2 = 0.791 **
95% CI

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized
regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial correlation squared. r represents the
zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. * indicates p < 0.05. ** indicates
p < 0.01.

In all cases the model registered a similar R2 with limited improvement through
spatial regression techniques. This suggests that the data available at Wellbeing Toronto
may well support decision-making in neighborhoods and community participation for
injury analysis and integration without the need to incur into demanding spatial analytics
from a statistical standpoint. Of particular interest was the error model, which held a
performance of r2 = 0.7914, performing slightly better than the OLS and Lag models.
Data in the Wellbeing Toronto portal had a remarkable explanatory value (Table 4).

Table 4. Model performances.

OLS Lag Model Error Model

R2 0.7911 0.7912 0.7914
Log likelihood - −57.4383 57.423624

Akaike Criterion 142.934 144.877 142.847
Degrees of Freedom 126 125 126

Sigma-Square 0.14785 0.132997 0.132921

The spatial regression outperformed the ordinary least squares, albeit with unsubstan-
tial improvement. It became evident that several important strategic conclusions may be
drawn based on the modeled relations of spatial attributes throughout COVID-19 cases.
The spatial relations are intrinsic to the adequate spatial interpretation of localized COVID-
19 data. Indeed, there should be different policies and preparedness integration within the
city’s public health decisions. The models can in all cases be explained by the following:

(1) Vulnerable demographics: Three key groups were identified with regard to vulnera-
bility to COVID-19: Young families with children, those with low income, and social
assistance recipients.

(2) Social injustice: Low-income families and areas of higher crime that host social
housing were of particular concern for COVID-19 transmission.

(3) Population density: Neighborhoods with high population density and a signifi-
cant urban footprint, likely brought from high-rises, show a paramount relation
to COVID-19.
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Within the increasingly complex demographic and socio-economic interactions of
growing urban metropolises, adequate spatial planning has become a vital instrument to
support public policy through the consideration of geographically explicit mechanisms that
respond to epidemiological concerns. Linking spatial planning with governance and public
policy has resulted in significant advances in public health, transportation, commercial
activity, and the livability of cities. Most of these vectors of optimization will profoundly
impact the cities of the future, particularly with regard to the somewhat heterogeneous
profiles at the spatial level regarding wealth, environmental justice, and deprivation in
large North American cities such as Toronto. The combination socio-economic analysis and
territorial knowledge furthers a clear understanding of the impacts of COVID-19. It has
become evident through the establishment of geographically weighted topologies that:

(1) There is clear dimension of space that has to be considered within cities.
(2) These spatial dimensions may have public policy interactions through the demands

of neighborhoods.
(3) The neighborhood-scale is an essential aspect for consideration in public policy instruments.

This article’s centerpiece has focused on deprived individuals within the city of
Toronto who have a higher likelihood of contracting COVID-19. Indeed, it is the public
awareness of these neighborhoods and the overarching understanding of spatial equity
that need to be addressed in the larger framework of COVID-19 policy. Open data and the
incremental potential of smart cities that pave the way to entail future spatial structures
efficiently will become paramount tools for a more robust vision to avoid and mitigate the
risk of pandemics in future [33].

5. Conclusions

Recent advances in geocomputational methods, as well as spatial analysis, have re-
sulted in new techniques that better enable the understanding of spatial characteristics
of cities and regions [34]. It is of utmost importance to understand regional patterns of
epidemiological concern in order to better optimize public health efficiency in rapidly
changing regions [35] (Vaz, 2020). In this sense, geocomputational methods, when com-
bined with extensive spatially explicit data, allow for significant contributions towards
the regional understanding of epidemiological dynamics. Supported by data availability,
open data at the city level may have a profound impact on the assessment and resulting
community and policy intervention strategies for neighborhoods. The application of geo-
computational techniques to COVID-19 at the local level has allowed us to perceive the
pattern of the spread of cases and define that trends are not spatially random but very
spatially dependent, with particular demographics.

