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Abstract: Global problems all occur at a particular location on or near the Earth’s surface. Sitting at
the junction of artificial intelligence (AI) and big data, knowledge graphs (KGs) organize, interlink,
and create semantic knowledge, thus attracting much attention worldwide. Although the existing
KGs are constructed from internet encyclopedias and contain abundant knowledge, they lack exact
coordinates and geographical relationships. In light of this, a geographical knowledge graph (GeoKG)
construction method based on multisource data is proposed, consisting of a modeling schema layer
and a filling data layer. This method has two advantages: (1) the knowledge can be extracted from
geographic datasets; (2) the knowledge on multisource data can be represented and integrated. Firstly,
the schema layer is designed to represent geographical knowledge. Then, the methods of extraction
and integration from multisource data are designed to fill the data layer, and a storage method is
developed to associate semantics with geospatial knowledge. Finally, the GeoKG is verified through
linkage rate, semantic relationship rate, and application cases. The experiments indicate that the
method could automatically extract and integrate knowledge from multisource data. Additionally,
our GeoKG has a higher success rate of linking web pages with geographic datasets, and its exact
coordinates have increased to 100%. This paper could bridge the distance between a Geographic
Information System and a KG, thus facilitating more geospatial applications.

Keywords: knowledge graph; geographical knowledge graph; knowledge extraction; geographic
dataset; internet encyclopedias

1. Introduction

In the 2020s, the world has been experiencing the most significant challenges regard-
ing natural disasters and worldwide epidemics. It is clear that these global problems
are geospatial—they all occur at a particular location on or near the Earth’s surface [1].
At the junction of artificial intelligence (AI) and big data, geographical artificial intelli-
gence has attracted much attention worldwide, and plays an essential role in science and
technologies [2,3]. As the backbone of AI, knowledge graphs (KGs) have shown their
powerful capabilities in different kinds of intelligent applications, including data retrieval,
integration, analysis, etc., [4]. Geographical knowledge graphs (GeoKGs), a kind of domain
KG, can organize, interlink, and infer geospatial knowledge; hence they offer excellent
opportunities to solve many problems in real life [5].

Geographical knowledge is a higher level of geospatial information, represented
by ontology and the semantic web [6]. For example, the knowledge “The Yellow River
is the longest river in China” is described as <Yellow River, Longest River, China>, in
which Yellow River and China are entities, and Longest River is a relationship. Although
most of these techniques focus on representing geographical knowledge, none involve
representing knowledge in multisource data. Moreover, the existing KGs are seldom
constructed from geographic datasets, thus posing several challenges to the construction
of complete geographical knowledge [7]. The first challenge is that most of the existing

Sustainability 2021, 13, 10602. https://doi.org/10.3390/su131910602 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6678-4168
https://orcid.org/0000-0002-3211-5342
https://doi.org/10.3390/su131910602
https://doi.org/10.3390/su131910602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su131910602
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su131910602?type=check_update&version=2


Sustainability 2021, 13, 10602 2 of 17

KGs lack geographical entities and precise coordinates. The second challenge is that it is
hard to extract knowledge from multisource data because these entities are organized in
different data sources, and their geometry types are complex [8]. The last challenge faced
is the diversified spatial relationships between entities, which KG does not consider [9,10].

Using a new GeoKG construction method based on geographic datasets, we expand
the scope of usability of geographical data on the internet. Firstly, a system framework
is presented to model domain knowledge in a schema layer and extract geographical
knowledge in a data layer, thus guiding GeoKG construction.In the schema layer, concepts
and their relationships are constructed to represent geographical knowledge. In the data
layer, several methods are proposed to extract knowledge, including extracting geograph-
ical entities, transforming attributes into triples, extracting concepts and attributes from
encyclopedias, and integrating knowledge from multisource data. Finally, the linkage rate
and the semantic relationship rate are analyzed, and some application cases are exhibited to
verify the ability to obtain related knowledge. The specific contributions are the following:

• A GeoKG construction framework is proposed, which extracts knowledge from geo-
graphic datasets, and completes these knowledge sets using internet encyclopedias.
At the same time, the framework can become a reference for other KGs involved in
the same space;

• A schema layer for our GeoKG is designed, by which geographic datasets can be
formalized to represent geographical knowledge, thus restricting RDF triples in the
data layer;

• A geographical knowledge extraction method is proposed, by which the entities and
attributes belonging to multiple layers, features, and geometries are composed, thus
constructing coordinates and spatial relationships for GeoKG.

