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Abstract: This paper concerns the development of an automatic tool, based on Fuzzy Logic, which is
able to identify the proper solutions for the energy retrofitting of existing buildings. Regarding winter
heating, opaque and glazing surfaces are considered in order to reduce building heat dispersions.
Starting from energy diagnosis, it is possible to formulate retrofitting proposals and to evaluate the
effectiveness of the intervention considering several aspects (energy savings, costs, intervention
typology). The innovation of this work is represented by the application of a fuzzy logic expert system
to obtain an indication about the proper interventions for building energy retrofitting, providing
as inputs only few parameters, with a strong reduction in time and effort with respect to the
software tools and methodologies currently applied by experts. The novelty of the paper is the easy
handling properties of the developed tool, which requires only a few data about the buildings: not
many such methods were developed in the last years. The energy requirements for winter heating
before and after particular interventions were evaluated for a consistent set of buildings in order to
produce the required knowledge base for the tool’s development. The identified appropriate inputs
and outputs, their domains of discretization, the membership functions associated to each fuzzy
set, and the linguistic rules were deduced on the basis of the knowledge determined in this was.
Therefore, the system was successfully validated with reference to further buildings characterized
by different design and architecture features, showing a good agreement with the intervention
opportunities evaluated.

Keywords: building design and architecture; energy retrofitting; energy efficiency in buildings;
energy diagnosis; fuzzy logic

1. Introduction
1.1. General Overview of Building Energy Retrofitting

Considering the continuous increase in energy consumption typical of the building
sector, the present work proposes a tool for the automatic identification of the proper
solutions for energy retrofitting [1–6] in order to increase the efficiency of existing build-
ings in reference to the winter heating. The building sector significantly contributes to
environmental pollution through the extensive exploitation of territory, the use of non-
renewable resources, and the large amount of energy required throughout a building’s life
cycle. The construction sector in Europe is indeed responsible for about 40% of the energy
consumption and, consequently, for high CO2 emissions [7–12]: it represents a sector with
a high potential of reduction, and several measures have been taken by the European Com-
mission to reduce this critical issue, as considered also in the recent European Directive
2012/27/EU [13–15]. Energy consumption has to be reduced in both new and existing
buildings, but especially the latter need an effective energy renovation, according to the
new directives: in particular, all countries have had to retrofit 3% of their public buildings
per year since 2014. Moreover, from an economic point of view, residential building operat-
ing costs are significant when compared to those for construction; consequently, energy
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saving measures should be implemented in new building construction, as is also indicated
by the current European and national regulations, in order to achieve maximum efficiency.
Anyway, it is highlighted as new buildings are only a little portion of the total. In the
specific Italian scenario, characterized by 40% of domestic energy consumption being due
to the housing sector [16,17], about 2/3 of the existing buildings were built prior to 1976,
when the first national law, i.e., No. 373/76 [18], on the energy performance of buildings
was issued. Consequently, the energy refurbishment of existing buildings represents a
crucial issue. It is clear that, aiming for consumption reduction, it is first necessary to
improve the building envelope by increasing the insulating performance. Most of the
energy consumption is due to heating and cooling, whereas the remaining is related to hot
water production, household appliances and lighting. Moreover, contrary to the case of
heating plants, nowadays in Italy not all the buildings are equipped with cooling plants,
even if the use of cooling devices in the last few years was largely widespread. For this
reason, in the present paper, the attention was focused on the energy savings from building
refurbishment related to the winter heating. In the future, a similar study will be carried
out focusing on the summer case.

The aim of the preliminary analysis was to identify the factors on which to intervene,
aiming to maintain or improve the level of indoor comfort with lower consumptions.
Starting from an energy audit, it is then possible to formulate action proposals which
are beneficial for both economic and energy (potential savings) aspects [19–21]. There
are many retrofitting measures that can be applied to each building, and selecting the
most appropriate ones is not an easy task. The absence of adequate thermal insulation is
considered to be the main cause of heat loss. The contribution of the external walls [22–25],
the effect of opaque vertical elements, the roof (the dispersion through an un-insulated roof
can represent more than 25% of the total losses of a building) and the glazing surfaces is
especially highlighted in this study. In particular, windows represent the main structural el-
ements responsible for the largest heat loss in winter (depending on the U-value parameter)
and significant heat entrance in summer (depending on the solar factor, g) [26,27].

