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Abstract: To achieve sustainable development and improve market competitiveness, many manufac-
turers are transforming from traditional product manufacturing to service manufacturing. In this
trend, the product service system (PSS) has become the mainstream of supply to satisfy customers
with individualized products and service combinations. The diversified customer requirements can
be realized by the PSS configuration based on modular design. PSS configuration can be deemed as a
multi-classification problem. Customer requirements are input, and specific PSS is output. This paper
proposes an improved support vector machine (SVM) model optimized by principal component
analysis (PCA) and the quantum particle swarm optimization (QPSO) algorithm, which is defined
as a PCA-QPSO-SVM model. The model is used to solve the PSS configuration problem. The PCA
method is used to reduce the dimension of the customer requirements, and the QPSO is used to
optimize the internal parameters of the SVM to improve the prediction accuracy of the SVM classifier.
In the case study, a dataset for central air conditioning PSS configuration is used to construct and test
the PCA-QPSO-SVM model, and the optimal PSS configuration can be predicted well for specific
customer requirements.

Keywords: product service system (PSS); concept configuration; support vector machine (SVM);
principal component analysis (PCA); quantum particle swarm optimization (QPSO)

1. Introduction

As the product market is nearly saturated, it is getting more challenging for man-
ufacturers to satisfy diversified and individualized consumer requirements. To achieve
sustainable growth, many manufacturers have transformed from product-oriented manu-
facturing to service-oriented manufacturing. This trend of product service system (PSS)
to enhance competitiveness and sustainability leads to a massive research effort. The PSS
method is based on the simultaneous development of products with tangible features and
services surrounding the intangible features, to provide an integrated product that can
effectively consider all life cycle stages of the product and related services [1,2].

PSS is described as a hybrid solution that comprises products and services for the
purpose of increasing value for customers [3]. On the one hand, customers look forward to
being provided with services that aim at enhancing the function and economic performance
of the product, such as recycling and maintenance [4]. On the other hand, with ever fierce
competition and more diversified customer needs, the low-value-added manufacturing
paradigm can no longer meet the requirements of the market and the environment [5].
Therefore, PSS integrates the resources of various parties to meet the needs of customers
and reduces the material flow in the consumption process by adding services, which is
critical to improve social productivity, living standards, and environmental protection. The
emergence of PSS has changed the mode of manufacturing and supply. To create maximum
value for customers, PSS has to be individually configured. PSS configuration is to provide
a concept by selecting appropriate product modules and service modules among the design
modules in advance [6].
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The foundation of configuration is to design product modules and service modules by
modular design. Modular design is a commonly used approach to realize mass production
and individualized design. It combines product elements to form a subsystem with specific
functions and uses the subsystem as a versatile module to combine other subsystems
to form a system and then produce a product with a certain function. Belkadi et al. [7]
proposed a modular design process to support the configuration of production systems
that meet the needs of regional markets. Rennpferdt et al. [8] verified the importance of
modular product architecture for PSS development. To describe the dependencies between
activities, Geng et al. [9] proposed a modular design method based on the fuzzy design
structure matrix (FDSM) to obtain the result-oriented PSS. The PSS modular design is a
very effective way to improve the response speed and reduce the cost of the industry.

The key in configuration is to combine product modules and service modules to
satisfy the customer demands. The existing PSS configuration approaches include ge-
netic algorithm (GA) [10,11], ontology modeling [12,13], convolutional neural network
(CNN) [14], multi-objective programming [5,15], and so on. These approaches solve the
PSS configuration problem as an optimization model with an objective or a fitness function.
The goal of the PSS configuration is to provide a PSS concept that meets certain customer
demands. Similar customer demands can be provided with the same PSS configuration.
Therefore, the PSS configuration problem is regarded as a classification problem in this
paper. The support vector machine (SVM) is an effective tool to solve classification prob-
lems. It mainly solves small samples and nonlinear problems. SVM has been successfully
applied in the field of classification and regression. Demidova et al. [16] used an SVM based
on NSGA-II to predict the effect of medical and technical diagnosis. Pławiak et al. [17]
predicted Australian credit scoring based on a deep genetic cascade ensemble of SVM
classifiers. Sun et al. [18] proposed a DNN decision-tree-based SVM model for speech
emotion classification and recognition.

In this paper, PSS configuration is solved by the SVM method. The PSS configuration
problem can be decomposed into three sub-problems: requirement feature extraction, SVM
parameter optimization, and PSS configuration classification.

The first task is to reduce the dimension of customer requirements. Among the
methods to reduce data dimension, principal component analysis (PCA) shows a strong
advantage. PCA utilizes high variance to generate new components that store the most
valuable information of elements [19]. Asante-Okyere et al. [20] adopted PCA as a dimen-
sion reduction method to improve the performance of the optimized least-squares support
vector machine (LSSVM) and the adaptive neuro-fuzzy inference system-subtractive clus-
tering method (ANFIS-SCM). Cao et al. [21] proposed a fault diagnosis method based on
PCA and the Gaussian mixed model (GMM), and the PCA was used to reduce the data
dimension and increase the feature resolution. Henry et al. [22] proposed an integrated
framework based on the use of convolutional neural networks (CNN) and PCA to de-
tect stiction and identify the severity of stiction. The PCA acts as a dimension reduction
tool to visualize the extracted features. This paper uses the PCA algorithm to reduce the
dimension of customer requirements.