The remainder of the paper is structured as follows. Section 2 reviews related work
regarding KGs and GeoKGs. In Section 3, the system framework for constructing GeoKGs
is proposed. Section 4 exploits the linkage rate and semantic relationship rate, and then
demonstrates application cases. Finally, the discussion, conclusions, and future work are
discussed in Sections 5 and 6.

2. Geographical Knowledge Graph-Related Literature

In recent years, researchers have paid much attention to GeoKG, the fundamental
techniques of which are knowledge representation and KG construction. As such, several
research areas and backgrounds related to GeoKG are reviewed.

2.1. Introduction to Knowledge Graph

The KG was proposed by the Google Knowledge Graph project to devise a more
intelligent search engine. It consists of concepts, entities, literature and relationships, and
focuses on extracting and fusing knowledge from online encyclopedias. Furthermore,
it enables the semantic search to understand the query intention better, thus providing
more concise results. Taking the search sentence of “the length of the Yellow River” as an
example, Google can return a knowledge card, and provide an accurate answer of 5464 km
based on KG. As shown in Figure 1, when we search for “Yellow River” in the Google
search engine, the related web pages will be presented on the left side, and the attributes
(such as length, area, headstream, picture of the river, etc.) will be shown on the right side.
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Figure 1. The search results for “Yellow River” in Google search engine.

Nowadays, KGs have become prevalent, and there are some famous KGs. In CN-
DBPedia [11], for example, three Chinese internet encyclopedias (i.e., Baidu Baike, Chinese
Wikipedia, and Hudong Baike) are used to extract knowledge. Over the past 30 years,
many researchers have carried out related work. Hook summarized six application aspects
of KGs [12] and Zeyua introduced KGs to explore the scientific literature distribution [13].

2.2. Techniques of Geographical Knowledge Graph
2.2.1. Geographical Knowledge Representation

Geographical knowledge representation can be considered the core idea in GeoKGs.
In terms of the representation model, Zheng et al. [14] proposed a model based on spa-
tiotemporal processes, while Kacprzyk et al. [15] represented a method employing chains
of contexts and patterns of appropriate user behavior in visual analysis. To better represent
these fields of knowledge, Mehdi Mekni [16] proposed a virtual geographic environment
using a topologic graph of geographic datasets. Similarly, Laurini [17] presented a con-
ceptual framework to manage geographic entities, relationships, and rules. Unlike prior
work, Jiang et al. [5] divided geographical knowledge into factual knowledge and process
knowledge to describe external characteristics and spatial transformation.

In the last few decades, the use of the semantic web and ontology in knowledge repre-
sentation have developed considerably [18]. This has fostered a promising way to connect
spatial data with KG, thus augmenting the application of geographic datasets [19]. Hence,
many geographic datasets have been published in the form of Linked Data, some of which
play a prominent role in the Linked Open Data cloud (https://lod-cloud.net/, accessed on
21 September 2021). More governmental agencies and large-scale data infrastructures run
Linked Data initiatives, such as e-Government and open data communities in Europe [20].
Furthermore, Varanka and Usery [21] proposed that the geographic data released in RDF
can be treated as knowledge; hence, most of the existing techniques focus on ontologies and
rules. For instance, Janowicz [22] modeled semantic knowledge in geographic datasets, and
Hofer et al. [23] formalized geographic operators. Additionally, Gould and Mackaness [24]
used ontologies to formalize generalized cartography knowledge to facilitate the sharing,
expansion, and reuse of mapping knowledge.

https://lod-cloud.net/
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2.2.2. Geographical Knowledge Graph Construction

