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Abstract: Paramo ecosystems harbor important biodiversity and provide essential environmental
services such as water regulation and carbon sequestration. Unfortunately, the scarcity of information
on their land uses makes it difficult to generate sustainable strategies for their conservation. The
purpose of this study is to develop a methodology to easily monitor and document the conservation
status, degradation rates, and land use changes in the paramo. We analyzed the performance of two
nonparametric models (the CART decision tree, CDT, and multivariate adaptive regression curves,
MARS) in the paramos of the Chambo sub-basin (Ecuador). We used three types of attributes: digital
elevation model (DEM), land use cover (Sentinel 2), and organic carbon content (Global Soil Organic
Carbon Map data, GSOC) and a categorical variable, land use. We obtained a set of selected variables
which perform well with both models, and which let us monitor the land uses of the paramos.
Comparing our results with the last report of the Ecuadorian Ministry of Environment (2012), we
found that 9% of the paramo has been lost in the last 8 years.

Keywords: paramo; sustainability; land use; predictive nonparametric models; natural conservation;
degradation of natural resources; remote sensing

1. Introduction

The Andean moorlands (known as paramos) extend along Costa Rica, Colombia,
Ecuador, Venezuela, and Pert at heights between 3500 and 5000 m.a.s.l. Most of them
are of volcanic origin and have quite complex geology and topography [1]. They provide
several ecosystem services such as water supply and regulation, biodiversity conservation,
and carbon storage [2]. In fact, Andean moorlands receive between 600 and 1000 mm of
precipitation per year, which represents approximately 2/3 of the annual precipitation in
the Andes, making them the main providers of water in this region [3]. The upper layers of
paramo ecosystems can retain up to 183 tons of carbon/ha [4], which is significant because
soil organic carbon (SOC) is considered the largest terrestrial, non-sedimentary carbon
reserve [5]. Paramo soils are characterized by being dark and humic with an open and
porous structure and present a slow process of organic matter degradation due to the low
levels of temperature and atmospheric pressure [6].

Ecuadorian paramos run from 0°49’ N to 4°52’ S and cover approximately 833,834 ha,
representing approximately 5% of the country’s total area. They are home to a large
collection of Neotropical-Alpine ecosystems, containing approximately 628 endemic plant
species, which is equivalent to 15% of the endemic flora and 4% of the total flora of the
entire country. Forty-eight percent of this flora is located inside protected areas and 75% of
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its endemic species are threatened [7]. However, anthropogenic activities such as urban
settlements, agriculture, and livestock have intensified throughout history, constantly
degrading paramo ecosystems [8,9], resulting in a decrease in carbon dioxide sinks [10,11]
and in significant alterations in water regulation, erosion, and drought [12].

In this context, a sustainable management of the pdramo becomes essential to balance
economic growth, population growth, and environmental protection on one hand [13,14],
and those who benefit directly or indirectly from its ecosystem services on the other hand.
This challenge requires the implementation of adequate policies that consider the changes
in land use, the growing population, the growing demand for agricultural products, the
adverse effects on the climate, and the functions of the paramo ecosystem [15].

Unfortunately, the current situation is difficult to assess because there are no thorough
databases, especially on the state of the resource itself. Environmental data are hard to
obtain due to climatic conditions and difficulty of access. While performing rapid, system-
atic, economic, and efficient monitoring in hard-to-reach places is crucial for determining
sustainability strategies and policies for natural areas, limited access to the paramos makes
the sustainable management of this resource particularly challenging [16]. Several stud-
ies recommend the use of remote sensing data to generate information in inaccessible
areas [17].

Statistical methods for the management of environmental data have two main ad-
vantages: the first one is the simplicity of handling and generating large amounts of
datasets and the second one is the low cost involved since there are free software tools
available for its use. These statistical methods provide excellent results in the production
of information from areas with little data available [18,19]. Hence, the combination of
geographical information systems (GIS), remote sensing, and statistical models is becoming
increasingly popular due to its convenience, low cost, and time-saving features compared
to field monitoring [20].

The evaluation of the different land uses through satellite imaging has been widely
performed by many authors [21] using different nonparametric statistical techniques, which
allow the creation of predictive algorithms from basic remote sensing data [22-24]. Thus,
neural networks have been used to determine land use through images from different
satellites [25,26] and other authors have used different machine learning algorithms to
interpret satellite data [27]. In addition, some studies have evaluated the different land uses
by analyzing the signal characteristics from satellite images [28], while other works have
created predictive algorithms from nonparametric statistical tools, complementing satellite
data with data from other sources. These nonparametric statistical methods use various
types of attributes (e.g., topographic and remote data, lithology, and soil properties) [29],
which allow to determine the status of categorical variables related to the conservation of
natural resources, such as landslides, mineralogy, or the SOC concentration [30,31].

Nonparametric probabilistic (e.g., CDT) and automatic learning methods have been
widely exploited for vegetation mapping [32] and ecological modeling [33,34], while the
MARS method has been used in studies related to hydrology [35] and geomorphology, and
also supporting the creation of algorithms in remote sensing [36].

The objective of this study is to evaluate the performance of a supervised learning
algorithm that will allow to know the target variable by learning decision rules used from
the characteristics of the response variable to monitor and know the different land uses of
the paramo using three types of attributes (topographic data, Sentinel 2 satellite remote
data, and SOC data) and a categorical variable (land use coverage). Then, the information
generated is used to assess the performance of two nonparametric statistical models: the
CART decision tree (CDT) and multivariate adaptive regression splines (MARS). These
two statistical models were analyzed to obtain a set of variables that allow for a reliable
land use classification.