The second task is to optimize SVM parameters. The selection of SVM internal
parameters affects the classification performance and fitting effect of the SVM model.
The commonly used algorithms are GA, particle swarm optimization (PSO), ant colony
algorithm, and so on, while these algorithms have to set many parameters and are easy to
fall into the problem of local optimization. Lu et al. [23] proposed a quantum particle swarm
optimization (QPSO) algorithm from the perspective of quantum mechanics. The QPSO
assumes that the particle swarm optimization system is a particle system that satisfies the
basic hypothesis of quantum mechanics. In quantum space, particles do not have a specific
trajectory, which allows particles to search for the global optimal solution in the entire
feasible solution space. The lack of a defined trajectory means that the speed and position of
the particles cannot be determined simultaneously in quantum space. The QPSO algorithm
uses the Monte Carlo method to calculate the optimal position of the quantum particle to
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make sure the global randomness. It has the advantage of a fast convergence rate, and
its fitness value is better than that of the traditional PSO [24,25]. This paper takes the
advantage of the QPSO algorithm for global random optimization in SVM classification to
find the optimal parameters.

The third task is to construct and test a PCA-QPSO-SVM model to predict PSS config-
uration. The customer requirements and PSS configurations are coded in the model. The
PSS configuration is a class label. By comparing the original class label and the predictive
class label, the accuracy of the model can be obtained. The PCA-QPSO-SVM model can
predict a PSS configuration for specific customer requirements.

The rest of this paper is arranged as follows: In Section 2, the relevant literature is
reviewed. The framework of the proposed PSS configuration approach is summarized in
Section 3. Section 4 discusses how to use PCA and QPSO to optimize SVM parameters. In
Section 5, the PSS configuration model based on PCA-QPSO-SVM is illustrated in detail.
Section 6 is a case for an air-conditioner service system to demonstrate the efficacy of the
proposed approach. Section 7 is the conclusion of this paper.

2. Literature Review

This section gives a comprehensive literature review consisting of three parts: PSS
design, PSS configuration, and PSS configuration optimization.

2.1. PSS Design

PSS is described as a combination of products and services to provide the required
utility or function to meet customer needs [26]. To help meet specific customer needs,
various PSS development methods have been designed. Durugbo et al. [27] discussed
an information flow modeling technique related to the key features of a PSS (such as
origin, concepts, and applications). Their proposed model decomposed the iterative
process between customers and service providers into different stages to provide total care
products. Chiu et al. [28] proposed a process of developing PSS business models to expand
current products or services into new market areas. Fargnoli et al. [29] proposed a method
based on the collaborative use of PSS quality function deployment, axiomatic design, and
service blueprint tools to provide the correlation between customer expectations, PSS
components, and PSS modules. Lee et al. [30] utilized a structural services innovation
approach to integrating PSS engineering and service engineering in designing intelligent
product-service systems. Wang et al. [31] presented a PSS requirements heuristic framework
to help engineering designers better improve designs or generate new design concepts.

2.2. PSS Configuration

The system framework for PSS configuration was first proposed by Aurich [32]. Based
on the determination of the specific products and service features, technology and service
configuration were combined to generate a customized PSS in this framework. The ex-
isting PSS configuration approaches include GA, multi-objective programming, ontology
modeling, and so on. Sheng et al. [11] proposed a PSS configuration optimization method
based on a genetic algorithm. Xuanyuan et al. [10] presented a multi-objective optimization
for product configuration and used a multi-objective genetic algorithm to find the Pareto
optimal solution set from feasible solutions. Song et al. [5] proposed a multi-objective
optimization model for product extension service configuration to solve the problems
of too many service solutions and low service delivery efficiency in PSS configuration.
Dong et al. [12] proposed an ontology-based service product modeling approach for con-
figuration. Shen et al. [13] presented an ontology-based approach to represent service
configuration knowledge and developed a product-extended service configuration system.
Based on the combination of quality function deployment and screening life cycle modeling,
Haber and Fargnoli [33] proposed a product service system method, which is based on
the combination of product service system quality function deployment and screening life
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cycle modeling tools, which is used to customize solutions for different usage patterns and
achieve better environmental performance than independent products.

With the support of artificial intelligence, machine learning algorithms are introduced
into the configuration study. To understand customer needs by using quantitative ap-
proaches, Yu et al. [34] proposed a knowledge-based artificial neural network (ANN)
combined with a decision tree to substantiate customer needs to product specification.
Zhou et al. [14] trained the CNN to obtain the complex nonlinear mapping relationship
between the customer’s demand attributes and the basic types of product-service systems,
to determine the PSS configuration. Shen et al. [35] proposed a method that combines
cluster neural network and rule algorithm to extract configuration rules between service
parameters and functional requirements, customer features, or product features to gain
higher effectiveness of configuration solution.

The SVM, as a kind of machine learning algorithm, has shown excellent results in
solving small samples and multi-classification problems. Nowadays, a large number of
scholars have used SVM for prediction and classification. Ahlawat et al. [36] developed a
hybrid model of a powerful CNN and an SVM for the recognition of handwritten digits
from the ministry dataset. Viloria et al. [37] used an SVM to predict the diagnosis of diabetes
mellitus (DM). Zhou et al. [38] proposed a multi-model latent space-inducing ensemble
SVM classifier for early dementia diagnosis with neuroimaging data. Shao et al. [39]
studied the energy consumption of hotel buildings by establishing a support vector machine
energy consumption prediction model.

2.3. PSS Configuration Optimization

In the process of predicting the PSS configuration by the SVM method, the opti-
mization of the SVM classifier largely determines the optimization of the PSS configura-
tion scheme.