1.2. State of the Art in Artificial Neural Network and Fuzzy Logic Tools

The studies already available in the literature mainly focus on the calculation and
prediction of buildings’ energy consumptions, also by applying Artificial intelligence (AI)
techniques. Regarding the energy requirement calculations, engineering methods, statis-
tical methods, or AI methods [28–32] are applied. In Castro et al. [33], a decision matrix
was proposed as a tool to identify the most appropriate retrofit measures of an existing
building. The matrix was calculated by using dynamic simulation tools; the energy devia-
tions produced by modifying the input variables were quantified and a final sensitivity
analysis was carried out. The outputs obtained by this decision matrix were the building
loads of each retrofit measure and the associated cost. In order to facilitate the selection of
the optimal retrofit actions, Rosso et al. [34] proposed the application of an active archive
non-dominated sorting genetic algorithm (aNSGA-II) geared towards multi-objective op-
timization. The results of the algorithm’s implementation were analyzed with respect to
a residential building located in Rome, Italy. Regarding energy consumption prediction,
AI methods, such as artificial neural networks (ANNs) [35–40], are widely used instead
to provide hourly load profiles. Moreover, AI techniques are also applied in the building
sector to characterize materials, i.e., for the estimation of their thermal diffusivity. In this
regard, Roman et al. [40] presented a comprehensive and in-depth systematic review of
the up-to-date literature related to the application and characterization of ANN-based
metamodels for building performance simulations. Moreover, in [37], new and efficient
approaches based on artificial neural networks and neuro-fuzzy systems are proposed.
Ascione et al. [41] showed that artificial neural network predictions can allow a wide
diffusion of rigorous approaches for retrofit design, which are currently hampered by the
excessive computational burden. In particular, office buildings built in South Italy during
1920–1970 were investigated, and the developed artificial neural networks were shown to
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be able to replace standard building performance simulation tools for the evaluation of
the retrofitting techniques’ effectiveness, thereby producing a substantial reduction of the
computational efforts and times.

Many previous studies tried to develop multi-objective tools which are able to improve
simultaneously the energy (cooling and electricity demand), comfort (thermoigrometric,
visual and acoustic), environmental (considering all phases of an LCA) and economic (costs
and return time) aspects [42–44]. As for example, D’Amico et al. [42] proposed a simple
and reliable tool which simultaneously solves the energy and environmental balance of
buildings. An energy database created in previous works, representative of the Italian
building stock, was used by the authors in order to retrieve the energy and environmental
performance of non-residential buildings. Several typologies of Artificial Neural Networks
were analyzed, and the best results were selected by a deep statistical analysis and results
comparison. In [45], a new method integrating a genetic algorithm (GA), an artificial neural
network (ANN), a multivariate regression analysis (MRA) and a fuzzy logic controller
(FLC) was proposed in order to optimize the indoor environment and energy consumption,
based on simulation results. In particular, the GA process was used to search for the
optimal solution, whereas the ANN and CFD tools were used to obtain the values of the
objectives for each individual. The fuzzy logic system was used to control the execution
routine of the CFD process and to reduce the computational cost by up to 40. In another
study [43], a building performance optimization technique was well applied in order
to design energy-efficient buildings, i.e., a residential building located in the Marrakech
region, Morocco. The aim was to minimize its energy demand, especially for heating and
cooling, as well as to maximize the indoor thermal comfort of the two most important
targets for building designers. A model with good predictive accuracy was developed
by the ANN in order to target the overall research space of the two expected objectives
(energy performance and indoor thermal comfort). This was accomplished by using a
database of 35 samples, which were simulated by a platform developed in the TRNSYS
software environment. In fact, ANNs can be applied also for detailed thermal comfort
analyses, as shown in [46,47], in which was developed a surrogate model to speed up the
thermal comfort prediction for any member of a building category, relating to different
energy retrofitting actions and ensuring high reliability by testing the entire simulation
process, with real data measured in-situ.

Only a few studies deal instead with the development of decisional tools for the
building sector, especially for building refurbishment. In [48], a decisional tool based on AI
techniques was proposed, but for building energy management. The developed tool helps
to guarantee desirable levels of living quality, as well as energy savings, for environmental
protection through intelligent monitoring and the optimized start/stop of HVAC and
lighting controls. Existing buildings are, in general, constrained by old equipment, aging
infrastructure and inadequate operations resources. Two artificial neural network (ANNs)
models were developed by Poço et al. [49] for a retail store located in Lisbon in order to pre-
dict the building power consumption and indoor average temperature; the tool was able to
verify the impact of small variations in the air-handling unit electricity consumption. Only
a methodology, described in [50,51], was found for buildings refurbishment. The proposed
method, developed within a project funded by the European Commission, aims to support
the refurbishment or retrofitting (upgrading) of apartments. Retrofitting measures are
suggested to promote energy efficiency, living conditions and structural features, mainly
depending on the budget assigned by the user for the global refurbishment. Moreover, the
tool addresses not only technical experts, but also owners and other operators. Exergoeco-
nomic analysis and optimization is another common practice in sectors such as the power
generation, helping engineers to obtain more energy-efficient and cost-effective energy
systems design. This calculation method can be applied to typical open-source building
energy simulation tools, such as EnergyPlus [52]. In [52], the enhanced simulation frame-
work was tested considering a primary school as a case study. The results demonstrated
that the proposed simulation framework provided users with thermodynamic, efficient
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and cost-effective designs, even under tight thermodynamic and economic constraints,
suggesting its use in everyday building energy retrofitting practice.

