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Abstract: Discussion forums are a valuable source of information in educational platforms such as
Massive Open Online Courses (MOOCs), as users can exchange opinions or even help other students
in an asynchronous way, contributing to the sustainability of MOOCs even with low interaction from
the instructor. Therefore, the use of the forum messages to get insights about students’ performance
in a course is interesting. This article presents an automatic grading approach that can be used to
assess learners through their interactions in the forum. The approach is based on the combination of
three dimensions: (1) the quality of the content of the interactions, (2) the impact of the interactions,
and (3) the user’s activity in the forum. The evaluation of the approach compares the assessment by
experts with the automatic assessment obtaining a high accuracy of 0.8068 and Normalized Root
Mean Square Error (NRMSE) of 0.1799, which outperforms previous existing approaches. Future
research work can try to improve the automatic grading by the training of the indicators of the
approach depending on the MOOCs or the combination with text mining techniques.

Keywords: MOOC; discussion forum; automatic grading; evaluation; interactions; quality; impact

1. Introduction

Massive Open Online Courses (MOOCs) are one of the new forms of digital education.
This concept was born in 2008, but it was not until 2012 that it really became popular [1,2].
This new format of online education allows users from all over the world to access courses
taught by leading universities. Global platforms such as edX, Coursera, FutureLearn,
or MiríadaX offer thousands of courses free of charge to millions of students [3]. These
contents can include, for example, individual or peer-to-peer assessments, video lectures
or live video sessions, reading materials, and discussion forums [4].

MOOC discussion forums provide a way of communication among students and
between students and instructors. In these forums, participants can ask questions, give
their impressions of course content, or even report problems with the platform. Of course,
the versatility and relevance of the forums also provide a great source of data, which
can offer a lot of information about the users [5]. Thus, analyzing the content of course
messages could be a good practice and could even be used as part of the summative
assessment of the course. Discussion forums are not only specific for MOOCs and they
exist in other educational platforms, but MOOCs emphasized their use with many users
taking advantage of them.

One of the main problems with forums in MOOCs is usually the large number of
messages posted. Most of the times, instructors are not able to read and review all the
messages posted in the forum [6]. For this reason, it is also common for instructors to use
assistants to manage the forum and answer questions or help users during the course [7].
In other cases, it is the community of learners itself the one that resolves the doubts of
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other colleagues, thus contributing to the sustainability of the course through the creation
of a community around the forum. Moreover, in most cases, the messages posted by
learners are appropriate and the interaction enriches the user experience. Nevertheless,
some studies have shown that some users may take advantage of the open access to MOOC
contents and forum to post messages that are totally irrelevant to the course and to the rest
of the students [8].

Therefore, a good way to reward those users who use the forum correctly adding
value by helping fellow students or posting messages of interest, and penalize those who
do not make good use of the forum, could be to include forum participation as part of
the course assessment, but not only the quantity of the participation but the quality. This
would encourage interaction between users and might ensure good practices in the forum.
But as previously stated, manual review of all messages generated in a MOOC forum
can be a tedious and unfeasible task [9]. Hence, learners’ automatic assessment based on
MOOC forums could be considered as an alternative.

The existing related literature contains several studies in which the quality of interac-
tions in MOOC discussion forums is evaluated [10–14]. However, these articles focus only
on the quantitative aspects of these interactions (such as the number of messages posted),
but do not typically consider the content of these messages. For this reason, the aim of this
work is to develop and evaluate an automatic grading model in which user participation
in discussion forums is evaluated analyzing aspects of their content, their impact, and also
of the user’s activity. This algorithm consists of evaluating different metrics belonging to
each of the three dimensions mentioned before, and assigning weights to these metrics
according to their importance or relevance in each specific course. In addition to the design
of the algorithm, an evaluation of the algorithm should be performed in a specific scenario,
with certain weights, and with the participation of experts to verify the correct grading
of user interactions. In order to accomplish this, the following research question (RQ)
is proposed:

RQ: What is the accuracy and Normalized Root Mean Square Error (NRMSE) that can be
obtained to assess students’ grades in forum messages with an approach with fixed
metrics and selected weights by experts by default?

This paper is structured as follows. Section 2 discusses published articles related
to MOOC discussion forums, and research studies focused on user interactions in other
open forums. Section 3 describes the dimensions and the functioning of the automatic
grading algorithm. Section 4 details the materials and methods used in the work presented,
including the description of the data used, the application of the automatic grading algo-
rithm designed in edX, and the specific scenario in which it has been evaluated. Section 5
presents the results obtained for the different test performed. Section 6 discusses the ob-
tained results, the implications, and the possible limitations of the study. Finally, Section 7
includes the conclusions of the research and possible future work directions

2. Related Work

Studies conducted on the data obtained from MOOC discussion forums are numer-
ous [15,16]. However, only few of the related articles focuses on assessing the quality of
interactions in the forums. In contrast, this type of analysis is more frequent and popular in
other Question and Answers (Q&A) forums. Studies focused on Q&A sites such as Quora
or StackOverflow are particularly noteworthy, as the structure and functioning of these
forums is very similar to that of MOOCs discussion forums [17–19]. Moreover, these two
forums are the most popular Q&A sites, being the former a general purpose forum and the
latter focused on computing.