As an expanded KG, the GeoKG is a structured semantic knowledge base, which rep-
resents rich geographical knowledge in triples [2]. It is regarded as a promising tool to deal
with many technical geographic challenges, such as named entity recognition, toponym
disambiguation, and spatial reasoning [5]. In GeoKG, RDF triples are used to describe
knowledge, and their visualization relies on a “node–edge” graph (Figure 2). In detail,
geographical concepts are represented by nodes, and edges demonstrate relationships in
data properties (i.e., the relationship between entities and attributes) and object properties
(i.e., the relationship between concepts and entities). As illustrated in Figure 2, the triples
<Yellow River, is-a, River> and <Yellow River, inside, China> indicate object property
relationships between concepts and entities, and triple <Yellow River, length, “5464 km”>
represents a data property. Therefore, GeoKG could link different datasets based on RDF
triples, thus enriching geographical knowledge [25].

Figure 2. An example of a part of a GeoKG.

Some GeoKGs have been constructed from geographic datasets, such as OSMonto,
OSM Semantic Network, Yago2, etc., OSMonto [26] is an ontology for Open Street Map
(OSM) tags, and the OSM Semantic Network [27] contains RDF triples extracted from OSM
tags on Wiki websites. Although OSMonto and OSM Semantic Network extract a large
number of concepts, they do not contain geographical entities or employ common-sense
knowledge. In addition to concepts, Yago2 [28] extracts entities from Wikipedia. However,
it does not contain a lot of geographical entities or Chinese information, because Wikipedia
contains only a few Chinese pages. Furthermore, Liu et al. [29] showed that Linked Data
have made considerable progress in publishing, retrieving, and integrating data. Based on
Linked Data, LinkedGeoData could map OSM into RDF triples to devise a geographic data
browser [30]. In terms of GeoKG construction, Chen et al. [2] presented a crowdsourced
geographic knowledge graph that extracted different kinds of entities from OSM and
enriched them with human geographic knowledge from Wikidata. Under the “One Belt
One Road” initiative, Wu et al. [4] introduced the techniques for constructing a Chinese
knowledge graph, which have greatly promoted the development of AI.

In summary, these proposed methods provide abundant semantics. However, general
KGs lack geographical knowledge. Moreover, most of them are only constructed from
internet encyclopedias, and they cannot extract knowledge from geographic datasets, thus
lacking precise coordinates and spatial relationships.

3. GeoKG Construction Techniques
3.1. The System Framework of GeoKG Construction

The general KG is constructed via a “down-top” approach [4]. In contrast, GeoKG
is constructed via a “top-down” method, consisting of two stages: designing the schema
layer, and extracting geographical knowledge in the data layer (Figure 3). The schema layer
is used to construct concepts and relationships. In the data layer, methods of extracting,
integrating, and storing geographical knowledge are discussed sequentially. Then, concepts
and relationships in the schema layer can be completed by generalizing knowledge in the
data layer.
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Figure 3. The system framework of geographical knowledge graph construction.

The first stage of GeoKG construction is schema layer modeling. Hu et al. [31]
proposed two design patterns to design the schema layer, including content and logical
patterns. The content pattern is adopted to formalize relationships and the geographical
concepts of entity, feature, geometry, coordinate, and reference system.

In the data layer, knowledge is automatically extracted from geographic datasets
and Baidu Baike. Because it is extracted from multisource data, knowledge integration
methods of linking and fusing are adopted to integrate equivalent entities and concepts.
With current technology, a single database cannot directly store knowledge and geographic
datasets. Neo4j is one of the best graph database management systems, and Spatialite is a
database engine with a spatial plugin. Both are used to store extracted knowledge to meet
application demands.

3.2. Available Data Analysis

The available data sources for constructing GeoKGs include geographic datasets and
Baidu Baike.