The information that can be obtained through the proposed methodology contributes
to the generation of databases in a fast, economical, and efficient way that monitors the
status of the Andean moorlands. These databases can be used as technical inputs for
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changes in paramo land use. Together with other social and economic inputs, they become
a great tool for conservation strategies and policies that are more in line with the reality of
the paramo ecosystem.

2. Materials and Methods
2.1. Study Area

This study is set on the Andean paramos located in the Chambo sub-basin, which
has a population of 414,495 inhabitants and an annual population growth rate of 1.42%.
It is located at 78°39’ W and 1°39’ S at an altitude of 3500 m.a.s.l. and bounded by the
Chimborazo Faunal Production Reserve and Sangay National Park (Figure 1). It has an area
of 3580 km?, of which 42.1% is paramo, and covers 51% of the total area of the province. The
main land uses are focused on agricultural and livestock activities [37]. Temperatures in the
area can vary between 2 °C and 20 °C according to the National Institute of Meteorology
and Hydrology of Ecuador.
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Figure 1. Location of the study area.

2.2. Work Flow

The study was carried out through the following stages: image processing, segmen-
tation, variable selection, value extraction, evaluation of the supervised learning models
CDT and MARS, and validation of the studied model (Figure 2).
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Figure 2. Flow chart: main stages of the study.

2.3. Satellite Images

Sentinel 2 images were downloaded from the European Space Agency (ESA) through
the official Copernicus Open Access Center. Sentinel’s Scientific Data Hub user interface
was used to set the cloudiness below 30% with the purpose of making the visible field as
wide as possible. Twenty satellite images were used for the study area, creating a mosaic
(60 km x 60 km). The images corresponded to the years 2019 and 2020.

2.4. Image Processing

Atmospheric correction was carried out with the free application Sen2Cor v2.8 of the
ESA, through which the bands of the original images were converted from level 1C aerosol
optical thickness (AOT) to level 2A bottom of atmosphere (BOA), also known as surface
reflectance. The AOT was treated by eliminating the contained water vapor and the images
were corrected according to the bands of the lower part of the atmosphere, for which the
bands were 12 (SWIR), 4 (red), and 2 (blue) [38].

The geometric correction of the images was carried out by comparing the vector
layers of the topographic maps with base maps of rivers and roads corresponding to the
Ecuadorian Military Geographic Institute by means of QGIS software [39].

2.5. Checkpoints

Through random sampling using QGIS software [40], one point per 100 ha of land
was extracted from the official Map of Ecosystems of Continental Ecuador (2012). This
resulted in a total of 3580 random control points that we considered adequate for statistical
purposes. An additional 20% of points were entered for which there are official data from
the Ministry of Agriculture and Livestock. As a last step, 381 points were eliminated
because they were located in areas where the Sentinel 2 images had pixels with noise due
to atmospheric effects or did not coincide with the coverages observed in the image. After
this selection, we were left with a total of 3915 control points that we used in the study, of
which a proportional 70% of the sample was verified in situ.

At the end, the points were counted for each coverage studied and its distribution was
as follows: 700 points for crops (C), 1290 for pastures (Gr), 150 for forest plantations (PF),
1600 for paramo (Pr), and 175 for areas without vegetation (bare soil, S). These categories
correspond to the main land uses according to the report “Contribution to the integrated
management of water resources planning” [41].
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2.6. Variables

We experimented with thirteen variables that characterize the area: the digital ele-
vation model (DEM), taken from the databases of the Ecuadorian Military Geographic
Institute [39]; the GSOC, which was extracted from the Global Soil Organic Carbon Map
data [42]; and ten spectral indices (Table 1), which were calculated though an algebra map
expression using the Python syntax by QGIS 3.4 (2018) based on the combination of corre-
sponding bands according to the methodology by the PyQGIS Programmer’s Guide [40].
The categorical variable was the land uses of the paramo ecosystem. The types categorized
included C, Gr, PF, Pr, and S. Accuracy was assessed with the statistical measures described
in Table 2.

Categorical and topographic variables were selected from the studies that showed the
advance of the agricultural frontier as one of the main causes for paramo loss [43,44]. The
GSOC and spectral indices were included since they are directly related to the different
soil surfaces in a particular way for each of the covers studied; thus, they contribute

significantly to the model fitting.

Table 1. Spectral indices analyzed from the Sentinel 2 bands.

Index

Formula

Characteristics

NDVI: Normalized difference
vegetation index

NDVI — (NIR—RED)

Minimizes topographic effects
and produces a linear
measurement scale. Negative
values represent areas without
vegetation. The higher the
index is, the higher the
chlorophyll index is [45].

SAVI: Soil-adjusted
vegetation index

Minimizes the effect of the soil
in areas with low vegetation
density [46].

VARI: Visible atmospherically
resistant index

(NIR+RED)
_ (NIR—RED)
SAVI = (NTR+0.428) x (1.428)
VAR — __(GREEN—RED)

(GREEN+RED—BLUE)

It highlights vegetation in the
visible part of the spectrum,
while mitigating differences in
lighting and atmospheric
effects [47].

EVI: Improved vegetation
index

EVI =25 x
(NIR—RED)
((NTR+6x RED—75xBLUE) +1)

It corrects some atmospheric
conditions, e.g., the
background noise of the
canopy, and it is more
sensitive in areas with dense
vegetation [48].

BSI: Bare soil index

[(SWIR+REBD)£(NIR+BLUE)]
[(SWIRRED)+(NIR+BLUE)]

The difference in the number
of areas of bare soil, land, and
vegetation [49].

NGRDI: Normalized red
green difference index

_ (GREEN—RED)
NGRDI = (GREEN-RED)

Reflectance of the green and
red area of the
electromagnetic spectrum,
which come from a true color
image [49].