2.1. Open Q&A Forums Analysis

There are several articles that study the messages posted on Quora with very diverse
objectives [20–22]. However, there are some common features that are used to perform
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an analysis of the quality of the messages. For example, Maity et al. [23] tried to predict
whether a question would be answered or would remain open (answerability) by per-
forming a linguistic analysis at message level (length, sentiment analysis, n-gram counts,
topic diversity, etc.) and at user level (linguistic style), and also by analyzing user activity.
In this way, it is understood that the most answerable questions are those that are more
complete and have higher quality content. Their model achieved a maximum prediction
accuracy of 76.26% and they concluded that linguistic analysis metrics were the most
discriminative features.

Patil et al. [17] relied on users’ activity (Activity Features—AF), the quality of their
messages (Quality of Answer Features—QAF) and their linguistic (Linguistic Features—
LF), and temporal characteristics to detect experts on Quora. Therefore, they studied
several characteristics such as the number of followers, the number of published messages,
the length of those messages, their entropy, or their readability (using the Simple Measure
of Gobbledygook—SMOG formula [24]), among others. The results of their study showed
an accuracy of up to 97%, so that the classifiers used could reliably identify experts on
different topics.

Finally, Roy [25] used multilayer convolutional neural networks to detect low-quality
messages on Quora. In this case, messages were ranked according to their quality using
attributes very similar to those of the two previous studies. Roy managed to improve the
results obtained in other research, achieving an accuracy of 98% in the best case.

As for the articles that analyze the StackOverflow forum, it is possible to find papers
with very varied objectives. Regarding those articles in which the quality of posts is studied,
Ponzanelli et al. [18,26] analyzed the own metrics of StackOverflow (length, replies, votes,
tags count, etc.) and others related to the readability and popularity of the messages;
Duijn et al. [27] and Arora et al. [28] analyzed the type of question according to its content;
and Roy et al. [29] analyzed up to 26 different textual and non-textual features.

However, there are other articles in the literature that uses StackOverflow data to:
detect the most voted messages based on textual, temporal, semantic, and behavioral
features as in the case of Neshati [30]; predict the success of a response based on the quality
of the presentation, the speed of the response, or the reputation of the author, as in the case
of Calefato et al. [31]; or analyze its reputation system and the contributions of users, as in
the case of Movshovitz-Attias et al. [19]. In the latter article, grades were assigned to the
different possible actions to calculate users’ reputation, and it was concluded that users
classified as experts perform more interactions in the forum than other users.

All the aforementioned articles use similar features to infer or calculate the quality of
the messages in the forums of both Quora and StackOverflow, and all of them obtain quite
satisfactory results in terms of the accuracy of their models. Since the functioning of these
two open forums is very similar to that of MOOC forums, the features used here could also
be used in the context of online education in general, and MOOCs in particular.

2.2. MOOC Discussion Forums Analysis

It is very common for users to use the course forum in a MOOC to ask questions or
express their opinion about the course. So, the messages posted in the discussion forums
throughout the course are a great source of information from which it is even possible
to infer the student’s performance. However, processing all the messages generated in
a course manually is virtually unfeasible. For this reason, a large amount of research
analyzing different aspects of MOOC discussion forums has been published in recent
years [7,13,32].

It is possible to find in the literature several articles that do not analyze the information
that can be obtained from the messages as such, but rather the type of content of these
messages. Some studies have been oriented towards the classification of messages into
different types according to their content. Ntourmas et al. [7] classified the content of
messages into three categories: course-related problems (CR), course logistics-related
problems (LR), and community-related discussions that do not require action by the course
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moderator (NAR). In their study, they used different elements such as video transcripts to
calculate the similarity of the posted messages with the different possible topics, and thus
classify them into the different categories. However, in this first approach they only
achieved a maximum accuracy of 69%.

In this same line of research, the articles of Stump et al. [33] and Cui et al. [34]
are also noteworthy. In the latter, they used different linguistic features to identify six
types of messages or structures: general discussion messages, presentation messages,
Q&A messages, messages about course assignments, messages about technical problems,
or Open Learning Initiative (OLI) Textbook questions. Their analysis showed that only
28% of the messages posted by students were content-related and, in terms of classification,
they achieved a 86% accuracy with the base model.

For its part, Stump et al. [33] classified the messages into eight types according to the
topic. They also identified the user role when posting. In this way, the user who posts a
message can be classified as a help/information seeker, a help/information giver, or other
in case the user does not match any of the two previous types.

There are also articles in the literature that use the information contained in forum
messages to detect patterns or predict events. Imran et al. [35] pointed out that one of the
biggest challenges of online courses in general, and MOOCs in particular, is the dropout
rate. Therefore, they used deep neural network architectures to detect users at higher risk
of dropping out. They used different user attributes, including the number of messages
posted in the forum, to train their prediction algorithm. They achieved an accuracy of more
than 99% in the prediction of dropouts.