In the PSS configuration problem, the PSS configuration concepts are classified by
the customer requirements. There are a number of requirements that affect classification
accuracy. Therefore, the quantity of the characteristics should be reduced, which means
the dimension reduction in the SVM algorithm. There are many approaches for feature ex-
traction or dimension reduction, such as neural network, PCA, and so on. Zhang et al. [40]
used neural networks to extract more sensitive features with a shallow structure, thereby
improving the accuracy of small sample classification. Kontonatsios et al. [41] developed a
novel feature extraction method based on a neural network. Unlike the previous unsuper-
vised feature extraction methods, this paper extracts document features in a supervised
environment. Xiao et al. [42] presented a feature extractor based on Deep Convolutional
Neural Networks to extract patterns shared by a family from entropy graphs automatically.
Zhang et al. [43] used a PCA based on the AdaBoost algorithm to detect breast cancer.
Ratnasari et al. [44] used a threshold-based region of interest (ROI) and PCA to reduce X-ray
images, which obtained the best gray-level threshold of 150. Ma et al. [45] leveraged a deep
convolutional neural network to extract image features and leveraged a PCA algorithm to
achieve dimension reduction. Negi et al. [46] proposed a method that combines PCA and
uncorrelated linear discriminant analysis (ULDA) to obtain the best features that control
upper limb motion. Therefore, this paper selects PCA for feature extraction of the dataset.
The basic idea of PCA is to use fewer mutually independent features to replace a large
amount of information of the original features. It is favored by a large number of scholars.

On the other hand, the accuracy of the SVM classifier prediction depends heavily on
the selection of the kernel function and penalty factor. Many scholars have used some
optimization algorithms to optimize the parameters of SVM, such as the GA, grid search
(GS), PSO, and so on.

(1) A genetic algorithm is a computational model that simulates the biological evolu-
tion process of natural selection and the genetic mechanism of Darwin’s biological
evolution theory. It is a method of searching for the optimal solution by simulat-
ing the natural evolution process. GA is often combined with SVM to optimize the
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parameters of SVM. Huang et al. [47] proposed the GA-SVM model to analyze the
quantitative contribution of climate change and human activities to changes in vege-
tation coverage. The model used genetic algorithms to optimize the loss parameters,
kernel function parameters, and loss function epsilon values in the SVM. Based on
GA-SVM for rapid and effective screening of human papillomaviruses, Chen et al. [48]
proposed a Raman spectroscopy technique that improved the accuracy of the model
to optimize the penalty factors and nuclear function parameters in the SVM model.
Li et al. [49] used the GA-SVM model to identify and classify flip chips.

(2) Grid search is an exhaustive search method. By looping through the possible values
of multiple parameters, it generates the parameter with the best performance, which
is the optimal parameter. GS is a common method to optimize the parameters of
SVM. Lv et al. [50] used PSO-SVM and GS-SVM to predict the corrosion rate of a steel
cross-section. Tan et al. [51] proposed a method combining a successive projections
algorithm (SPA) with an SVM based on GS-SVM to classify and identify apple samples
with different degrees of bruising. Kong et al. [52] used the GS-SVM model to assess
marine eutrophication states of coastal waters.

(3) Particle swarm optimization is an optimization algorithm that simulates the pre-
dation behavior of bird swarms. The iteration process forms the optimal position
and optimal direction, hence updating the particle swarm. Many scholars apply
the PSO algorithm to optimize SVM parameters. García Nieto et al. [53] proposed
a hybrid PSO optimized SVM model to predict the successful growth cycle of spir-
ulina. Liu et al. [54] developed the PSO-SVM model to predict the daily PM2.5 level.
Bonah et al. [55] combined Vis-NIR hyperspectral imaging with pixel analysis and a
new CARS-PSO-SVM model to classify foodborne bacterial pathogens.

In the PSO algorithm, the position and moving speed of the particles co-determine
the movement trajectory of the particles. In quantum space, particles do not have a specific
trajectory, which allows particles to search for the global optimal solution in the entire
feasible solution space. The lack of a defined trajectory means that the speed and position of
the particles cannot be determined simultaneously. Ch et al. [56] employed the SVM-QPSO
model to forecast the streamflow values of Vijayawada station and Polavaram station of
Andhra Pradesh in India. Li et al. [57] presented the use of an LSSVM algorithm based on
quantum-behaved particle swarm optimization to establish the nonlinear relationship of
slope stability. They verified that QPSO-SVM can provide a high degree of accuracy and
reliability. Therefore, this paper applies the QPSO to optimize the SVM parameters to solve
the PSS configuration problem.

3. Research Framework

PSS configuration design is based on the modular design concept. Product mod-
ules and service modules compose varied PSS configurations. In the design and sales
departments, there are many historical data about customers’ demands and their purchases
schemes. This paper takes full advantage of the historical data to construct and test a
PCA-QPSO-SVM model. In this model, PCA is used to reduce the dimension of customer
requirements to extract the important features. QPSO is applied to optimize the SVM
parameters, and a multi-classification SVM classifies the PSS configurations. The research
framework is shown in Figure 1.

(1) Data preparation and preprocessing

Customer requirements and the corresponding PSS configurations are obtained from
the design and sales database. The representative historical dataset is extracted.

(2) Reduction of the requirement dimension

The PCA algorithm is used to reduce the dimension of the customer requirements,
then the processed dataset is used in the training set and testing set.

(3) Construction of the QPSO-SVM model
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The QPSO algorithm is used to optimize the kernel function σ and the penalty factor
C for SVM. Functions that satisfy Mercer’s theorem [58] can be used as the kernel function.
The kernel function is used to map the samples from the original space to the higher-
dimension feature space and make them linearly separable in the feature space. The
penalty factor is used to control the balance between margin maximization and deviation
minimization [59]. By optimizing relevant parameters, the QPSO-SVM model is constructed
and tested to verify the accuracy. In the QPSO-SVM model, the customer requirements are
the input, and the PSS configuration meeting the customer requirements is the output.