ARVI: Atmospheric resistant
vegetation index

_ (NIR—(2xRed)+Blue)
ARVI = (NIR+(2xRed)+Blue)

Recommended for areas with

a high concentration of some

type of aerosol, mist, smoke,
or other type of particles
suspended in the air [50].
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Table 1. Cont.

Index Formula Characteristics

It can specify the health status
. of the vegetation or warn of
GCI: Green coverage index GCI = % -1 the stagrt of temporary
seasons [47].

It is a measure of the
“greenness” of the plant or
GNDVI: Green normalized _ (NIR-GREEN) photosynthetic activity. This
difference vegetation index GNDVI = (GREEN+NIR) index is mainly used in the

intermediate and final stages
of the crop cycle [45].

It describes the level of water
stress of the vegetation and
NDMI: Normalized _ (NIR—SWRI) between the difference and
difference moisture index NDMI = (NIR+SWRI) the sum of the radiation
refracted in the near-infrared
and SWIR [51].
NIR: Near-infrared; RED: band 4; GREEN: band 3; BLUE: band 2; SWRI: band 11; WATER VAPOUR: band 9.

Table 2. Statistical values used to evaluate the performance of the predictive models analyzed and the precision of the
land-use map.

Formula-Defines Each Parameter in the
Description

Measurement Description

Producer’s accuracy is a reference-based

accuracy that is computed by reviewing

Producer’s accuracy (PA) PA = % the predictions produced by a class and

' by establishing the percentage of correct
predictions [52].

User’s accuracy is a map-based accuracy
that is computed by reviewing the
reference data for a class and establishing
the percentage of correct predictions for
these samples [53].

User’s accuracy (UA) UA = %

YDy Indicates the proportion of all reference
Overall accuracy (OA) UA = pixels that are correctly classified [53].

Concordance between the observed
Kappa index K= % values of the image and the values
© estimated by the classifier [13].

Indicators of change Gain (Gy) = Pyj — Pj

They make it possible to determine for
. Losses (L;;) = Py, — Px .
Gain ) ) ) each category gains, losses, net change,
Net Change (Dy) =1L; — Gji 1 .
Losses ) ) ) and exchanges experienced between two
Net change Total change (Dry) = G + Ly points in time [54]
Exchange (S]) =2 x MIN (P]Jr — P]], P+j - P]) ’
w A latent transition is interpreted as
Systematic transitions in terms Gijj ﬁ existing but apparently inactive and an
of gain and loss i (Yer1—Yt) active transition means that it works or
L; % has the capacity to act [54].
iYt

Dj;: Number of correctly classified pixels of a particular class; Rj: number of reference pixels of the same class; C;: total number of predicted
values belonging to a class; N: total number of pixels in the error matrix; Pr(,: total proportion of cells that match in both layers; Pr():
random hypothetical probability that cells will match in both layers; P,;: gain at time two; Pjj: no coverage change; Pj,: loss at time two; G;;:
active transition; Lyj: latent transition; Y,1: time two; Y¢: time one; A: area.
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2.7. Extraction of Values

All variables were drawn from check points. The extraction of numerical values was
carried out using the Point Sampling Tool QGIS software plugin [55]. The model database
was generated from this operation.

The extracted numerical values were classified in two phases with a maximum likeli-
hood algorithm [56]. In the first phase, the learning phase, a spectral study of the image
was performed for each category at the training points. With this, the spectral response
could be related to each category. In the second phase, the probability that each pixel in the
images belongs to a certain category was calculated based on the spectral response. The
pixel was assigned to the category with the highest probability.

2.8. Fitting of Data in the Supervised Learning Model

The database was entered into Salford Predictive Modeler V8.2 software [57], which
includes the nonparametric CDT and MARS models. Using a Spearman’s rank correlation
matrix [58], only the values with a strong correlation (>0.9) were evaluated to reduce the
redundant data of the response variable.

The importance of the variables for each of the analyzed algorithms was studied with
the purpose of improving their performance. Through post-tuning, the training data were
adjusted, maximizing the validation and simplicity of the number of branches in the tree,
thus compensating for the lack of backtracking of the induction process [59].

2.9. Nonparametric Methods of Classification
2.9.1. CART Decision Tree (CDT)

CDT is an approximation model in which a number of variables established in a
nonparametric form are expressed [60]. It establishes an adjustment through recursive
binary partitions, in which a successive set of possibilities is established, which give rise to a
group belonging to the same characteristics that define its classification. The algorithm is in
charge of analyzing the categorical variables that make it possible to form a homogeneous
group or create nodes with each other as well as the heterogeneity between each node [61].

The tree is generated from a main node (root) in which all the variables are represented.
The algorithm defines the partition of secondary nodes based on increasingly different
defined criteria. The separation of these nodes or subsets comprises a classification level.
Consequently, if there are new partitions, new secondary nodes are created, but if the
data are homogeneous and represent a similar characteristic, then this node becomes a
terminal node. The process can be outlined in four phases: tree construction; stopping
the tree growth process that constitutes a maximum tree that over-adjusts the information
contained in our database; tree pruning, which simplifies the tree by leaving only the
most important nodes; and, finally, the selection of the optimal tree with generalization
capacity [62,63].

The purity of the nodes must be as high as possible; thus, the CDT method uses the
Gini index (1) as a division criterion:

g(t) —J;p(lt)pG) @)

where i and j are the categories of the predictor variable, t is a node, and p is the proportion.

2.9.2. Multivariate Adaptive Regression Splines (MARS)

This algorithm, which is based on recursive partitions and multistage regression,
uses spline functions to align data with an arbitrary regression function. It builds this
relationship from a set of coefficients and basic functions, which in turn are strongly
influenced by the regression of the data [63].