Furthermore, Ramesh et al. [36] reviewed previous articles and used a seeded Latent
Dirichlet Allocation-LDA model to analyze forum interactions. They predicted the survival
or dropout of a user from features such as the number of messages posted or viewed,
the number of votes data, or by performing a sentiment analysis of the messages.

In the same line of research, Wen et al. [37] used the result of sentiment analysis of
messages posted in the discussion forum of three MOOCs in Coursera to predict the risk
of user dropout. This study shows that there is a correlation between the overall tone
of forum messages and the number of dropouts. However, they concluded that at user
level, sentiment analysis by itself is not a reliable predictor. They also published another
paper in which they evaluated the level of user engagement using the number of posts and
performing a linguistic analysis of the messages [38].

Other studies focused on analyzing the different types of users based on their con-
tribution to the forum can be found beyond message classification, user engagement and
dropout prediction. For example, Wong et al. [14] identified the most active users based
on interactions in the forum, focusing on views, replies and thread duration. They also
investigated the influence of these users on conversations and concluded that the more
active users tend to make more positive contributions.

Other articles such as He et al. [11] or García-Molina et al. [32] addressed the rela-
tionship between participation in the forum and performance in the course. He et al. [11]
performed both non-parametric tests and multiple linear regressions to test whether there
is a correlation between course performance and forum participation. To do so, they col-
lected data from the different tests and activities of a Chinese college course, as well as
the interactions in the forum and the final grades obtained. They concluded that there is
a positive correlation between these two aspects, since the users who posted more in the
forum obtained better grades.

In the case of García-Molina et al. [32], they designed an algorithm to grade messages
according to their qualitative and quantitative aspects. Based on the grades assigned to the
messages, the overall interaction of the users in the forum was evaluated and its correlation
with the final grade obtained in the course was studied. Although a certain correlation
was seen, they concluded that participation in the forum could not be used as a unique
predictor of users’ grade.
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Finally, it is worth mentioning the work of Coetzee et al. [13] who proposed a user
reputation system for MOOCs. The authors use only quantitative measures of forum
participation such as the number of messages posted, the number of responses obtained,
or the number of votes both given and received, among others, to calculate user reputation.
In addition, each of these variables has a different contribution in the algorithm. This article
obtained good results and a strong correlation was seen between a user’s reputation in the
forum and his or her outcome in the course. However, the research was conducted on a
single course, so its scalability is yet to be determined.

The papers presented are varied and use the information obtained in the forums to
carry out different research projects. Although some of them, such as those by García-
Molina et al. [32] or Coetzee et al. [13] try to evaluate user interactions in some way, these
articles only consider quantitative aspects of the messages (replies, votes, views, follows,
etc.), and do not perform any type of analysis of their content. Moreover, in some of the
research, acceptable results have been obtained, but there is still room for improvement.
However, some of the aspects discussed in this subsection, together with the research on
interaction quality reviewed in the previous subsection, may be a good starting point for
the development of an automatic grading model not only based on quantitative aspects,
but also on qualitative and impact features.

3. Automatic Grading Algorithm

The approach defines three dimensions: (1) the quality of the posted messages in
terms of their content, (2) the impact of those posted messages, (3) the user’s activity in
the forum. The first dimension, related to the quality of the messages, aims to analyze
several aspects of the content in order to evaluate whether these messages are adequate to
the course, appropriate and well-written. When talking about the impact of the messages,
this dimension aims to study how much discussion these messages generate in the forum.
It is considered that the messages that generate more impact or discussion are those that
contribute more to the enrichment of the course and the users. Finally, the evaluation of
user activity helps to detect the most active users. It is understood that the most active users
in the forum seek to interact with other users and to improve their learning experience.
Therefore, this aspect should also be taken into account in the final grading of the users.

Within each of the previous dimensions, different aspects are evaluated. In addition,
a different weight has to be assigned to each of these metrics. In this way, it is established
which are the most relevant and significant metrics in the model for the calculation of the
final grade. Although the following section will detail the application of the algorithm and
the assignment of weights in a specific scenario, the general operation of the algorithm is
described below.

The metrics in the content quality category aim to evaluate aspects of the content of the
messages exclusively, such as their length, readability, entropy or the number of mentions
to other users within the body of the message. Then, the impact of the messages was
evaluated by counting the number of votes received, the number of responses generated,
the number of followers and the number of views obtained. Finally, student activity within
the forum was also evaluated to obtain the final grade for user interaction in the discussion
forum. For this purpose, the number of messages posted and the average grade of those
messages, the number of votes given, the number of messages viewed, the number of
messages followed and the number of searches performed in the forum were taken into
account. In order to obtain the average grade of the messages posted, the dimensions of
quality of content and impact must be taken into account, since these are the ones that
grade the messages. In this way, there are two dimensions (content quality and impact)
that aim to evaluate the messages themselves, and a third dimension (user activity) that
makes use of these two previous dimensions and establishes the user’s final grade.

Regarding the evaluation process itself, the approach first filters the messages accord-
ing to their type and obtains the general information of the message. This includes the
identifier of the user who publishes it, the content of the message, the number of votes,
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the number of replies (if applicable) or the number of views, among other aspects. Then,
the body of the messages is processed to obtain information regarding content quality met-
rics, such as length, readability, sentiment analysis or entropy. The message grade is then
calculated based on the content quality and impact metrics and the weights assigned to
each of these metrics. Finally, the events related to user activity in the forum are processed
and the final grade is calculated taking into account the weights of this last dimension and
the average grade of the messages posted by the user.