The unprecedented consequences of COVID-19 with respect to the livability and the
projection of future sustainability of cities are of concern. Never in recent history has
humankind faced such a challenge, with global efforts being undertaken at an international
scale. With these unprecedented changes, it is expected that the status quo of the current
socio-economic model will drastically change, particularly in cities that have witnessed un-
precedented economic growth in the last decade. It is these cities with the most significant
growth that are remarkably less prepared to deal with the spread of COVID-19.

The pluralistic nature of driving forces for cases also depends mostly on governance
and how policymakers reconsider the distribution of wealth, livability, and social injustice.
Indeed, cities must reinvent their positions as economic drivers and economic hubs of the
21st century. This is evident in cities such as Toronto, where health determinants such
as income and social status, education, employment or working conditions, social and
physical environments, and personal health practices play an intrinsic role in mitigation
and response to future pandemics.

This study is the first of its kind to study to demonstrate that the spatial distribu-
tions of residence locations are similar regardless of the mechanism of spread at the local
level of COVID-19. This finding was consistently seen in the choice of selected variables,
despite marked differences in size, economy, and cultural composition. Finally, the most re-
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sounding conclusion is that a tailor-made prevention strategy must be used for COVID-19,
addressing local foci that respond to the specificities of neighborhoods and types of cases
to guarantee a successful mechanism of spatial decision support and efficient prevention
of spread at the local level.

While a lack of consensus on the role of spatial interpretation has paved the landscape
for COVID-19 analytics, no consensus exists on interpreting spatial findings in assessing
the outbreaks throughout cities. The complexity of COVID-19 has led to a substantial
amount of speculation, where the notion of spatial decision systems has either had an
absolutist, relational, or relativistic perspective. In terms of ontology, this is mostly a result
of the different fields that have focused on understanding the epidemiological reasoning of
this pandemic specifically. Indeed, it might be argued that neighborhood studies create a
biased picture of COVID-19 outbreaks in absolutist terms.

This is indeed a shortcoming of pluralistic studies that assess geographical patterns
over the place [36]. However, coining the importance of creating an absolutist under-
standing of geographies enables the potential for community awareness and intervention,
which are usually limited when concerning the highly confidential data of the individual
patient and mobility studies. The concept of relational space hosts the specificities of place
that best captures the essence of a vision that allows an assessment of cities and creates
an integrative approach to planning communities through public policy participation and
engagement.

In this sense, the analysis of COVID-19 becomes one of spatial community engage-
ment in addition to considering interaction of public policy with spatial decision systems.
These aspects lay the groundwork for sustainable solutions considering the spatial alloca-
tion of asymmetries through geographical space and the potential of harnessing the power
of neighborhood decisions and information strategies.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The author would like to thank the reviewers for their revisions. Figure 2 uses
map data copyrighted OpenStreetMap as a basemap.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spinelli, A.; Pellino, G. COVID-19 pandemic: Perspectives on an unfolding crisis. Br. J. Surg. 2020, 107, 785–787. [CrossRef]
2. Atkeson, A. What Will Be the Economic Impact of Covid-19 in the Us? Rough Estimates of Disease Scenarios; National Bureau of

Economic Research: Cambridge, MA, USA, 2020.
3. Fernandes, N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy. Available online: http://dx.doi.

org/10.2139/ssrn.3557504 (accessed on 10 July 2020).
4. Park, M.; Cook, A.R.; Lim, J.T.; Sun, Y.; Dickens, B.L. A systematic review of COVID-19 epidemiology based on current evidence.

J. Clin. Med. 2020, 9, 967. [CrossRef] [PubMed]
5. Sun, J.; He, W.-T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M.A.; Tian, J.; Zhou, J.; et al. COVID-19: Epidemiology,

evolution, and cross-disciplinary perspectives. Trends Mol. Med. 2020, 26, 483–495. [CrossRef] [PubMed]
6. Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 26, 483–495. [CrossRef]
7. Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020,

20, 533–534. [CrossRef]
8. Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Flasche, S.; Clifford, S.; Pearson, C.A.B.; Munday, J.D.; et al.