MARS generates cut-off points for the different variables. These points are identified
through basal functions, which indicate the beginning and end of a region. The final model
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is established as a combination of the generated base functions. To determine these cut-off
points, an overestimated model is generated by means of the forward stepwise algorithm.
Later, the backward stepwise algorithm is used to eliminate the nodes that contribute the
least to the global fit. The algorithm stops when the constructed approximation includes a
maximum number of functions set by the researcher [64].

The model can be written as Equation (2):

k

Ve = /(Xt) = Bo+ ) BiB(xit) 2

i=1

where y, is the response variable at time t, and {3; represents the model parameters for
the corresponding variables xj;, ranging fromi=1, ..., k. The value 3 represents the
intercept and the base functions B(xj;) are functions that depend on the corresponding
variables x;;, where each B (xj;) can be written as B (x;;) = max (0, xj; — ¢) or B (xj;) = max
(0, ¢ — x3t). cis a threshold value and k represents the number of explanatory variables,
including interactions of the predictor variables [65].

For the two nonparametric models, 70% of the analyzed objects were used for the
learning phase (L) and 30% were used for the validation phase (V).

3. Results and Discussion

The variables NDMI, BSI, GSOC, VARI, DEM, and NDMI were those that had the
best relationship with the characteristics of the study area. Through their combination in a
supervised learning method, it was possible to establish a set of guidelines that allowed
the determination of land uses in the Andean paramo.

3.1. Spearman’s Rank Correlation Matrix—Order Matrix

Table 3 shows the spectral indices that are correlated and provide nonredundant
information to the study. Those indices that presented a perfect correlation were eliminated
(e.g., SAVI, EVI, BSI, NGRDI, ARVI, GCI, and GNDVI) since they were built on others;
specifically, they provided similar data that limited the adjustment of the model and they
did not contribute to the decrease in entropy of the resulting information.

Table 3. Spearman’s rank correlation matrix—order matrix.

NDVI VARI BSI NDMI
NDVI 1.00
VARI 0.62 1.00
BSI —0.75 —0.84 1.00
NDMI 0.78 0.77 —-0.99 1.00

According to Charles Spearman [58], in his book “General intelligence objectively
determined and measured”, the correlation between 0.09 and 0.20 is minimal; if the value is
between 0.21 and 0.40, it is low; values between 0.41 and 0.60 are moderate; values between
0.61 and 0.8 are good; and values between 0.81 and 1.0 represent a very good correlation.
Applying these criteria to our Spearman matrix, the selected spectral indices showed good
to very good correlations.

The chlorophyll content (NDVI) reflected the most important direct correlation with
the level of water stress of the vegetation (NDMI), while bare soil (BSI) reflected the
strongest inversely proportional correlation with the water capacity of the site (NDMI).

The visible vegetation spectrum (VARI) and the chlorophyll content (NDVI) had a
good direct correlation with the level of vegetation water stress (NDMI). This is expected
since the availability of water is related to the concentration of vegetation.
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3.2. Analysis of the Variables of Importance

The percentages of importance of the variables (Figure 3) were relatively acceptable
considering the difficulties in the study area (e.g., they are dry places, they are difficult to
access, and they have complex weather conditions) [1]. Furthermore, it must be consid-
ered that the correlation between the variables could have had an impact on the relative
evaluation of the importance of the variables but did not affect the performance of the
model [43].

NDVI 100
DEM 89.12
w
S vari 81.03
o
<
Z asoc 79.45
>
BSI 75.09
NDMI 7012
0 20 a0 60 80 100

IMPORTANCE (%)

Figure 3. Importance of variables.

In the two nonparametric methods, the trends of the variables were the same, ranking
in ascending order of importance as follows: NDMI, BSI, GSOC, VARI, DEM, and NDVI.

The NDVI was 100% important within the models, making it an excellent exploratory
tool for vegetation classes due to its high sensitivity to different chlorophyll concentra-
tions [66].

The DEM obtained a relative importance of 89.12%, positioning itself as the second
relevant variable in the statistical model; it was used to determine that the topographic
classes analyzed were considerably related to altitude levels ranging from 3500 m.a.s.1. to
5000 m.a.s.l., and therefore, were related to the temperatures associated with its microcli-
mates that were between 2 °C and 20 °C. In other words, the variable directly influenced
the distribution, development, and growth of the studied systems.

The spectral visual atmospheric resistance index (VARI) was relevant, with a value of
81.03% in the analysis. It was not very sensitive to atmospheric effects in the visible range
of the spectrum and contributed to adjusting the model from the quality of the plants to the
analysis of the growth stages of crops due to their excellent correlation with the nitrogen
content [47].

The GSOC variable had a relative importance of 79.45%, which reflects that the distri-
bution of organic carbon in the soil is related to the other parameters that were analyzed.

The bare soil index (BSI) was adjusted to 75.09% importance. Based on this indicator,
the model will better discern the soil from areas with little vegetation, quantify its mineral
composition, and minimize the influence of humidity, increasing the reliability of the
algorithm [67].

The NDMI indicator had a relative importance of 70.12%. It has sensitivity to the
absorption of leaf moisture, controlling the water stress of the vegetation cover [51]. Despite
occupying the last place in the hierarchical order of the selected variables of importance,
this parameter can contribute to monitoring the distribution of water in the ecosystem,
leading to the geolocation of areas vulnerable to drought [34].

3.3. Precision Assessment of Nonparametric Models

In the learning phase of the confusion matrix (Tables 4 and 5), the CDT algorithm
correctly classified 3353 objects (88%) and MARS classified 2955 (81%) out of 3915 training
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objects, while in the validation phase, the CDT accurately classified 946 objects and MARS
accurately classified 829 out of 1174 control objects.

Table 4. Confusion learning matrix (L) 70%, validation (V) 30%. CDT.