In addition, the approach has also been implemented in a sustainable and flexible way,
so that it can be adapted to different courses. One of the objectives of this research was to
be able to give flexibility and scalability to the automatic grading model designed. To this
end, it was decided to create a configuration file that would allow the moderators of future
courses to adjust the model to their needs.

In the configuration file, the course administrator has the possibility to adjust the
values of certain variables within a recommended range. The variables whose values can
be adjusted are those that are more representative and involve a greater modification of
the grading algorithm. If any of the available fields are left unchanged, the default values
indicated will be taken.

4. Materials and Methods
4.1. Data Description

The data used for the evaluation of the proposed automatic grading algorithm belongs
to different editions of a trilogy of MOOCs offered on edX. In particular, these MOOCs are
the “Introduction to Java Programming” courses created by the Telematics Engineering
Department of the Universidad Carlos III de Madrid (UC3M). The events from the 2015
to 2019 editions of these MOOCs and from both their English and Spanish versions have
been used for this research.

Combining the data of the five editions considered, more than 117,000,000 pseudo-
anonymized events generated by the 572,082 participants are available. These events
contain all the users’ interactions on the platform, from their enrollment, to their interactions
with the videos or the completion of the assessment activities.

Furthermore, the structure of the edX discussion forum allows different actions to be
performed. It is a forum based on three levels of messages, where the first level message
that starts a new conversation is called Thread. The second level messages that reply to a
Thread are called Responses. Finally, a Comment is a third level message that replies to a
Response. Over these 3-level messages a variety of interactions such as upvotes, follows,
or searches can be performed. However, not all actions can be performed on all levels
of messages.

From the total number of events in the MOOCs, those corresponding to the interactions
in the course discussion forum were filtered retaining the following events: creation of
Threads, Responses and Comments; viewing of Threads; searches in the forum; upvotes
or unvotes of Threads and Responses; follows or unfollows of Threads; endorsement of
Threads and Responses (confirmation that they add value to a discussion); pin or unpin of
Threads (to make them appear at the top of the list of posts or to undo the action); and abuse
flagging of messages (to flag inappropriate posts). Finally, the resulting dataset consists
of 287,160 events unique to the forum, of which 57,454 correspond to message postings.
Figure 1 shows the distribution of messages posted in each of the editions analyzed. As can
be seen, the trend has been downward in the five editions studied. The 2015 edition is
the one with the highest number of interactions and messages published, doubling the
publications of the second most active edition and multiplying by 8 the interactions of the
2019 edition. This may be due to the fact that the first edition was a synchronous edition
in which all students took the course at the same time, while in the following editions,
the modality was changed to self-pace so that students could follow the lessons at their
own pace. In addition, it can be observed another particularity of user behavior in the
discussion forum of these courses. In each of the years studied, the number of Threads
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published significantly exceeds the number of Responses and Comments. Therefore, users
tend to open new conversations and prefer to start a new thread rather than reply to other
messages or review conversations already started. Thus, most of the Threads opened are
usually left unanswered.

Figure 1. Cumulative course message count by year.

4.2. Application in edX

As detailed in the previous subsection, the data used for the evaluation of this auto-
matic grading algorithm belong to courses offered on the edX platform. The particularity
of the edX discussion forum directly affects the designed algorithm. For example, some
metrics of the first dimension of content quality are not applicable to the three types of
messages existing in edX. Hence, some of the metrics have been marked as non-mandatory.
In addition, something similar occurs with the second dimension of message impact. In fact,
in the case of the edX forum, third level messages (Comments) can neither receive votes,
nor replies, nor can they be followed or viewed. Therefore, the impact of Comment type
messages is not evaluated in this algorithm.

Table 1 indicates how each of these metrics has been computed considering the metrics
used for the analysis of the different dimensions and the application of the algorithm to the
specific case described in Section 4.1.

Table 1. Metrics computation.

Dimension Metric Computation Method

Content
quality

Length Word count in the message body.

Sentiment
analysis

TextBlob library [39] which counts the negations and
modifier words and use Naive Bayes classifier to
determine the polarity value between [−1.0, 1.0].

Entropy
entropy = −∑k

i=1 P(xi) ∗ logP(xi) where k is the number
of distinct words in the messages and
P(xi) =

f requency−o f−word−i
total−number−o f−words (SciPy library [40]).

Readability Flesch Reading Ease formula [41] from the library
Textstat [42].

Mentions Count of the number of “@” in the message body.
Endorsement edX endorsement events count.

Pin edX pin events count.
Ontology

terms
Count of the number of terms of the defined course
ontology present in the message body.

Abuse flag edX abuse flagging events count.
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Table 1. Cont.

Dimension Metric Computation Method

Impact

Votes edX vote events count for votes received.
Replies edX Response creation or Comment creation events count.
Follows edX follow events count.
Views edX view events count for views received.