3.2.1. Geographic Datasets

Geographic datasets are carriers of spatial information that meet the demands of
production units and social masses. As a primary type of geographic data, vector data
are hierarchical, block-divided, and feature-divided. They consist of two components:
one managing spatial data (i.e., geometry) and the other managing thematic data. Vector
data represent elements in the form of points, lines, and polygons based on mathematical
projection, thus demonstrating locations explicitly. Furthermore, they can easily represent
spatial distribution and topological structure because they are stored in a two-dimensional
Cartesian coordinate system. Geographic datasets could also be stored in a spatial database
in the form of several tables. In each table, rows represent features, columns display
attribute values, and geometry columns express coordinates (Figure 4). Therefore, it is easy
to operate the spatial database through Structured Query Language (SQL).
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Figure 4. An example of a geographic dataset in a spatial database.

However, it is inefficient to query data across different tables, and semantics in geo-
graphic datasets are weak. Hence, new ways of organizing geographic datasets are required,
and internet encyclopedias should be introduced to complete semantics in geographic
datasets.

3.2.2. Baidu Baike

Baidu Baike is the most popular internet encyclopedia in China. It has some advan-
tages, such as covering a wide range of fields, allowing users to edit almost all accessible
pages, and expressing entities in the form of web pages. On each web page, labels, images,
and information boxes are used to describe entity characteristics.

3.3. Schema Layer Modeling

According to Section 3.1, the schema layer is conceptualized and implemented to
integrate geographical knowledge.

3.3.1. Concepts Design

1. Features and Geometries

Knowledge sharing and cyclic utilization are the primary functions of the model-
ing schema layer. GeoSPARQL (http://www.opengis.net/ont/geosparql, accessed on 21
September 2021) ontology is introduced to express geographical knowledge about fea-
tures and geometries. In the following, the prefixes geo and sf are used to represent the
namespaces of GeoSPARQL and simple feature geometries, respectively.

As shown in Figure 5, there are some existing concepts and relationships in GeoSPARQL.
To represent geographical knowledge in vector data, the class SpatialObject is created as
an extended concept, and all the other concepts are inherited from it directly or indirectly.
The object property spatialRelation is used to connect SpatialObject. The concepts Feature
and Geometry are constructed as subclasses of SpatialObject, and Feature is linked to one
or more Geometry using the object property hasGeometry. Two literals are associated with
the concept Geometry via the data properties asWKT and EPSG, which store coordinates in
well-known text (WKT) and the spatial reference system of the European Petroleum Survey
Group (EPSG). Moreover, the concepts point, curve, surface, and geometry collection are
inherited from Geometry to represent geometries in geographic datasets.

http://www.opengis.net/ont/geosparql
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Figure 5. Concepts and relationships in the schema layer.

2. Entities

As shown in Figure 5, a prefix gkg is used to limit the knowledge scope, such as the
concept gkg:GeoEntity and object property gkg:spatialRelation. Moreover, two disjointed
subclasses, named gkg:GeoBaikeEntity and gkg:GeoDatasetEntity, are created to represent the
geographical entities extracted from Baidu Baike and vector data, respectively. The object
property sameAs represents the linkage between instances of two concepts, thus integrating
geographical entities in multisource data. Furthermore, GeoDatasetEntity is connected to
one or more Feature concept by the object property hasFeature. Therefore, an entity can
represent its geographical information and semantics simultaneously.

3.3.2. Relationships Design

In addition to concepts, relationships also play a significant role in formalizing the
real world. As shown in Figure 6, GeoKG consists of two types of geographical relation-
ships: spatial and semantic relationships. The semantic relationship is divided into data
property and object property. The object property consists of subclassOf, equivalentClass,
is-a, and sameAs. SubClassOf and equivalentClass formalize parent–child relationships and
equivalence between concepts, respectively. The relationship is-a associates concepts and
instances, and sameAs defines the same geographical entities. Moreover, data properties
(e.g., name, width, length, EPSG, etc.) are used to describe geographical entity’s attributes.
In addition to semantic relationships, topological, distance, and orientation relationships
are crucial in GeoKG. In the following subsections, each of these spatial relationships will
be described in detail.
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Figure 6. Relationships in the schema layer.