Class L v PF(L)  PF(V) C(L) C(v) Pr(L) Pr(V) Gr(L) Gr(V) S(L) S(V) UA(L) UA(V) PA(L) PAV)
PF 150 47 117 39 7 3 6 2 19 2 1 1 78 70.21 7313 73.13
C 700 267 8 13 580 213 75 18 29 15 8 8 82.86 79.78 83.09 83.09
Pr 1600 540 16 3 55 33 1400 436 112 43 17 5 87.5 83.85 87.99 87.99
Gr 1290 273 19 4 41 15 101 26 1110 226 19 2 86.05 82.78 87.06  87.06
S 175 47 0 0 15 2 9 2 5 5 146 38 83.43 80.85 7644 7644

Total 3915 1174

Table 5. Confusion learning matrix (L) 70%, validation (V) 30%. MARS.

Class L A\ PF(L) PE(V) C(L) C(v) Pr(L) Pr(V) Gr(L) Gr(V) S(L) S(V) UA(@) UA(V) PA(L) PA(V)
PF 150 47 105 30 10 8 11 6 18 3 6 0 70.00 63.83 65.63 65.63
C 700 267 14 10 510 185 106 61 68 9 2 2 72.86 69.29 70.83 70.83
Pr 1600 540 21 1 110 73 1200 380 241 82 28 4 7500 7037 7952 79.52
Gr 1290 273 20 6 80 22 167 35 1007 201 16 9 7806  73.63 7509  75.09
S 175 47 0 0 10 5 25 4 7 5 133 33 7600 7021 7189  71.89

Total 3915 1174

The analysis of “producer accuracy” (PA) and “user accuracy” (UA; Tables 4 and 5)
determined that, in both the learning and validation processes, the nonparametric CDT
model performed better than the MARS model in classifying the categories analyzed based
on the total number of control points included by the operator for each of the topographic
coverages. The same performance trend was reflected in the classification of the categories
based on the total number of objects recognized by the program.

The general accuracy, “overall accuracy” (OA, Table 6), indicated that the proportion
of objects classified correctly in the CDT model corresponding to the learning phase was
88.00%, with a kappa of 86.51%, and that in the learning phase, it was 83.34% with a kappa
of 83.49%. Meanwhile, MARS correctly classified 81.83% with a kappa of 79.86% in the
learning process, and 75.46% with a kappa of 74.92% in the validation process.

Table 6. Summary of the main precision results of the two models.

Algorithms OA (L)% OA (V)% KAPPA (L)% KAPPA (V)%
CDT 88.00 83.84 86.51 83.49
MARS 81.83 75.46 79.86 74.92

The CDT algorithm, through its recursive binary partitioning adjustment mechanism,
established an excellent successive set of possibilities for analyzing categorical variables and
the ability to form groups or nodes homogeneous among themselves and heterogeneous
among nodes from the analyzed characteristics. The multistage regressions established by
MARS allowed obtaining reliable functions that aligned the information of the variables to-
wards a reliable supervised learning model. The connection analysis between the variables
from the categories evaluated in the two models was good, so it was determined that CDT
and MARS are stable and reliable statistical models for this case study.

3.4. Optimal Model with Higher Accuracy CDT

From the 3915 objects analyzed, 300 subtrees were randomly created with their corre-
sponding sets of variable characteristics in the study area. The tree with the smallest error
had 35 nodes (Figure 4) and included all the variables analyzed in the research based on
the categories analyzed in the paramo ecosystem.
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3.5. Optimal Model with Higher Accuracy MARS

The MARS model analyzed 35 basic functions in relation to the variables included in
the study (Figure 5). Function 13 was the highest-performing function based on the values

fitted by the model and the observer values.

For the analysis of land use changes in paramo ecosystems, the model with the highest

degree of accuracy (CDT) was selected.

Figure 6 shows the optimal CDT model; this model provides clear decision guidelines

with threshold values.
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Table 7 shows the conditions to be applied to determine land use coverages in the
Andean region studied. Although the model had a high level of accuracy, future researchers
could increase its performance considering the thresholds described; in addition, possible
variations could cause effects in the different nodes since the whole system is interconnected

from the main root, this could be considered a limitation in the method.

Table 7. Conditions for the classification of coverage.