User
Activity

Posted
messages

edX Thread creation, Response creation or Comment creation
events count.

Average
posts grade

Average grade of posted messages obtained from the
dimensions of quality of content and impact.

Given votes edX vote events count for given votes.
Viewed

messages
edX view events count for messages viewed.

Followed
threads

edX follow events count for messages followed.

Forum
searches

edX search events count.

Finally, regarding the configuration file, Table 2 shows the metrics available for modi-
fication, together with a brief description of the variables, the range of suggested values
and the defined default value.

As can be seen, the Table 2 does not include all the metrics evaluated by the model.
To make the configuration file more manageable and intuitive, but equally functional, this
file only includes the 17 most influential and important variables of the model. Some
variables such as max_content_thread or max_impact_response allow the moderator to adjust
the weight of the first dimension of content quality and the second dimension of impact
in the calculation of the score of the messages (Threads and Responses individually). Other
variables such as msg_length_average, msg_votes_average or user_views_average are intended
to determine the average acceptable value for message length, votes received, or number
of messages viewed, respectively. The grades for these metrics where the average value
is defined are computed considering whether their value is above or below the defined
average. In addition, the extra grade variables (max_content_extra, max_impact_extra and
user_extra) give the moderators the possibility to decide whether users can get extra points
for any of the interactions. Finally, the max_grade variable defines the maximum possible
grade that users can achieve. That is, it serves to determine whether the grade is to be
calculated over 10 points or over 100 points, for example.

The metrics mentioned in Table 1 have not been included in this configuration file in
order to keep its use simple yet effective. The variables included in the configuration file
and described in Table 2 give the moderator the opportunity to adjust the contribution of
the three dimensions studied and provide data on the expected performance of the course
in order to assign grades to users appropriately. In this way, the operation of the algorithm
can be conveniently adapted to different topics and performances although the specific
weight of the particular variables evaluated in the different dimensions of the algorithm
cannot be directly modified.
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Table 2. Configuration file metrics.

Metric Description Suggested Range of Values Default Values

max_content_thread Maximum possible contribution/weight of Threads
content quality metrics in the final grade. 0–10 5

max_content_response Maximum possible contribution/weight of Responses
content quality metrics in the final grade. 0–10 5

max_content_extra Maximum possible contribution/weight of message
content quality extra metrics in the final grade. 0–5 2

max_impact_thread Maximum possible contribution/weight of Threads
impact metrics in the final grade. 0–10 5

max_impact_response Maximum possible contribution/weight of Responses
impact metrics in the final grade. 0–10 5

max_impact_extra Maximum possible contribution/weight of message
impact extra metrics in the final grade. 0–5 2

msg_length_average
Average length of messages in the forum. Messages
with a length greater than this value will get the
full grade.

100–200 150

msg_polarity_threshold
Polarity (sentiment analysis) threshold of messages
in the forum. Messages with a polarity greater than
this value will get a proportional grade.

0.2–0.5 0.3

msg_votes_average
Average number of votes of the messages in the
forum. Messages with a number of votes greater
than this value will get the full grade.

1–10 2

msg_replies_average
Average number of replies of the messages in the
forum. Messages with a number of replies greater
than this value will get the full grade.

1–10 1

msg_views_average
Average number of views of the messages in the
forum. Messages with a number of views greater
than this value will get the full grade.

5–20 15

user_views_average
Average number of messages viewed by a user. If a
user has viewed a number of messages greater than
this value, he/she will get the full grade.

5–20 10

user_votes_average
Average number of votes given by a user. If a user
has voted a number of messages greater than this
value, he/she will get the full grade.

1–10 5

user_searches_average

Average number of searches in the forum performed
by a user. If a user has performed a number of
searches greater than this value, he/she will get the
full grade.

1–10 5

user_msg_threshold
Threshold for the number of messages posted by a
user. If the number of messages posted is above the
threshold, the user is rewarded with extra points.

5–20 15

user_extra Extra points if the user is a top contributor (top 1%). 0–5 3
max_grade Maximum possible final grade. Sum of max_content

and max_impact
10

4.3. Scenario

The automatic grading algorithm was used to evaluate user interactions in the different
editions of the “Introduction to Java Programming” course described in Section 4.1. For the
specific case of the MOOC data available, different maximum grades or weights have
been assigned for each of the metrics evaluated in each dimension. For example, Table 3
shows the content quality metrics used and the weights assigned to each of them for the
evaluation of this dimension. As can be seen, the sum of the weights of the mandatory
metrics add up to ten points, while the optional metrics can add up to one extra point to
the grade of the messages in this category.
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Table 3. Content quality metrics.

Metric Mandatory
Maximum Grade

Thread Response Comment

Length Yes 3 4 5
Sentiment
analysis

Yes 3 3 2

Entropy Yes 2 1 1
Readability Yes 2 2 2
Mentions No 0.2 0.4 1

Endorsement No 0.4 0.6 N/A
Pin No 0.1 N/A N/A

Ontology
terms No 0.3 N/A N/A

Abuse flag No if 5 or more, then 0 points

Maximum total grade 10 points (+1 possible extra point)

The second dimension is related to the impact or discussion generated by the messages.
Table 4 shows the metrics used in this dimension for each type of message and the weights
assigned to each of them. In this case, the sum of the metrics is ten points and in this
category there are no extra points. In addition, as discussed already before, this dimension
of impact is not applicable to Comments. In edX these third level messages cannot be replied
to, voted on, followed, or viewed, so this second dimension is only evaluated on Thread
and Response type messages.