1. Topological Relationship

The topological relationship is invariant under topological transformations, including
rotation, scale adjustments, and translation [9]. It is inherited from gkg:spatialRelation,
thus representing the proximity between geographical entities. As shown in Figure 7, the
topological relationships between entities include intersect, disjoint, contain, within, equal,
overlap, touch, and cross. In these relationships, disjoint, touch, intersect, and equal are
symmetric, while equal, contain, and within are transitive. Contain and within and disjoint
and intersect are inverse. Taking “A contains B” as an example, B is entirely inside of A,
and neither the interior nor the boundary of B intersects A’s exterior.

Figure 7. Topological relationships.

2. Distance Relationship

The distance relationship is defined as the minimum distance between two entities,
and it is also inherited from gkg:spatialRelation. Both qualitative and quantitative distances
are used in GeoKG. The quantitative distance is expressed by a data property with a precise
value. Additionally, qualitative distance is divided into inner-city and inter-city, and these
can be converted through thresholds. At the inter-city scale, the minimum speed of a
high-speed train (i.e., 250 km/h in China) is used to calculate thresholds. As shown in
Figure 8, running times of 20 min (about 25 km), 1 h (about 250 km), 2 h (about 500 km), 5 h
(about 1200 km), and more than 5 h are qualitatively described as very close, close, medium,
far and very far, respectively. At the inner-city scale, the distances of 3 km, 8 km, 15 km, and
over 15 km are qualitatively considered very close, close, medium, and far, respectively. For
example, the distance between Zhengzhou Railway Station and Zhengzhou East Railway
Station is 11 km, qualitatively described as medium. Zhengzhou is about 130 km away
from Luoyang, and the distance relationship is expressed as close.
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Figure 8. Distance relationships.

3. Orientation Relationship

The orientation relationship, inherited from gkg:spatialRelation, is another crucial
spatial relationship in GeoKG, including northwest (NW), north (N), northeast (NE), west
(W), east (E), southwest (SW), south (S), and southeast (SE).

3.4. Data Layer Construction

Geographical knowledge extraction and integration are used to construct a data layer
to represent spatial location and morphological characteristics in GeoKG.

3.4.1. Knowledge Extraction

1. Concept Extraction from Geographic Dataset

Generally, concepts are mainly extracted from geographic datasets to complete the
schema layer. Concepts of ground object categories (such as Expressway and Transporta-
tionWarehousing) are created and connected to the schema layer based on layers in the
geographic datasets. Then, in each layer, the attribute fields of geographic datasets (such
as “Kind”) are used to extract the subclass concepts of ground objects. For example, as
shown in Figure 9, the field Kind is used to create concepts RailwayStation and BusStation,
which belong to the concept TransportationWarehousing. Then, these relationships can be
represented in triples—<TransportationWarehousing, is-a, GeoDatasetEntity>, <BusStation,
is-a, Transportation Warehousing>, and <RailwayStation, is-a, TransportationWarehousing>.

Figure 9. The relationships extracted from geographic datasets.

2. Entity Extraction from Geographic Dataset

Aiming at dividing geographical entities into multiple features and geometries, ge-
ographical entity extraction rules are designed based on layers and attribute fields. The
spatial database includes a list of tables, each of which contains many rows (i.e., geo-
graphic features). These rows are composed of fields; property fields express attributes,
and geometry fields represent spatial location.
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The technical challenge of entity extraction lies in combining geometries. When an
entity is only composed of a point, it can be presented in the WKT format of POINT,
whose basic unit is a pair of longitude and latitude. The entity geometry format will be
POLYGON if the points form a closed-loop containing a list of points; otherwise, it will
be LINESTRING. Furthermore, MULTIPOINT, MULTILINE, and MULTIPOLYGON are
used to construct entities whose basic units are POINT, LINE, and POLYGON. When the
entity is composed of multiple geometry types, its geometric format must be a collection of
geometric types.