Type Conditionals Observation
NDVI < 0.31, GSOC < 101.50, NDMI > 0.14,
VARI > 0.10 NDMI is the most important
NDVI <€ 0.31, GSOC < 101.50, NDMI < 0.14, variable in determining crops
C BSI > 0.10 indicating that crop leaf
NDVI < 0.31, GSOC < 101.50, NDMI < 0.14, sensitivity and canopy water
BSI < 0.10, VARI > 0.12 stress are directly related to
NDVI < 0.31, GSOC < 101.50, NDMI < 0.14, crop development.
BSI < 0.10, VARI < 0.12, DEM < 3810.50
NDVI < 0.31, GSOC > 101.50, DEM < 3842.52,
NDMI > 0.13
NDVI < 0.31, GSOC > 101.50, DEM > 3842.52, Altitude is one of the
GSOC <103.11 variables that significantly
Pr NDVI < 0.31, GSOC > 101.50, DEM > 3842.52, determined the distribution of
GSOC >103.11, NDVI < 0.19 the ecosystem (Pr).
NDVI <€ 0.31, GSOC > 101.50, DEM < 3842.52, The ecosystem can develop
NDMI < 0.13, GSOC > 115.76, NDVI < 0.16 above 3842.52 m.a.s.l.
NDVI < 0.31, GSOC > 101.50, DEM > 3842.52,
GSOC >103.11, NDVI > 0.19, GSOC > 161.07
The tree determined Gr
coverage in two very
interesting branches. In one of
NDVI > 0.31, GSOC < 149.76, NDVI > 0.33 the branches, the DEM
NDVI > 031, GSOC > 149.76, DEM > 3682.50  V2riable s determinant while
NDVI > 031, GSOC < 149.76, NDVI < 0.33, . the otherbranch it is not,
Gr VARI > 0.01 which lfza?is us to think that
NDVI > 031, GSOC > 149.76, DEM < 3682.50, ¢ predictive model could be
NDVI > 0.37 defining one category of
natural pasture and another of
cultivated pasture. That is, it
moves towards natural areas
without any control.
NDVI > 0.31, GSOC < 149.76, NDVI < 0.33,
VARI < 0.01
NDVI < 0.31, GSOC < 101.50, NDMI > 0.14,
VARI < 0.10 Forest plantation coverage
NDVI > 0.31, GSOC > 149.76, DEM < 3682.50, .2
NDVI < 037 (FP) has the lowgst prediction
. NDVI < 0.31, GSOC > 101.50, DEM < 3842.52, r‘ﬁ;ﬁgﬁ‘ﬁ; g:ig:fgﬁrx;:t
NDMI < 0.13, GSOC < 115.76 . .
NDVI < 031, GSOC > 101.50, DEM < 384252 ~ Proportioned coverage in the
NDMI < 0.13, GSOC > 115.76 > 0.16 area, so field monitoring could
NDVI < 0.31, GSOC < 101.50, NDMI < 0.14, improve its performance.
BSI < 0.10, VARI < 0.12, DEM > 3810.50
NDVI < 0.31, GSOC > 101.50, DEM > 3842.52,
GSOC > 103.11 > 0.19, GSOC < 161.07
The NDVI variable was
S NDVI <0.10 sufficient to determine the

ground cover.
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3.6. Distribution of the Categories Researched in the Study Area

Figure 7 shows the paramo reported by the map of Ecosystems of Continental Ecuador
in 2012 [37] and Figure 8 shows the paramo soil in 2020 and its loss points. Figure 9 shows
the alternative land uses by which the paramo was replaced from 2012 to 2020 in relation
to the altitudinal levels and levels of organic carbon concentration for each of the comarcas
that make up the study area.
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Figure 7. Distribution of the paramo according to the counties that comprise the Chambo sub-basin
(2012) [37].

The comparison of the 2020 land use map generated from the model that obtained
the highest percentage of efficiency (CDT) against the 2012 Map of Continental Ecuador
Ecosystems allowed us to evaluate the following aspects: carbon concentrations in relation
to the different altitudinal levels and land uses, systematic transitions of cover, gains, losses,
exchanges, and net changes of the categories analyzed in the work.

The land uses evaluated in our study are distributed throughout the sub-basin
(Figure 9). We found that above 3500 m.a.s.1., the paramo stores 251 to 357 tons C/ha, while
forest plantations and grasslands store 81 to 165 tons C/ha. Between 3000 and 3500 m.a.s.1.,
the paramo ecosystem had a carbon sequestration of 191 to 250 tons C/ha; crops store
from 60 to 64 tons C/ha, while grasslands and soils store from 39 to 80 tons C/ha. At
altitudes of 2500 to 3000 m.a.s.l., organic carbon concentrations varied in the range of 110
to 190 tons C/ha for paramos, from 20 to 38 tons C/ha for grasslands, and from 10 to
29 tons C/ha for crops.

Table 8 show the changes in the categories in relation to gains, losses, exchanges, and
net changes between the land uses of the Map of Ecosystems of Continental Ecuador, MAE
(2012) and the Map of Land Uses (2020) generated from the CDT model.
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Figure 8. Distribution of the paramo according to the counties that comprise the Chambo sub-
basin (2020).

In 2012, the Ministry of Environment of Ecuador, through the map of ecosystems of
continental Ecuador, reported that there were 128,170.48 ha of paramo ecosystem in the
Chambo sub-basin [37]. Based on this information and with the data obtained through
the land use map elaborated from the CDT model proposed in this research, we found
that the overall land use changes in the study area are as follows: the paramo lost 16.65%
(21,346.10 ha) of existing lands, while it gained 7.65% from other soil covers. Pastures
gained 7.84% while losing 0.82%; crops gained 2.15% and lost 1.52%; forest plantations
gained 1.53% and lost 0.98%, and soils gained 5.11% and lost 0.18%.

The interrelation of the cover change indexes indicates that paramo and pasture are
the land uses with the greatest transition. Paramo is the land cover with greater loss than
gain in relation to the land uses of the other land covers. Overall, the pdramo had a loss of
9% in extension during the 8 years from 2012 to 2020.

The loss of the paramo ecosystem is detailed below for each of the counties that make
up the Chambo sub-basin. (Table 9).

In ascending order, the loss of paramo in each county is as follows: Alausi 0.61%
(785.38 ha), Chambo 1.05% (1343.84 ha), Colta 1.09% (1400.88 ha), Penipe 1.64% (2096.09 ha),
Guano 1.73% (2212.49 ha), Guamote 4.18% (5359.40 ha), and Riobamba 6.36% (8148.02 ha).

Riobamba County followed by Guamote are the most affected areas since they are
located on the western boundary of the sub-basin [68]. Access to these high-altitude areas
is easier, which has allowed the development of agricultural and livestock frontiers to reach
the summit line. PF and land cover also reflect a higher concentration in these two counties.

In all the counties, the use of land as pastures represents the greatest impact on the
paramo ecosystem, possibly due to policies for price stabilization within the livestock
segment, a factor that has provided some stability for producers, making them wager more
towards this sector.
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The change in the ecosystem from paramo to bare soil may reflect erosion problems be-
cause of agricultural practices and inadequate recovery arrangements of natural resources.
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Figure 9. Land uses of the paramo ecosystem (2020); ((A): Colta; (B): Alausi; (C): Guano; (D): Penipe; (E): Chambo;
(F): Guamote; (G): Riobamba; Pr: paramo; Gr: grassland; C: crop; S: soil; and PF: forest plant).