Table 4. Impact metrics.

Metric Mandatory
Maximum Grade

Thread Response Comment

Votes Yes 3 6 N/A
Replies Yes 4 4 N/A
Follows Yes 1 N/A N/A
Views Yes 2 N/A N/A

Maximum total grade 10 points

Finally, the third dimension (user activity) is used to calculate the final grade of the
users. Table 5 indicates the weights assigned to each metric and, as in the previous cases,
the sum is equal to ten points. As can be seen, one of the metrics is the average grade of the
messages posted. As mentioned in the previous subsection, to obtain this data, the results
obtained from the evaluation of the dimensions of content quality and impact should be
used. In this scenario, in order to calculate the average grade of the messages posted,
the arithmetic mean of both the content quality dimension and the impact dimension
has been calculated. Thus, both dimensions contribute equally to the final grade of the
messages posted.

Table 5. User activity metrics.

Metric Mandatory Maximum Grade

Posted messages Yes 3
Average posts grade Yes 4

Given votes Yes 1
Viewed messages Yes 1
Followed Threads Yes 0.5
Forum searches Yes 0.5

Maximum total grade 10 points
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It is also worth mentioning that the weights or maximum grade assigned to each of the
metrics used in the different dimensions evaluated have been decided taking into account
the characteristics of the analyzed courses. In addition, the grades in each particular case
have been generally assigned using four ranges and considering the general performance
of the forum. In this way, the evaluation is carried out in a fairer and more appropriate
way to the data available.

5. Results

Once the metrics to be evaluated and the maximum grades for each of them had
been chosen, the model was evaluated. The objective was to check whether the automatic
grading model designed was sufficiently accurate to be used in future courses.

The first step of the evaluation consisted of manually labeling a random subset
of the messages from the available dataset. Three experts on the topic of the MOOCs
(programming) assisted in labeling 580 random messages (1% of the total number of
messages in the entire dataset, each message was labeled by the three experts) at four
different levels according to their quality, with level 1 being the lowest quality and level
4 the highest quality. In addition, each expert had the possibility to use a second label
(secondary label) in case he/she hesitated between two possible levels. Different criteria
were used to determine the final level of the messages in case of discrepancies in the
manual labels. When the main label of the three experts was the same, the final level of
the message was the one determined by the experts. The choice of the final level was also
straightforward when two experts agreed on the main label and the third agreed on its
secondary label. Finally, when there was total discrepancy in the labels of the messages,
the three experts discussed which was the most appropriate level for those messages.

Considering the methodology used to establish the final labels, it was also considered
appropriate to study the agreement among the experts in assigning the labels. Since the
labels can take four different values, they can be considered an ordinal variable. In addition,
since there are three observers (the three evaluating experts), it was decided to use Kendall’s
W coefficient to obtain the degree of agreement of the main labels assigned in the manual
labeling. Finally, after performing the test, a W value of 0.6136 was obtained. This result
indicates a substantial agreement among the experts, although it also shows that the
evaluation of the messages has an important subjective component. Figure 2 shows
the distribution of the messages in the different levels according to the manual labeling
performed by the experts.

Figure 2. Quality levels distribution by experts.

As can be seen in the Figure 2, almost 80% of the messages were classified with
intermediate labels (classes 2 and 3), especially highlighting rank 2. Therefore, most of the
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messages were labeled with an average or medium-low grade, and extremely unsatisfactory
messages or excellent ones are minority cases.

Then, after the expert evaluation, the manually assigned labels were compared with
the result obtained with the automatic grading model. For this purpose, the numerical
grades obtained were transformed into four different ranges. In this way, the results of the
manual and automatic evaluation could be compared more efficiently. Figure 3 shows the
distribution of the messages in the different ranges according to the automatic model.

Figure 3. Quality levels distribution by automatic model.

As can be appreciated in the Figure 3, the distribution of labels in this case is very
similar to the distribution obtained with manual labeling. The most noticeable differences
are the decrease in the number of messages classified with label 1 and the increase in the
number of messages classified with label 2. However, as discussed later, in this case this
variation may be due to the evaluation of messages containing code fragments, since the
model is not able to evaluate them completely well.

Finally, to definitively evaluate the performance of the model, different metrics were
studied comparing the result obtained with manual labeling with experts and that obtained
with the application of the model. First, the confusion matrix of the data was obtained.

Observing the Figure 4, it can be seen that the values of the main diagonal are quite
high, so that the model (predicted label) correctly classifies most of the messages with
respect to the experts (true label). The degree of accuracy for labels 2 and 3 stand out, since
they are the ones with the highest values. This could be an expected result, as these are
the most popular categories both in manual labeling and in the application of the model.
Furthermore, the deviation in the classification of messages can be considered low. In each
of the four categories, the deviation values are significantly lower than the hit values,
and in most cases the deviation is centered on contiguous ranks (one label above or one
label below). Then, other metrics were analyzed in addition to the confusion matrix of the
model, and their results are shown in the Table 6.