When combining geometries from layers, the correspondence between entity names
and property fields is used to form pairs. As shown in Figure 10, the correspondence
between the layer Expressway and its attribute field ID is used to build pairs, creating
a triple <Name, has, Layer-Feature IDs>. Then, the fields Geometry, ID, and Name are
connected to concepts GeoDatasetEntity, Feature, and Geometry, while other attributes are
mapped to data properties. Finally, coordinates and spatial reference systems are also
transformed to WKT and EPSG code in the data layer. Besides, entity name and its
administrative region are used to identify the same name entities in different areas, thus
distinguishing the same name entity in the data layer.

Figure 10. Knowledge extraction from geographic datasets.

3. Knowledge Extraction from Encyclopedias

For geographical entities, spatial information and semantics are the main areas of
concern. Knowledge in Baidu Baike is extracted by opening an encyclopedia entry based
on an entity name and then locating elements using XPath. As shown in Table 1, the rules
are designed for extracting titles, synonyms, information boxes, and overview pictures,
thus completing entity semantics.

Table 1. Extraction rules for Baidu Baike.

Information Type XPath

Overview pictures div.summary-pic > a > img
Synonym span > span.viewTip-fromTitle
Entry title dd.lemmaWgt-lemmaTitle-title > h1

Information box
dl > dt.basicInfo-item.name
dl > dd.basicInfo-item.value

The “attribute–value” pairs (including attribute name and value) in the information
box are extracted. For an attribute value existing in the extracted entities, an object property
is built from the attribute name. Additionally, if the attribute value does not exist in
extracted entities, the data property is designed to describe entity semantics. In addition to
completing the knowledge in the data layer, the schema layer is also completed based on
concepts and relationships extracted from Baidu Baike. As shown in Figure 11, Zhengzhou
is extracted as an entity, the attribute value 7446 km2 is represented as the literal, and the
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attribute name Area is built as a data property. Additionally, Zhengzhou East Railway Station
is built as an entity.

Figure 11. Semantics extraction from Baidu Baike.

3.4.2. Knowledge Integration

From the above steps, geographical knowledge is extracted from multisource data (i.e.,
Baidu Baike and geographic datasets). Thus, it is necessary to integrate this knowledge in
two ways: knowledge linking and knowledge fusion.

Knowledge linking aims to discover equivalence relationships between entities. The
Baidu Baike website address is built with the entity name, and a specified web page about
the entity can thus be acquired. Then, the relationship sameAs is created to link these entities.
As shown in Figure 12, the entities are extracted from geographic datasets and Baidu
Baike, and they are deposited into concepts gkg:GeoBaikeEntity and gkg:GeoDatasetEntity,
respectively. Then, the relationship sameAs is built to represent the equivalent property.

Figure 12. Linking geographical entities with the same name.

Differently from knowledge linking, geographical knowledge is fused in terms of
attribute fields and values. In terms of attribute fields, fields with the same meaning
but different names are unified based on statistics. As shown in Figure 13, the attribute
fields Line Length and Mileage are both used to describe the entity length for line geometry,
and Line Length is used as a final relationship in the RDF triple (i.e., <Lianluo Highway,
Line Length, “4395 km”>). In addition to attribute fields, the knowledge extracted from
geographic datasets is considered the attribute value used to replace knowledge extracted
from Baidu Baike, because of itss accurate geographical coordinates. Although knowledge
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fusion strategies are a bit simple, they comprise an approach to acquire more accurate
geographical knowledge.

Figure 13. Different expressions in Baidu Baike information box.