Table 8. General index of coverage changes in the study area.

Coverage Gains % Losses% Exchange% Net Change%
Pr 7.65 16.65 12.76 7.93
C 2.15 1.52 3.04 0.63
Gr 7.84 0.32 0.64 7.52
PF 1.53 0.98 1.96 0.55

S 511 0.18 0.36 4.93
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Table 9. Distribution of land uses in the paramo ecosystem.

Loss of PARAMO from the Coverage Studied 2012-2020 Loss of PARAMO from the Coverage Studied 2012-2020

(Ha) (%)
County UTgfﬁiﬁ‘;ﬁ‘ﬁlﬁ;i‘:;: 17 P(rzgng C Gr PF s Total C Gr PF s Total

X Y
ALAUSI 766,363.14 9,750,636.59 5176.00 18112 30712 24114 5599 785.38 0.14 0.24 0.19 0.04 0.61
CHAMBO 77756297 9,805,829.89 8220.56 17296 41800 10720 64568  1343.84 0.13 0.33 0.08 0.50 1.05
COLTA 742,465.20 9,799,454.32 14,454.90 25401 109307  47.87 593 1400.88 0.20 0.85 0.04 0.01 1.09
GUAMOTE  770,637.10 9,772,754.27 48,481.67 503.87 248848  687.05  1590.00  5359.40 0.46 1.94 0.54 1.24 418
GUANO 755,657.56 9,833,453.54 5291.30 23608 82465 17589 97587  2212.49 0.18 0.64 0.14 0.76 1.73
PENIPE 78605927  9,823,700.11 13,667.04 182.86 94097 36446 60779  2096.09 0.14 0.73 0.28 0.47 1.64
RIOBAMBA  769,782.92 9,806,343.65 32,879.01 114802 398842 33353 267806  8148.02 0.90 3.11 0.26 2.09 6.36

128,170.48 21,346.10 16.65
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3.7. Systematic Land Use Change

Tables 10 and 11 detail the systematic transitions of gains and losses of land use
changes from the Ecosystem Map of Continental Ecuador (2012) and the Land Use Map
(2020) elaborated in the study.

The system transitions in Table 10 indicate that pastures replace paramo, crops, and
forest plantations, but do not replace soil. Crops gain and replace forest plantation land
uses but do not replace paramo, pasture, and soil. Forest plantations gain but do not
replace any land cover.

The transitions in terms of losses represented in Table 11 indicate that paramo and
crops lose cover and are replaced by pastures. On the other hand, forest plantations are
replaced by crops and pastures.

None of the categories has a zero value in the difference between the values observed
by the map and the expected value in the classification, so all changes were interpreted as
relevant [69-71].

Table 10. Systematic transitions in terms of gains from land use changes in the Chambo sub-basin.

Footprint Strength of the

Coverage Size Transition Interpretation
PraC _016 037 Cultivation gains, cu}tlvatlon does not
replace paramo.
PraGr 0.11 0.02 Grassland gains, grassland replaces paramo.
Pr a PF _081 095 Plantation forest gains, plffntatlon forest
does not replace paramo.
Pra$S —3.11 —0.93 Soil gains, Soil does not replace paramo.
CaPr —0.03 _033 Paramo gains, paramo does not replace
crop.
CaGr 0.33 0.89 Grassland gains, grassland replaces crop.
C aPF _035 —7.00 Plantation forestry gains, fo.rest'plantatlon
does not replace cultivation.
Cas$S 0.11 0.58 Soil gains, soil replaces crop.
GraPr 017 085 Paramo gains, paramo does not replace
grassland.
GraC —0.01 —0.20 Crop gains, crop does not replace grassland.
Gr aPF —0.01 —0.09 Plantation forest gains, forest plantation
does not replace grassland.
Gra$S —2.58 —6.14 Soil gains, soil does not replaces grassland.
PFaC 0.03 4.00 Crop gains, crop replaces forest plantation.
PFa Gr 0.04 0.94 Grassland gains, grasgland replace forest
plantation.
PFaS$S 0.15 5.25 Soil gains, soil replaces forest plantation.
SaPr 023 _329 Paramo gains, paramo does not replaces
soil.
SacC —0.13 —6.50 Crop gains, crop does not replaces soil.
SaGr —0.29 097 Grassland gains, grasgland does not replace
soil.
S a PF 046 1150 Plantation forestry gains, plantation forestry

does not replaces soil.
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Table 11. Systematic transitions in terms of losses from land use changes in the Chambo sub-basin.

Footprint Strength of the

Coverage Size Transition Interpretation
PraC —0.70 —0.72 Paramo loses, crop does not replace paramo.
PraGr 2.87 0.75 Paramo loses, pastizal replaces paramo.
PraPF 061 094 Paramo loses, forest p/lantahon does not
replace paramo.
Pra$S —1.56 —0.86 Paramo loses, soil does not replace paramo.
CaPr -1.05 —0.95 Crop loses, pdramo does not replace crop.
CaGr 0.49 2.33 Crop loses, grassland replaces crop.
CaPF 036 ~9.00 Crop loses, plantation forestry does not
replace crop.
Cas 0.20 2.00 Crop loses, soil replaces crop.
GraPr 267 ~0.99 Grassland loses, paramo does not replace
grassland.
GraC —0.09 —0.69 Grassland loses, crop does not replace
grassland.
GraPF 001 011 Grassland loses, plantation forestry does not
replace grassland.
Gras 275 ~11.00 Grassland loses, soil does not replace
grassland.
PF a Pr 042 —0.98 Forest plantation loses, paramo does not
replace forest plantation.
PFaC 0.03 1.50 Forest plantation loses, crop replaces forest
plantation.
PFa Gr 007 _0.88 Forest plantation loses, grassla}nd does not
replace forest plantation.
PFas 0.46 11.50 Forest plantation loses, gr?\ssland replaces
forest plantation.
SaPr —0.45 —0.60 Soil loses, paramo does not replace soil.
SacC —0.11 —2.75 Soil loses, crop does not replaces soil.
SaGr —-0.14 —0.93 Soil loses, grassland does not replace soil.
SaPF _048 _15.00 Soil loses, plantation forestry does not

replace soil.