Table 6. Evaluation metrics.

Metric Value

Accuracy 0.8068
Precision 0.8228

Recall 0.6918
F1-score 0.7394
NRMSE 0.1799
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Figure 4. Confusion matrix.

When comparing the results of manual labeling and automatic grading, an accuracy
of 80.68% is obtained. However, it should be noted that this result includes some messages
that contain only code. Due to the nature of the course, some of the published messages
contain pieces of code or answers to some exercise. These types of messages are not
recommended, so the experts manually labeled these messages with the lowest rank.
However, these messages are usually long and tend to have a lot of impact and interactions
(many replies and numerous votes), so the designed automatic grading model usually
grades this type of messages with high grades. Therefore, the accuracy obtained in this first
evaluation is somewhat lower than what could be obtained if this type of code messages
were filtered, but it is still a good result.

Regarding the rest of the metrics, the values obtained are equally good. For exam-
ple, a precision of more than 82% has been obtained. This indicates that out of every
100 messages classified in a particular rank by the model, 82 belong to that rank when
compared to the experts’ classification. Therefore, the precision of the model is not a perfect
value but a more than acceptable one. As for recall, this is the lowest value of the first four
metrics studied. In this case a result of 69.18% has been obtained, so the sensitivity of the
model can be somewhat improved, although it cannot be considered a bad result. Then,
the F1-score, which is the combination of precision and recall, was also calculated. In this
case a value of 73.94% was obtained, which is still a good value. Finally, when calculating
the Normalized Root Mean Square Error (NRMSE) a value of 0.1799 was obtained. This
value is appropriately low and close to 0.0, thus demonstrating that the model fits well
the data used. With all these values, it can be concluded that the designed model is more
precise than accurate, and that its overall performance is quite good.

6. Discussion
6.1. Implications

It has been possible to effectively evaluate user interactions in the forum with the
automatic grading model presented in the previous section. This work has been influenced
by other research conducted in open online Questions and Answers (Q&A) forums such
as StackOverflow or Quora [17,19,31]. In addition, the articles by García-Molina et al. [32]
and Coetzee et al. [13] also served as a starting point for the development of the algorithm.
Hence, the presented model takes elements from the mentioned papers but adds an original
and innovative value. In contrast to all the algorithms and evaluation methods in MOOC
forums that can be found in the literature, the designed model considers three dimensions.
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This characteristic makes it a robust and effective model that takes into account all aspects
of interactions in discussion forums.

In addition, to answer the research question (RQ) posed at the beginning of the paper,
an exhaustive evaluation of the model has been carried out analyzing the most representa-
tive and appropriate metrics for this specific case. As described in Section 5, a ground truth
consisting of manual labeling by three experts was used to solve this question. The nu-
merical grades resulting from the application of the model were transformed to the four
possible quality ranges and compared with the ground truth to check the effectiveness of
the model. In this way, it has been proven that a high accuracy can be obtained with the de-
signed algorithm. Specifically, in this case an accuracy of more than 80% has been obtained
despite the limitations of the code messages. Furthermore, other metrics were also studied
since the classes were unbalanced, and equally good results were obtained. The precision,
F1-score, and NRMSE values were particularly favorable, and the recall value remained a
correct value even though it was the least successful result. It should also be noted that the
evaluation was carried out by classifying the messages into four ranges, instead of the more
usual two ranges. This increase in the number of categories generally implies a decrease
in the precision and accuracy of the models, since the difference between the categories is
more subtle and it is easier to deviate from the real value. However, as could be observed
in the results obtained and in the confusion matrix presented, the model designed is fairly
reliable in its classification and its deviations are usually centered on the categories adjacent
to the ground truth given by the experts. Therefore, the obtained results are promising and
show that the model is ready to be used in upcoming real courses.

Moreover, these results also improve the performance of some of the literature articles
reviewed [7,23]. In other cases, the related studies do not provide data of the evaluation
of their models but simply make the proposal of their methods and algorithms. Hence,
the value proposition of this article is not only the model designed, but the evaluation
performed and the positive results obtained.

6.2. Limitations

Although the result obtained in the model evaluation indicates that the algorithm is
able to grade users efficiently, this study has had some limitations. First, as mentioned be-
fore, for this article, only data from a single trilogy of MOOCs was available. Although data
from several editions of the “Introduction to Java Programming” courses were used, at the
end of the day they are courses with the same dynamic and a very specific subject matter.
Therefore, the data used for testing and evaluation are somewhat influenced by the subject
matter of the particular course. This has been especially noticeable in the case of the impact
measures. The algorithm designed is based on quality and impact measures, but in the
different versions of this course, it has been observed that interactions of the type “vote”,
“follows”, or “mentions”, for example, have been very scarce. This has influenced the
assignment of the weights of the different metrics, among other things.