3.4.3. Knowledge Storage

Knowledge storage involves saving the acquired knowledge. In a relational database,
storing RDF triples is redundant, and the JOIN operations demand more time. Similarly,
graph databases cannot support the spatial index and real-time extraction of spatial rela-
tionships. Therefore, a single database cannot meet the actual needs. Spatialite is a spatial
database with many advantages, such as small size, fast storage, high retrieval speed, and
low cost. It is used to store geographical data and some structured semantics. As shown
in Table 2, there are four tables in our database. The table GeoEntit stores geographical
entities, including generated ID, name, added time, the collection of feature IDs and its
corresponding layer name, Baidu Baike information, and geometry WKT. The table Ge-
oField_Baike stores statistics about attribute fields extracted from Baidu Baike, including
ID, name, frequency, and geographical IDs. The table GeoRelation stores relationships,
including relationship ID, name, and frequency. The table re_Geo_Geo stores the RDF
triples extracted from geographic datasets, including the triple ID, geographic entity IDs,
and relationship ID. To combine knowledge acquired from geographic datasets and Baidu
Baike, a graph database (Neo4j) is used to store relationships. In detail, the nodes store
concepts, entities, and attribute values, while edges represent relationships.

Table 2. The attributes of tables in a relational database.

Table Name Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

GeoEntity Geo_ID Name Time Feature_IDs 1 WebInfo WKT
GeoField_Baike BaikeField_ID Name Frequency Geo_IDs —- —-

GeoRelation Relation_ID Name Frequency —- —- —-
ge_Geo_Geo RDF_ID Geo_ID Relation_ID Geo_ID —- —-

1 Field “Feature_IDs” stores sets with feature IDs and their layer names.

4. Experiments and Evaluation

Transportation, warehousing, roads and administration (http://navinfo.com/digitalmap,
accessed on 21 September 2021) are used as experimental data sources. Linkage rate, se-
mantic relationship rate, and application cases are demonstrated to exploit the constructed
GeoKG.

4.1. Linkage Rate

As shown in Table 3, the constructed GeoKG contains over 126,000 entities. There are three
entity types: point-type, line-type, and polygon-type entities. More than 15,000 geographical
entities are linked to Baidu Baike pages, accounting for 12.17% (i.e., over 15,000 sameAs
relationships are constructed in the data layer). Additionally, there is an interesting phe-
nomenon whereby the linkage rate varies significantly between geometry types. Polygon-

http://navinfo.com/digitalmap
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type entities have a high linkage rate of 100%, while the linkage rates of point-type and
line-type entities are as low as 10.22% and 24.23%, respectively.

Table 3. Scale and linkage rate of GeoKG.

Bridge Bus
Station Airport Railway

Station
Expressway

Service Railway Nation
Road Expressway Province City Overall

Features 180,168 12,250 579 9538 7115 549 797,929 623,285 32 371 1631,816
Entities 87,481 11,881 378 9050 2321 548 10,213 4365 32 371 126,640
Linkage 3306 717 208 7006 113 347 2720 598 32 371 15,418
Linkage

Rate 1/%
3.78 6.03 55.03 77.41 4.87 63.32 26.63 13.70 100.00 100.00 12.17

Point-Type
Linkage Rate/% 10.22 Line-Type

Linkage Rate/% 24.23 Polygon-Type
Linkage Rate/% 100

1 Linkage rate is the number of geographical entities between geographic datasets and Baidu Baike linked to the number of entities extracted from
geographic datasets.

4.2. Semantic Relationship Rate

The geographical entities extracted from geographic datasets are full of exact coordi-
nates, represented by EPSG and WKT. Moreover, the semantics are enriched because of
their linkage with Baidu Baike. As shown in Table 4, the semantic relationship rate of the
Chinese name is 100% because of the opening of Baidu Baike pages based on entity names.
Although the geographical location rate reaches more than 88%, there are only 215 entities
with precise geographic coordinates, accounting for 1.39%. The missed coordinates can be
completed using the geographic datasets, thus increasing the rate to 100%.

Table 4. Statistics of semantic relationship rate.

Order Relationship Type Count Coverage Rate/%

1 Chinese name 15,418 100.00
2 Geographical location 13,633 88.42
3 Foreign name 6998 45.39
4 Station level 4212 27.32
5 Regional management 4046 26.24
6 Main route 2947 19.11
7 Start date of construction 2931 19.01
8 Date of coming into service 2192 14.22
9 Postal code 1964 12.74

. . . . . . . . . . . . . . . . . . . . . . . .
37 Geographic coordinates 215 1.39

4.3. Application Cases Based on GeoKG

Figure 14 demonstrates the retrieval process based on GeoKG. The first step is to click
on the map, thus identifying the nearest entity on the map. Then, entities are retrieved via
their semantic and spatial relationships in the databases. Finally, information about these
entities can be shown on the map or in a graph. The application cases based on GeoKGs
are as follows.
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Figure 14. Retrieval process.