(4) Prediction of the PSS configuration scheme

According to the PCA-QPSO-SVM model, PSS configuration can be predicted accord-
ing to the inputting of new customer requirements.

4. Construction of a PCA-QPSO-SVM Model
4.1. Principal Component Analysis

The principal component analysis is a multivariate statistical method for analyzing
the correlation between multiple features. The essential idea of PCA is to reveal the internal
structure among multiple features through a few principal components. In other words,
multiple features in the original data are reduced to a few features, simultaneously the
relationships among the original data features are retained as much as possible. PCA has
been playing an important role in the fields of artificial intelligence, data mining and image
recognition, and so on. The mathematical derivation process of PCA is as follows.

Assuming that the projection of a sample point xi is WTxi on the hyperplane in the new
space, then the covariance matrix of the sample points is ∑i WTxixT

i W after projection. If
the projections of all sample points can be separated as much as possible, then the variance
of the sample points would be maximized, so the optimization goal can be written as:

max
W

tr(WTXXTW) (1)

s.t. WTW = I

where, W= (w1, w2, . . . , wd).
By using the Lagrange multiplier method for Formula (1), we can obtain:

XXTwi = λiwi (2)
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Then the obtained eigenvalues are sorted: λ1 ≥ λ2 ≥ . . . ≥ λd. Finally, the eigenvector
corresponding to the top d’ eigenvalues forms W∗ = (w1, w2, . . . , wd’).

The steps of the PCA algorithm are as follows:

• Step 1: Set the initial dataset D = {x1, x2, . . . , xm} and the low-dimensional space
dimension d’.

• Step 2: Centralize all samples: xi ← xi − 1
m

m
∑

i=1
xi.

• Step 3: Calculate the sample covariance matrix XXT and decompose the eigenvalues
of the covariance matrix XXT .

• Step 4: Take the eigenvector corresponding to the top d’ eigenvalues w1, w2, . . . , wd’.

4.2. Quantum Particle Swarm Optimization Algorithm

The PSO algorithm was proposed by Kennedy and Eberhart [60]. It is a random search
algorithm based on swarm intelligence developed by simulating the foraging behavior of
birds. Its basic idea is to find the optimal solution through collaboration and information
sharing among individuals in a group. The mathematical description of the PSO algorithm
is as follows:

Assuming that the particle swarm size is M, the current optimal position of particle i
in the n-dimensional space is expressed as:

pbesti = (pi1, pi2, · · · , pin) (3)

The current optimal position of the entire particle swarm is:

gbest = (g1, g2, · · · , gn) (4)

During each iteration, the velocity update formula of each particle is:

vi(t + 1) = wvi(t) + c1rand1(pbesti(t)− xi(t)) + c2rand2(gbest(t)− xi(t)) (5)

where, c1,c2 are learning factors; w is an inertia factor; rand1, rand2 is a random value in
[0, 1]; vi(t) is the velocity of the i-th particle, xi(t) is the position of the i-th particle; t is the
number of iterations.

The position update formula of each particle is:

xi(t + 1) = vi(t + 1) + xi(t) (6)

The PSO algorithm needs to set too many parameters, such as inertia factor w, learning
factors c1, c2, etc. It is difficult to find the optimal parameters. Moreover, it is easy to fall
into the dilemma of a local optimum due to the lack of randomness in the particle position
change. To redress these problems, this paper applies the QPSO algorithm with higher
performance. The QPSO algorithm cancels the particle’s moving direction attribute and
increases the randomness of the particle position change. The calculation process of the
QPSO algorithm is as follows:

The term mbest is introduced in the QPSO algorithm, which represents the average
value of pbest. It can be expressed as:

mbest =
1
M

M

∑
i=1

pbesti (7)

The current optimal position of particle i is:

pi = φ · pbesti + (1− φ)gbest (8)

where Φ is uniform value in [0, 1].
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The position update formula of each particle is:

xi = pi ± alpha|mbest− xi| ln(
1
µ
) (9)

where µ is a uniform value in [0, 1] and is the new parameter, which can control the degree
of contraction and expansion of the particle position generally. The value of alpha is less
than 1.

4.3. Support Vector Machine

The SVM was originally proposed by Cortes and Vapnik [61]. It is a supervised
learning algorithm that classifies datasets. The essential idea of the SVM is to construct a
hyperplane in the sample space as a decision line that divides two different samples. The
SVM can solve both binary classification problems and multi-class problems. In this paper,
PSS configuration is regarded as a multi-class problem. The derivation process of the SVM
algorithm is as follows.

Given a set S containing N training samples, S = {(xi, yi), i = 1, 2, . . . , N}, the expression
of classification hyperplane is:

f (x) = w · x + b (10)

where w is the normal vector of the hyperplane and b is the translation distance of the
hyperplane.

The objective function of partition hyperplane with the “maximum interval” can be
expressed as:

min
w,b

1
2
‖w‖2 (11)

yi(w · xi + b)− 1 ≥ 0, i ∈ {1, 2, · · · , N}

To enhance the error tolerance of the SVM classifier, a relaxation variable ξi and
the penalty factor C are introduced into the objective function. The objective function is
expressed as:

min
w,b

1
2

∣∣∣∣∣
∣∣∣∣∣w
∣∣∣∣∣
∣∣∣∣∣2 + C

n

∑
i=1

ξi (12)

s.t.yi(w · x + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · , N

where ξi is a non-negative slack variable, which is used to improve the generalization
ability of the model. C is the penalty factor, which is used to control the balance between
margin maximization and deviation minimization.