Having data from several editions of the same MOOC has also affected the evaluation
of the proposed configuration file. The use of this configuration file undoubtedly provides
scalability to the model presented. However, it was not possible to test the effectiveness of
the grading model using the configuration file on other courses, although the extrapolation
process would be straightforward. The process for using the designed configuration file
and for applying the model to evaluate the interactions of new MOOCs should begin with
a brief analysis of the characteristics of the course to be evaluated. The moderator should
first study the general behavior of the users in the course and assess which factors he/she
wants to give more weight to and which actions he/she wants to encourage or reward.
Then, the moderator should proceed to modify the configuration file to adjust the values
of the configurable variables after identifying the most significant and influential ones.
In addition, it is also possible to leave some (or all) of the variables unchanged to use their
default value. After adjusting the variables, the model could then be applied to the course
data to obtain the grades of the user interactions. Finally, although it has been shown
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that the model is capable of correctly evaluating interactions, moderators are advised to
have a quick review of the grades obtained in order to detect extremely bad or unusually
good results and to analyze them more closely. In this summarized form, the performance
described in Section 4.3. could be extrapolated to other courses.

Moreover, the course on which the design and evaluation process has been focused is
a course to have a first contact with programming. For this reason, many of the messages
published in the course forum include code snippets, either to ask a question or to give the
solution to an exercise. As expected, the model is somewhat more imprecise with this type
of messages. For instance, in the case of content quality metrics, readability and sentiment
analysis usually comes out quite low, while the length of these types of messages is usually
large. In terms of impact evaluation, these messages tend to generate more discussion than
the rest and tend to have a greater impact on the forum. For all these reasons, the grade
that the model assigns to this type of messages usually differs from what a teacher would
do manually. Therefore, this also influences the final accuracy of the model obtained.

There is also another limitation related to the performance of the particular course
used for the evaluation of the model. As already mentioned in Section 4.1, the delivery
mode of the course has been changing in its different editions. The first edition of the
MOOC was synchronous, so all users accessed the content and assessments at the same
time. This favored participation in the forum and the answerability of messages. However,
the delivery mode of the following editions was self-pace. This asynchronous model can be
detrimental to user interaction and can result in many messages remaining unanswered.

Finally, it should be kept in mind that both the English and Spanish versions may
include foreign students with different mother tongues than the one of the course. Hence,
as is to be expected, some of the messages written by these users may contain typos or may
have a slightly peculiar structure. This undoubtedly affects above all the grades obtained
in the evaluation of the quality of the content of the messages, since, in this case, aspects
such as the readability of the message are taken into account. All these details have affected
the development of the automatic grading model proposed and have marked part of the
work carried out.

7. Conclusions and Future Work

In this study, a new automatic grading model that seeks to evaluate user interactions in
MOOC discussion forums has been designed. Unlike other existing algorithms, the model
presented in this paper evaluates the user based on the quality and impact of the messages
he/she has posted and his/her activity within the forum, which is a more comprehensive
and sustainable approach. Once the assessment metrics were chosen, the evaluation of the
model was performed on a particular MOOC, assigning a weight or maximum grade to
each of the metrics. Manual labeling of a random subset of messages by experts was then
used to test the effectiveness of the model and to obtain its accuracy. Finally, the results
obtained show that the model presented successfully evaluates messages and users.

Although this work has been applied for just some types of MOOCs, one of the aims
of the work was to create an effective and flexible evaluation model that could be applied
to any type of MOOC. For this purpose, a configuration file was also developed that offers
the possibility to customize some aspects of the algorithm. In this way, the instructor of
any course can adapt the model to his or her needs and still have it work, regardless of
the content or operation of the particular course. In the future, from the training of data,
we could have some insights about the best combination of weights of indicators and
probabilistic models depending on the types of MOOCs.

Furthermore, although the main objectives of the study have been achieved, some
issues would need to be addressed in the future. First, as mentioned in other sections of the
paper, the accuracy and performance of the model need to be tested in other types of courses.
The evaluation of the algorithm presented has been performed on data from different
editions of the same course, so it is considered convenient to study the effectiveness of the
configuration file, and of the model in general, on other types of data.
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Another interesting possible future research direction is to train different probabilistic
models (e.g., neural networks, random forest, decision trees, linear regression, etc.) with
some of the data of the MOOC in order to set up the best weights for the different indicators
of the model. Next, the obtained model could be evaluated. This way, the weights are
obtained from previous data instead of predefined by default.

As for the configuration file presented, it would be convenient to improve its format.
At the moment, this first version of the configuration file is a Comma Separated Values
(CSV) file that includes the different fields and values. However, the possibility of making
the visualization of this file more aesthetic, professional, and intuitive to the instructor who
may use it could be studied.

Finally, as it has already been mentioned on numerous occasions, one of the main
obstacles encountered during the evaluation process has been the code messages. A pos-
sible solution could be the improvement of message type detection. The classification of
messages into different categories according to their content could be added as part of the
evaluation. For programming courses such as those studied in this work, within these
categories there could be one to encompass messages containing code. In this way they
could be detected and treated in more appropriate ways.

As can be seen, many of these future lines of work are closely related to the limitations
encountered during the development of the project. However, despite these possible future
improvements, a complete and functional work has been achieved, since the designed
model meets the specifications and the expected results for a first development version.
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