It was recognized that changes in land use of the natural resource are strongly linked
to the economic activities of the inhabitants. This relationship helps to understand that
in the studied area, both ecological and social components are complexly related to each
other, which is why the paramo ecosystems of the study area should be understood as a
socioecological or socioeconomic system [72].

Grasslands are the predominant land uses in the area in terms of profits. Pasture
covers replace crops, which could mean that the inhabitants of the sub-basin concentrate
their economic activities in the dairy or livestock industry.

The degradation of the paramo ecosystem is significantly greater than its recovery
(Table 8), perhaps because native vegetation is completely eliminated from the Andean
zones for alternative uses. Soil productivity begins to decrease due to the complex climato-
logical and topographic conditions; after the fourth year, exploitation becomes unsustain-
able. Productive activities are moved to other Andean areas to take advantage of them for
a new period of time [73].
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The loss of Andean soils not only interferes with soil yield for productive activities
but also causes reduction of carbon storage, decrease in water regulation, loss of native
species, deterioration in ecosystem functions, and compromises the ecosystem services of
the natural resource for future generations [74]. Therefore, it is important to identify the
synergies of land uses.

Carbon concentrations are directly related to alternative land uses. From the land use
changes detected in the study and the carbon concentrations determined for each category,
it was possible to understand that the loss of paramo causes a loss of carbon sequestration
in the Andean ecosystem. The release of organic carbon into the atmosphere contributes to
climate change issues [24].

The distribution of organic carbon in the different altitudinal floors was diverse for
the analyzed land uses. Carbon sequestration was higher at high altitudinal levels. At
higher altitudes, carbon concentrations were higher, perhaps because at higher altitudes
the climatological and topographic conditions become even more difficult, which prevents
the use of the natural resource by anthropogenic activities.

Based on the evaluation carried out in this work, it is considered necessary to im-
plement timely conservation strategies according to the reality of the geographic area
studied. The updating of information on land use changes in the country’s paramos is
currently deficient or nonexistent. Constant monitoring in these difficult-to-access areas is
a real challenge. Natural resource conservation strategies are usually developed based on
assumptions or ad hoc information; there is no updated technical information [3].

The product of the fit model contributes to the generation of databases that allow
the evaluation of the impact of land use changes in the paramo ecosystem in relation to
altitudinal levels and carbon sequestration.

The technical information obtained through the application of the proposed method-
ology in combination with other social inputs can contribute to the development of more
precise programs, strategies, ordinances, or policies for the care of the paramo.

Although the methodology has good results, future researchers may consider the
extension of the set of variables included in the study as a limitation to replicate the study.
For this research, it was not possible to include variables of another type, for example
climatological variables, due to the scarce databases in the study area. For optimal results,
we must do a good job during the initial processing of the data (calibration, atmospheric and
topographic correction). Finding images with low noise and with moderate atmospheric
affectations can be complicated by the complex climatological factors of the area, which
could represent a difficulty in applying the method.

The proposed methodology stands out in relation to other studies due to the infor-
mation extracted for the determination of the thresholds of the variables; the data were
obtained from a compilation of 20 Sentinel 2 satellite images whose resolution is excellent
to establish a verification of the control points established on the studied coverages; this
guaranteed an excellent database for the elaboration of the model and analysis of the
importance of variables. All the inputs to replicate the work are low cost, which makes
the method an economically accessible tool. Based on the conditionals established in the
methodology, the automation of the algorithm will be fast.

It is essential to create sustainable strategies to recover and protect Andean areas.
If the protection of the paramo is not taken seriously, the loss of its functionality could
generate serious problems in the ecosystem services it provides, for example, in the water
supply of its area of influence.

4. Conclusions

The variables NDMI, BSI, GSOC, VARI, DEM, and NDVI have important character-
istics for the determination of land use in the paramo ecosystem. This set of variables
integrated to a statistical method of supervised learning allows monitoring and docu-
menting land use changes of the Andean ecosystem in relation to the rate of degradation,
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exchange, net changes, and their relationship with the carbon concentration in its different
altitudinal floors.

The CDT model had a performance of 88% and MARS 81.83%, so we conclude that
both algorithms reached an efficient accuracy percentage to determine the land uses of the
paramo from the variables selected.

We compared the paramo extension in 2012 from the land use report of the Ministry of
Environment in Ecuador and the map of land use of the year 2020 generated in our study.
We found that 9% less paramo exists in 2020 compared to 2012 (16.65% degradation, 7.65%
recovery). We found that pastures are the main replacement of the native vegetation in the
degraded paramo.

The interrelation of land cover change indices indicates that land use transitions in the
paramo show a greater tendency to degradation than to recovery of the natural resource.
Pastures are the main land use replacing native vegetation in the paramo.

The information acquired through the proposed methodology can serve as an input
that, in combination with other social and economic inputs, can support the creation of
sustainable conservation strategies and policies more in line with the reality of the area.

The methodology is efficient, economical, and easy to deploy, but could be improved
by analyzing new spectral indices and adding more detailed GIS vector layers. However, it
would be necessary to create them since there are no official databases with this type of
information (in the case of Ecuador).
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