For solving the non-linear classification problem, it is necessary to introduce the kernel
function in the SVM. The kernel function is used to map the samples from the original space
to the higher-dimension feature space and make them linearly separable in the feature
space. In this paper, the Gaussian kernel function is used:

k(xi, xj) = exp

(
−
(xi, xj)

2

σ2

)
(13)

The Lagrange multiplier is brought into the objective function. The optimization
problem can be expressed as:

max
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjk(xi, xj) (14)
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s.t.
n

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, · · · , N

where αi is the Lagrangian coefficient.
The final optimized hyperplane is expressed as:

f (x) =
n

∑
i=1

αiyik(xi, xj) + b, i = 1, 2, · · · , N (15)

4.4. Optimization of the SVM Parameters

The quantity of the feature attributes affects the accuracy of the SVM model. The
dimension of the feature attributes should be reduced first by the PCA algorithm. Then,
the QPSO algorithm is used to optimize the C and σ of the SVM classifier based on the
processes data. Finally, the optimal parameters are brought into the SVM model to realize
the PCA-QPSO-SVM modeling. The PCA-QPSO-SVM optimization process is shown in
Figure 2. The steps of constructing the PCA-QPSO-SVM model are as follows:

• Step 1: Use a PCA algorithm to reduce the dimension of dataset Q to get a new dataset Q’.
• Step 2: Determine the initial parameters of the QPSO, such as the number of particle

swarms, the range of the parameters, the alpha value, and so on.
• Step 3: Set the fitness function in QPSO. In this paper, the fitness function is the average

of SVM cross-validation (CV), and its value represents the classification accuracy of
the model. The optimal value pbest and the global optimal value gbest for each particle
are updated by iterating the fitness function, where pbest is the penalty factor C, gbest
is the kernel function σ.

• Step 4: Calculate the optimal position mbest of the particle swarm and update the new
position of each particle.

• Step 5: Determine the end condition. When the optimal search reaches the maximum
number of iterations, the optimal search ends; otherwise, go to Step 3.

• Step 6: The optimal parameters (C, σ) are brought into the SVM model to conduct
prediction.
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5. PSS Configuration Based on the PCA-QPSO-SVM Model

This paper proposes a PCA-QPSO-SVM model and uses it to solve the PSS configu-
ration problem. The process includes two parts: data collection and construction of the
PCA-QPSO-SVM model.

5.1. Data Collecting and Processing

In real life, customers would have different needs for PSS, which generates diversified
requirements for PSS configuration. It is vital to collect customer requirements features.
Taking central air conditioning as an example, consumers usually use strong stability, high
energy saving, and strong reliability to express their requirements. The vague requirements
have to be understood and realized by a specific PSS configuration. The proposed PCA-
QPSO-SVM model is used to classify customer requirements using PSS configuration as a
class label. Individualized PSS configuration can be obtained, which will support the PSS
design.

In the PCA-QPSO-SVM model, the input must be a real vector. We assume requirement
features of customer Ci are represented by En = {CNi|1 < i < n, CN1, . . . , CNi, . . . , CNn},
and each feature CNi has t selectable values. Then numbers can be used to encode the t
optional values. For example, E1 = {0, 0, 2, . . . , 2, 1,−1} represents the requirement features
of customer C1.

A PSS solution is comprised of product modules and service modules. Assuming
there are s product modules in the PSS configuration framework, the module features for
the product part can be expressed as P = {Pi|1 < i < s}. There is one or more instances
for each module characteristic. For example, there exist t available instances for module
Pi, and the set is {pi

j|1 < j < t}. Similarly, the module features for the service part can be
expressed as S = {Sv|1 < v < u}. Assume there exist q available instances for module Sv, and
the set is {su

w|1 < w < q}. The product instances and service instances make up diversified
PSS configuration instances. Assume there exist l PSS configuration instances, and PSS
configuration instances can be expressed as PSS = {PSSk|1 < k < l}. Product and service
modules have different selectable instance values, which can be represented by discrete
numbers as tags. For example, a PSS configuration instance is expressed as {p1

2, p2
2, . . . ,

pi
3, s1

1, s2
2, . . . , su

3}.

5.2. Construction of the PCA-QPSO-SVM Model for PSS Configuration

• Step 1: Determine the product modules and service modules, then combine the corre-
sponding instances to form different PSS configurations. According to the relevant
historical data, the ‘requirements-configuration’ samples are collected to construct the
model.

• Step 2: Reduce the dimension of requirement features by using the PCA algorithm.
QPSO is used to perform k-fold cross-validation (CV) to find the best Gaussian kernel
function σ and the penalty factor C. For k-fold CV, the entire training set is divided
into k subsets with an equal number of samples. One of the subsets is selected as the
testing set, and the remaining k-1 subsets are the training set.

• Step 3: Construct the multi-class SVM model by using the best parameter combination
(C, σ) to test the testing set. After constructing a reliable classification model, PSS
configuration can be predicted by inputting new customer requirements.

6. Case Study

Company A is a central air-conditioning manufacturer. To enhance the company’s
competitiveness and meet the diversified requirements of customers, company A decides
to transform towards a service-oriented enterprise and provides customers with indi-
vidualized PSS configuration. According to the modular design platform, and the PSS
configuration design can be realized by combining different product instances and ser-
vice instances. To quickly and accurately recommend the schemes to customers among



Sustainability 2021, 13, 9450 11 of 22

diversified PSS configuration instances, the proposed PCA-QPSO-SVM model is applied in
company A.