4.3.1. Processing One Layer

By processing the railway layer in geographic datasets, semantics and exact geographic
coordinates can be obtained. Taking Longhai Railway as an example, the knowledge card
will be shown on the right side, containing its overview, pictures and semantics (Figure 15).
At the same time, the spatial information is displayed on the map.

Figure 15. An application case after processing the administration layer.

4.3.2. Processing Multiple Layers

In addition to knowledge about the clicked-on entity, information about the past
administration can be obtained after processing the polygonal province layer in geographic
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datasets. As shown in Figure 15, the entity Longhai Railway (i.e., the black parts) and its
past areas (i.e., the green parts) are represented on the map.

The relationship between point and line is hard to judge directly because of the
deviation between point and line. Hence, the point–line relationship is acquired by GeoKG.
In Figure 16, the railway stations in Longhai Railway are shown on the left side, and the
details of Zhengzhou are represented on the right side (including a detailed map and a
graph).

Figure 16. An application case after processing the transportation warehousing layer.

5. Discussion

The advantages and limitations of GeoKG construction are the main focuses of this
study. The GeoKG integrates semantic characteristics with spatial characteristics to under-
stand the real world.

The GeoKG is compared with two other KGs: CrowdGeoKG [2] and CKG [4]. Against
the OBOR background, CKGs focus on extracting geographical entities from internet ency-
clopedias about the countries along OBOR. However, CKG does not consider geographic
datasets, and lacks precise coordinates. Although CrowdGeoKG integrates knowledge
from OSM and Wikidata, it lacks the support of extracting entities from geographic datasets
(such as shapefile), and its linkage rate between OSM and Wikidata is only 6.62%. Com-
pared to the above two methods, our GeoKG regards geographic datasets as a main data
source and Baidu Baike as an assistant data source, whose linkage rate is increased to
12.17%. It also offers two more advantages. Firstly, the map and KG are integrated to
simplify the GIS interactions. Secondly, a spatial database and a graph database are used
to better support multi-source heterogeneous data fusion.

There are some design trade-offs of GeoKG. Firstly, geospatial cognition has the
characteristics of levels and regions [32]. However, most of the spatial relationships
extracted from two-dimensional space are erroneous, because they are in different levels or
regions. In light of this, spatial relationships are constructed in the schema layer, and then
extracted in real-time. To compensate for extraction time, the spatial database is introduced
to improve efficiency. Although our method can acquire abundant geographical knowledge,
it cannot extract knowledge from raster and trajectory data. Aiming at completing the
GeoKG with more data sources, deep learning and image processing technology will be
introduced to extract knowledge from these data.

6. Conclusions

KGs have attracted a lot of attention worldwide, and play an essential role in AI.
However, general KGs lack geographical knowledge. In this paper, both geographic
datasets and Baidu Baike are taken as data sources to extract geographical knowledge
and semantics. In the schema layer, concepts and relationships are modeled to represent
geographical knowledge based on GeoSPARQ. In the data layer, geographical knowledge
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is extracted, interlinked, and transformed into RDF triples. Then, both graph and spatial
databases are used to store geographical knowledge. Furthermore, the GeoKG is verified
through the linkage rate, coverage rate, and application cases. The results indicate that
the method could automatically extract knowledge from multisource data and combine
accurate spatial location with semantics. Additionally, our GeoKG has a higher success
rate of linking web pages with geographic datasets, and the accuracy of its coordinates has
increased to 100%.

In a word, GeoKGs have become a new research hotspot, which can integrate multi-
source geospatial data and promote GIS to realize the combination of accurate spatial
location and semantics. Thus, they are of great significance to the extension of geographic
data into knowledge.
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