The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling
study. Lancet Public Health 2020, 5, e261–e270. [CrossRef]

9. Boulos, M.N.K.; Geraghty, E.M. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are
supporting the global fight against outbr 2020. Int. J. Health Geogr. 2020, 19, 8. [CrossRef]

http://doi.org/10.1002/bjs.11627
http://dx.doi.org/10.2139/ssrn.3557504
http://dx.doi.org/10.2139/ssrn.3557504
http://doi.org/10.3390/jcm9040967
http://www.ncbi.nlm.nih.gov/pubmed/32244365
http://doi.org/10.1016/j.molmed.2020.02.008
http://www.ncbi.nlm.nih.gov/pubmed/32359479
http://doi.org/10.1016/S0140-6736(20)30627-9
http://doi.org/10.1016/S1473-3099(20)30120-1
http://doi.org/10.1016/S2468-2667(20)30073-6
http://doi.org/10.1186/s12942-020-00202-8


Sustainability 2021, 13, 498 15 of 15

10. World Health Organization. Preparedness, Prevention and Control of Coronavirus Disease (COVID-19) for Refugees and Migrants
in Non-Camp Settings: Interim Guidance, 17 April 2020. Available online: https://apps.who.int/iris/handle/10665/331777
(accessed on 10 July 2020).

11. Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of
the coronavirus and COVID-19 pandemic: A review. Int. J. Surg. 2020, 78, 185–193. [CrossRef]

12. Walker, P.; Whittaker, C.; Watson, O.; Baguelin, M.; Ainslie, K.; Bhatia, S.; Bhatt, S.; Boonyasiri, A.; Boyd, O.; Cattarino, L.; et al.
Report 12: The Global Impact of COVID-19 and Strategies for Mitigation and Suppression; Imperial College London: London, UK, 2020.

13. Wang, C.J.; Ng, C.Y.; Brook, R.H. Response to COVID-19 in Taiwan: Big data analytics, new technology, and proactive testing.
JAMA 2020, 323, 1341–1342. [CrossRef]

14. Graham, A.J.; Atkinson, P.M.; Danson, F.M. Spatial Analysis for Epidemiology; Oxford University Press: Oxford, UK, 2004.
15. Ganem, F.; Mendes, F.M.; Oliveira, S.B.; Porto, V.B.G.; Araujo, W.; Nakaya, H.; Diaz-Quijano, F.A.; Croda, J. The impact of early

social distancing at COVID-19 Outbreak in the largest Metropolitan Area of Brazil. medRxiv 2020. [CrossRef]
16. Rytkönen, M.J.P. Not all maps are equal: GIS and spatial analysis in epidemiology. Int. J. Circumpolar Health 2004, 63, 9–24.

[CrossRef] [PubMed]
17. Robertson, C. Towards a geocomputational landscape epidemiology: Surveillance, modelling, and interventions. GeoJournal 2017,

82, 397–414. [CrossRef] [PubMed]
18. Vaz, E.; Jokar Arsanjani, J. Predicting Urban Growth of the Greater Toronto Area—Coupling a Markov Cellular Automata with

Document Meta-Analysis. J. Environ. Inform. 2015, 25, 71–80. [CrossRef]
19. Vaz, E.; Anthony, A.; McHenry, M. The geography of environmental injustice. Habitat Int. 2017, 59, 118–125. [CrossRef]
20. Barber, K.; MacLellan, D. Examining Open Data at the Urban Level: An Exploration of “Wellbeing Toronto”. J. Urban Technol.

2019, 26, 107–121. [CrossRef]
21. Wang, Y.; Di, Q. Modifiable areal unit problem and environmental factors of COVID-19 outbreak. Sci. Total Environ. 2020,

740, 139984. [CrossRef]
22. Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in

mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42.
[CrossRef]

23. Vaz, E.; Taubenböck, H.; Kotha, M.; Arsanjani, J.J. Urban change in Goa, India. Habitat Int. 2017. [CrossRef]
24. Taubenböck, H.; Weigand, M.; Esch, T.; Staab, J.; Wurm, M.; Mast, J.; Dech, S. A new ranking of the world’s largest cities—Do ad-

ministrative units obscure morphological realities? Remote Sens. Environ. 2019, 232, 111353. [CrossRef]
25. Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenböck, H.; Müller, A.; Dech, S.

Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X
mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617–1621. [CrossRef]

26. Greenough, P.G.; Nelson, E.L. Beyond mapping: A case for geospatial analytics in humanitarian health. Confl. Health 2019, 13, 50.
[CrossRef] [PubMed]

27. Vaz, E.; Zhao, Y.; Cusimano, M. Urban habitats and the injury landscape. Habitat Int. 2016, 56. [CrossRef]
28. Zandy, M.; Zhang, L.R.; Kao, D.; Rajabali, F.; Turcotte, K.; Zheng, A.; Oakey, M.; Smolina, K.; Pike, I.; Rasali, D. Area-based socioe-

conomic disparities in mortality due to unintentional injury and youth suicide in British Columbia, 2009–2013. Health Promot.
Chronic Dis. Prev. Canada Res. Policy Pract. 2019, 39, 35–44. [CrossRef] [PubMed]

29. Vaz, E. The Spatial Business Landscape of India. J. Spat. Organ. Dyn. 2013, 1, 241–253.
30. Elliott, A.M.; Smith, B.H.; Penny, K.I.; Smith, W.C.; Chambers, W.A. The epidemiology of chronic pain in the community. Lancet

1999, 354, 1248–1252. [CrossRef]
31. Vaz, E.; Tehranchi, S.; Cusimano, M.D. Spatial Assessment of Road Traffic Injuries in the Greater Toronto Area (GTA): Spatial Anal-

ysis Framework. J. Spat. Organ. Dyn. 2017, 5, 37–55.
32. Gleditsch, K.S.; Ward, M.D. Spatial Regression Models. Quantitative Applications in the Social Sciences; Sage Publications:

Thousand Oaks, CA, USA, 2008.
33. Batty, M. The Coronavirus crisis: What will the post-pandemic city look like? Environ. Plan. B Urban Anal. City Sci. 2020,

47, 547–552. [CrossRef]
34. Fischer, M.M.; Getis, A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2009.
35. Vaz, E. Regional Intelligence; Springer: Berlin/Heidelberg, Germany, 2020.
36. De Noronha, T.; Vaz, E. Framing urban habitats: The small and medium towns in the peripheries. Habitat Int. 2015, 45, 147–155.

[CrossRef]

https://apps.who.int/iris/handle/10665/331777
http://doi.org/10.1016/j.ijsu.2020.04.018
http://doi.org/10.1001/jama.2020.3151
http://doi.org/10.1101/2020.04.06.20055103
http://doi.org/10.3402/ijch.v63i1.17642
http://www.ncbi.nlm.nih.gov/pubmed/15139238
http://doi.org/10.1007/s10708-015-9688-5
http://www.ncbi.nlm.nih.gov/pubmed/32214618
http://doi.org/10.3808/jei.201500299
http://doi.org/10.1016/j.habitatint.2016.12.001
http://doi.org/10.1080/10630732.2018.1558573
http://doi.org/10.1016/j.scitotenv.2020.139984
http://doi.org/10.1016/j.isprsjprs.2017.10.012
http://doi.org/10.1016/j.habitatint.2017.07.010
http://doi.org/10.1016/j.rse.2019.111353
http://doi.org/10.1109/LGRS.2013.2272953
http://doi.org/10.1186/s13031-019-0234-9
http://www.ncbi.nlm.nih.gov/pubmed/31719842
http://doi.org/10.1016/j.habitatint.2016.04.006
http://doi.org/10.24095/hpcdp.39.2.01
http://www.ncbi.nlm.nih.gov/pubmed/30767853
http://doi.org/10.1016/S0140-6736(99)03057-3
http://doi.org/10.1177/2399808320926912
http://doi.org/10.1016/j.habitatint.2014.06.025

	Introduction 
	Study Area 
	Data and Methods 
	Data Gathering and Processing 
	Socio-Economic Data 
	Modifiable Areal Unit Problem and COVID-19 Data 
	Methods 
	Global Spatial Autocorrelation 
	Local Spatial Autocorrelation 
	Regression Framework 


	Results 
	Spatial Autocorrelation 
	Global Spatial Autocorrelation 
	Local Spatial Autocorrelation 

	Statistical Analysis 

	Conclusions 
	References