First, 100 data samples are extracted from the design and sales database. Then, the
100 data samples are divided into a training set and a testing set. The number of samples
in the training set is 75 and that in the testing set is 25. Finally, the multi-classification
PCA-QPSO-SVM model is used to predict the PSS configuration. The customer’s need is
used as the input of the PCA-QPSO-SVM model, and the PSS configuration scheme is used
as the output of the model.

6.1. Data Coding and Features Analysis

According to customers’ using conditions, 11 requirement features were identified by
experts, including environmental protection, stability, intelligence, simplicity, convenience,
adaptability, reliability, comfort, energy-saving, safety, and heat dissipation. Five-point
requirement levels are defined as {L, ML, M, MH, H}, which mean {low, medium-low,
medium, medium-high, high}. The corresponding code is {−2, −1, 0, 1, 2}. The description
of requirement features is shown in Table 1. For instance, if a customer requires high
energy savings, then the value for CN9 can be represented by the code ‘2′. By consulting
the experts, the modules and relevant instances of the central air conditioner are shown in
Table 2. The modules and relevant instances of the service are shown in Table 3.

Table 1. Descriptions of requirement features.

Feature Option Code

CN1 Environmental protection {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN2 Stability {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN3 Intelligence {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN4 Simplicity {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN5 Convenience {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN6 Adaptability {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN7 Reliability {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN8 Comfort {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN9 Energy saving {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN10 Safety {L, ML, M, MH, H} {−2, −1, 0, 1, 2}
CN11 Heat dissipation {L, ML, M, MH, H} {−2, −1, 0, 1, 2}

Table 2. Product module description.

Product Module Instance Code

Compressor

Permanent magnet synchronous frequency conversion screw type A1
Photovoltaic direct-drive frequency conversion centrifugal A2

DC frequency conversion A3
Permanent magnet synchronous frequency conversion centrifugal A4

Condenser
Water-cooled condenser B1

Air-cooled condenser B2
Evaporative condenser B3

Evaporator Horizontal evaporator C1
Vertical tube evaporator C2

Throttling parts Capillary D1
Throttle D2

Fan
Axial fan E1

Centrifugal fan E2

Reservoir

unidirectional F1
Bidirectional F2

Vertical F3
Horizontal F4
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Table 2. Cont.

Product Module Instance Code

Filter drier
Loose filling dry filter G1

Block filter G2
Compact bead dryer filter G3

Cooling Tower Dry cooling tower H1
Temperature cooling tower H2

Table 3. Service module description.

Service Module Instance Code

Recycling service
Home inspection I1

High price recycling I2
Cash transaction I3

Maintenance service
Annual maintenance J1

Quarterly maintenance J2
Monthly maintenance J3

Spare parts service

Original parts supply K1
Non-original parts supply K2

Replacement of faulty spare parts K3
Spare parts upgrade K4

Install service
Remote installation and debugging L1

On-site installation and commissioning L2
Fully commissioned installation and commissioning L3

Control Technology Service
Adaptive location and weather M1

Self-regulation of demand M2
Predictive self-diagnosis M3

Cleaning service

Duct cleaning N1
Parts cleaning N2

Cooling tower cleaning N3
Condenser cleaning N4

The product modules and service modules constitute different PSS configuration
schemes. In this case, the PSS configuration scheme {A1, B2, C2, D2, E1, F1, F3, G1, H1, I1, J2,
K1, L2, M2, N1, N2} is coded ‘1′, {A2, B1, C2, D1, E2, F2, F4, G2, H2, I2, J1, K3, L1, M1, N3, N4}
is coded ‘2′, {A3, B3, C3, D2, E2, F1, F3, G3, H2, I1, J1, K1, L3, M2, N1, N2} is coded‘3′, {A4, B2,
C1, D2, E1, F2, F4, G1, H1, I2, J3, K2, L2, M3, N3, N4} is coded ‘4′, and {A1, B1, C2, D2, E2, F1,
F3, G3, H1, I2, J3, K2, L3, M2, N1, N2} is coded ‘5′.

The original design data for constructing the PCA-QPSO-SVM model are shown in
Table 4. The distribution of each feature is displayed with a frequency diagram and box
plots, as shown in Figures 3 and 4.

It can be seen from Figures 3 and 4 that most of the datasets are relatively evenly
distributed and have no abnormal feature attributes. Only features CN8, CN9, CN11
have few outliers, which has little effect on the entire datasets, so the features cannot
be eliminated easily. To see the correlation between each feature more intuitively, the
establishment of a feature relationship heat map is shown in Figure 5.

In Figure 5, the correlation between features (CN1, CN9) and (CN4, CN10) is higher.
Next, by establishing two coordinate systems with CN1 as the x-axis, CN9 as the y-axis
and CN4 as the x-axis, and CN10 as the y-axis, we can observe whether they are linearly or
nonlinearly related in the plane distribution. The result of feature correlation is shown in
Figure 6.
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Table 4. The original data.

Samples
Inputs

Outputs
CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11

01 0 0 2 1 2 −1 1 1 2 1 −1 1
02 2 2 −1 −1 −1 1 2 1 2 1 −1 3
03 1 1 1 2 0 0 2 1 2 2 0 5
04 1 1 0 2 0 −1 2 0 1 2 −1 2
05 −1 1 2 1 1 2 1 2 0 −1 2 4

. . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . . . . . . . . . . .

96 0 −1 1 1 2 −1 0 0 2 1 −1 1
97 0 0 2 0 2 −1 2 1 2 0 −1 1
98 0 2 0 2 1 0 2 1 1 2 −2 2
99 1 2 1 2 1 0 2 1 2 2 −1 2
100 1 2 2 1 0 −1 1 1 1 2 1 5
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It can be seen from Figure 6 that the features (CN1, CN9) and (CN4, CN10) do not
show a linear correlation, so the features CN1, CN9, CN4, and CN10 cannot be eliminated
easily.

6.2. PCA-QPSO-SVM Model Construction for PSS Configuration
6.2.1. Dimension Reduction of Requirement Feature

To improve the classification performance of the SVM model, the original feature set is
processed to reduce dimension. First, the PCA algorithm is used to reduce the dimension
of 11 requirement features in the original 100 sample data. Because the values of the data
samples are all in {−2, -1, 0, 1, 2}, there is no need for StandardScaler processing. Second,
the principal components are determined by calculating the covariance of each feature.
The result of the calculation is shown in Figure 7.
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In Figure 7, the first and second principal components account for most of the variance,
accounting for 63.62%. Therefore, the parameter set of PCA is n_components = 2. The data
after PCA dimension reduction is shown in Table 5.

Table 5. PCA dimensionality reduction data.

Samples
Inputs

Outputs
X1 X2

01 −0.224301033 −2.404274949 1
02 −1.799516865 3.14492011 3
03 −0.986306315 −0.290209173 5
04 −1.898471273 −0.422895036 2
05 3.882774024 0.580798351 4

. . . . . . . . . . . . . . . . . . . . . . . .
96 −0.270004463 −2.44421515 1
97 0.094105412 −1.824376829 1
98 −1.867236441 −0.250669022 2
99 −1.777916303 −0.443148983 2

100 −0.14995178 −0.555739606 5

To demonstrate the distribution of these 100 samples more clearly after PCA dimen-
sionality reduction, this paper visualizes these 100 samples. Take X1 as the x-axis and X2 as
the y-axis, and the established rectangular coordinate system is shown in Figure 8.
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To visualize the data, the original 11-dimensional features are reduced to 2-dimensional
features through the PCA algorithm, thereby reducing nine attribute features. To verify the
relationship between the 2-dimensional feature and the original 11-dimensional feature,
and we can establish a heat map to reflect the relationship intuitively between the original
features and PCA principal components, as shown in Figure 9.
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In Figure 9, the color from dark to light represents a value from−0.4 to 0.5, if the value
of a feature is positive, it means that it is positively related to the principal component. If it
is negative, then the opposite. It can be seen from Figure 9 that the correlation coefficient of
X1 is extremely low only with CN1, CN2, CN9, CN10, and the correlation coefficients of X2
are extremely low only with CN3, CN4, CN5, CN10. Then it indicates that the substitution
effect of X1 and X2 is better.

6.2.2. QPSO-SVM Model Construction and Parameters Setting

First, the 2-dimensional dataset obtained by the PCA algorithm is used as the dataset of
the multi-class SVM model. Then, the QPSO algorithm is used for parameter optimization
of 2-fold CV to find out the optimal parameter pair (C, σ). In the parameter optimization
process, 75 randomly selected samples were used to train the QPSO-SVM model. In the
QPSO algorithm, a parameter pair (C, σ) was obtained by each iteration, when the number
of iterations reaches the maximum and output the optimal parameter pair (C, σ). The
specific parameter settings of the QPSO algorithm are shown in Table 6.

Table 6. QPSO parameter settings.

Parameter Settings

Number of particles 50
Particle dimension 2

The maximum number of iterations 50
Alpha 0.6

Maximum parameter 15
Minimum parameter 0.01

Fitness function 2-fold CV classification accuracy
Algorithm stop condition The number of iterations > 50

The optimal parameter pair (C, σ) was calculated by setting the parameter value of
the QPSO algorithm, and then it was used as the parameter sets the value of the multi-class
SVM model for prediction analysis. The entire process was completed by Pycharm 2019.

6.3. Prediction and Comparative Analysis of PCA-QPSO-SVM Model

To evaluate the performance of the training model, classification accuracy is used as
an index. In each iteration of the PCA-QPSO-SVM model, the training accuracy of training
samples is shown in Figure 10.
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According to QPSO parameter optimization, when the number of iterations reaches
8, the classification accuracy under 2-fold CV is the highest (95.01%), and the optimal
parameter values C = 3.01, σ = 2.41 are obtained at this time. Then the optimal parameters
are used in the multi-class SVM model, and 25 samples in the testing set are used to test
the classification accuracy of the model. The test results are shown in Figure 11. It turns
out that all 25 test samples are predicted correctly, and the accuracy rate is 100%, which
verifies that the performance of the QPSO-SVM model is excellent.
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To verify the validity of the PCA-QPSO-SVM model prediction, this paper compares
PCA-QPSO-SVM with PCA-PSO-SVM, PSO-SVM, GA-SVM, and GS-SVM. In the experi-
ment, various prediction algorithms are run 20 times, respectively. For each method, the
optimal prediction result is selected as the final result. The final results are compared as
shown in Table 7. The simulation results show that the prediction accuracy of the PCA-
QPSO-SVM model is 100%, which is better than other algorithms. Therefore, the proposed
model has a better adaptability and predictive ability. In addition, the mean square error of
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PCA-QPSO-SVM is 0, indicating that the PCA-QPSO-SVM model has a good predictive
modeling effect.

Table 7. Precision comparison of PCA-PSO-SVM, PSO-SVM, GA-SVM, and GS-SVM.

Model PCA-QPSO-SVM PCA-PSO-SVM PSO-SVM GA-SVM GS-SVM

Number of tests 25 25 25 25 25
Number of errors 0 2 9 9 10

Tests accuracy 100% 92% 64% 64% 60%
Mean square error 0 1.0 1.04 1.56 3.32

To verify the reliability of the model to solve actual problems, this article will test
the consistency of the PSS configuration provided by a new customer’s demand with the
actual situation. The first new customer needs to configure central air-conditioning for
the hospital. Its requirements are good stability and low noise (that is, the environmental
protection is very high). Because the patient is considered, the comfort is also very high.
The input is {2, 2, −1, −1, 0, 2, 1, 2, 1, 1, 0}, and the output result is the configuration plan
“4”, namely {A4, B2, C1, D2, E1, F2, F4, G1, H1, I2, J3, K2, L2, M3, N3, N4}. In practice, A1
has low noise and good stability. Because E1 has the characteristics of low wind pressure
and small air volume, it is more comfortable. Configuration plan “4” meets the needs of
customers and verifies the reliability of the model.

6.4. Discussion of Results

In the case study, there exist unimportant requirement features, so it is vital to reduce
the dimension of customer requirement features. In this paper, we retain 95% information
on requirement features. To facilitate the visualization, customer requirements are reduced
from 11 features to 2 principal components by the PCA algorithm. Because the PCA
algorithm can filter out some small influencing features by reducing the dimension, it
will greatly improve the calculation speed and prediction accuracy of SVM. By comparing
it with the PSO-SVM model, the PCA-PSO-SVM reaches the optimal result in the 13th
iteration, the PSO-SVM model reaches the optimal result in the 21st iteration. In addition,
the PCA-PSO-SVM model has the higher prediction accuracy (92%) than the PSO-SVM
model (64%). Moreover, the PCA-PSO-SVM model has the lower mean square error (1.0)
than the PSO-SVM model (1.04).

The QPSO algorithm is used to optimize the penalty factor C and the kernel function σ
of SVM in this paper. The experimental results show that the optimal parameters (C = 3.01,
σ = 2.41) and the highest classification accuracy (95.01%) are obtained by the PCA-QPSO-
SVM model. By comparing with the PCA-PSO-SVM model, the proposed approach in this
paper reaches the optimal result in the ninth iteration, which is faster than the PCA-PSO-
SVM model (the 18th iteration). In terms of prediction accuracy, the proposed approach
is 100%, which is higher than the PCA-PSO-SVM model (92%). In addition, the proposed
approach has the lower mean square error (0) than the PCA-PSO-SVM model (1.0). These
verified that the QPSO algorithm has the advantages of fast calculation ability and strong
optimization ability in comparison with other optimization approaches.

By comparing with the GA-SVM model, the PSO algorithm can find the optimal
parameters faster and lower mean square error. The PSO algorithm reached the optimal in
the 21st iteration, which is faster than the GA-SVM model (the 27th iteration). Although
the prediction accuracy the PSO-SVM model is similar to the GA-SVM, the mean square
error of the PSO-SVM model is 1.04, which is lower than the GA-SVM model (1.56).

Similarly, by comparing with the GS-SVM model, the PSO algorithm can find the
optimal parameters faster and with a better prediction accuracy. The PSO algorithm
reached the optimal in the 21st iteration, which is faster than the GA-SVM model (the 38th
iteration). The prediction accuracy of the PSO-SVM model is 64%, which is higher than the
GS-SVM model. In addition, the mean square error of the PSO-SVM model is 1.04, which
is lower than the GS-SVM model (3.32).
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In general, the experimental results show that it is effective for predicting PSS configu-
ration by the proposed PCA-QPSO-SVM model. The proposed approach has the highest
accuracy and best performance by comparing with other approaches, which can provide
a more accurate PSS configuration that meets customer requirements. In the product
service area, this is beneficial to customers who will receive a better value offering and the
manufacturer who can identify the main aspects of its solution more effectively.

The limitation of the dataset is that the sample are relatively small. The optimal
parameters and the highest classification accuracy are reached through 50 iterations.

7. Conclusions and Future Research

With the increasingly fierce market competition, more and more manufacturers com-
bine products and services into PSS to provide customers with greater value. Manufacturers
must accurately determine which configuration meets customer needs better. The PSS
configuration is deemed as a multi-classification problem in this paper. A PCA-QPSO-SVM
model is proposed to solve this problem. The validation of the proposed model in air
conditioner configuration indicates that it can be used as an effective prediction model for
PSS configuration. To sum up, the proposed approach reveals the following features.

The PSS configuration design can be realized by machine learning. The historical
design and sales data have great value in supporting individualized PSS design. A multi-
classification SVM helps PSS providers to easily predict configuration schemes with higher
customer satisfaction.

Compared with the conventional SVM model, the proposed model considers the
impact of feature dimension and the selection of key parameters. The PCA algorithm has
the advantage of convenience in reducing the dimensions of the dataset. In the process of
optimizing SVM parameters, QPSO does not fall into the problem of local optimization and
has a better fitness value. The usage of QPSO in optimizing SVM parameters can improve
classification accuracy.

Although the proposed optimization method can predict the PSS configuration well, it
is restricted by the training data. The predicted model performs effectively when there are
adequate and reliable data. Completely new customer requirements are hard to process and
generate the appropriate PSS configuration. Therefore, in future research, we can calculate
the similarity between new customer requirements and previous customer requirements,
and the PSS configuration corresponding to the maximum similarity can be recommended
to the new customer.
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