Other interesting fuzzy logic applications deal with lighting aspects: in particular,
Chiesa et al. [53] introduced a working prototype of a fuzzy logic IoT system, which con-
trols natural and artificial light balance in combination with a dynamic shading system.
A control app was developed to allow user interaction by setting seasonal automatic modes
or manual functionalities, and the control system adopted a fuzzy logic solution, which
is able to ensure rapid control without high computational effort. Mattoni et al. [54] and
Ilbeigi et al. [55] optimized the indoor lighting of an office by a Genetic Algorithm tech-
nique. The results indicated that in the optimum conditions, the uniformity of illuminance
increased considering a reduction in the number of luminaires and the maximum Uni-
fied Glare Rating (UGR) values. Finally, a complete set of fuzzy systems to control the
operation of the various parts of a building’s automation was proposed by Mpelogianni
and Groumpos [56]. A further work [57] implemented fuzzy logic and machine learning
techniques in order to ensure the proactive energy management of a building on the basis
of the first results [56].

1.3. Aim of the Study

Based on the previous considerations, the authors propose a methodology to support
decision makers during the planning and design phases of a building. The method can
provide a valid estimation of the energy performance of buildings. The lack in the literature
of an automatic tool which provides intervention suggestions on building retrofitting, with
reduced spent time and effort, including all building typologies, is clear. The present
study proposes, therefore, a tool which is able to reduce energy consumption for indoor
heating through envelope upgrading, which provides, for each specific case, the level of
opportunity of particular interventions (the most effective ones). The target is to assign
automatically, through quantitative criteria, higher opportunity levels to different inter-
ventions by providing higher potential energy savings (taking into account economic and
feasibility qualitative criteria). The use of AI to solve this complex problem can represent
a valid and attractive alternative. The implementation requires the presence of a suitable
database set, such that the output data strongly relate to one or more input data. In order
to develop such a decisional tool, a fuzzy logic technique was applied. Fuzzy logic also
considers “nuanced” aspects, and it therefore allows us to reduce the uncertainty and
inefficiency resulting from the variability of the factors typical of the phenomenon under
analysis [28]. Therefore, a knowledge base consisting of particular case studies was initially
created. Section 3.1 reports all of the details regarding the data gathering, and the analysis
and elaboration carried out by the authors. Then, starting from this knowledge base,
the tool was developed (see Section 3.2) to provide, for the generic building, the automatic
evaluation of intervention opportunities (in reference to a particular set of solutions).

Finally, as detailed in Section 4, the tool’s performance was validated through ap-
plication to further particular case studies. This validation phase demonstrated that the
proposed methodology is suitable to resolve, through an automatic tool, a complex and
globally not-linear problem usually addressed by the experts of the fields. In particular,
the application of a Fuzzy Logic expert system to obtain an indication about proper inter-
ventions for building energy retrofitting represents an innovation with respect the state
of the art. Moreover, only a few parameters are required by the developed tool, with
a strong reduction in the needed time and effort with respect to the software tools and
methodologies currently applied by experts. This is the potential impact of this study,
once the developed tool is upgraded, considering further intervention typologies and
extending it also to the summer case. As shown above, not many Fuzzy Logic tools were
developed in the last few years in the building sector, and they were generally not very
useful instruments; this research work could lay the foundations to fill the lack in the
current literature.
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2. Description of the Method: Fuzzy Logic

Fuzzy logic is able to extract decisions from a base of knowledge previously acquired
from the experience of another classic system which is able to perform the same task. What
is therefore useful to include in this decisional system is the human ability to consider
particular factors which are difficult to quantify and formalize, which by their nature are
nuanced aspects of reality [58].

The knowledge base generally contains all of the information about the system, al-
lowing us to process the input data to obtain the output. In the fuzzy logic design, from
this information, it is possible to deduce three basic components: the fuzzy sets for the
discretization of the variable’s domain, the relative membership functions (curves that
define the membership degree—between 0 and 1—of a generic variable to each set), and
the linguistic rules of inference through which the output evaluation is performed. A fuzzy
rule is usually expressed with an if–then construct, and may submit one or more an-
tecedents and one or more consequents [59]. Because inputs are crisp values, it is necessary
to make a conversion to translate a number in the fuzzy data; this operation is named
fuzzification (Figure 1). After fuzzification, the inference process converts the input fuzzy
sets into output fuzzy sets. The largest applied inference method is the one proposed by
Mandami [60,61], based on the application of the minimum method (Equation (1)).

B→ µA→ B (uA, uB) = min (µA(uA), µB(uB)) (1)

where variables uA and uB are defined respectively in the domains A and B, whereas
functions µA(uA) and µB(uB) are the corresponding membership functions. Mamdani
fuzzy inference was first introduced as a method to synthesize a set of linguistic control
rules obtained from experienced human operators. In a Mamdani system, the output
of each rule is a fuzzy set. Because Mamdani systems have more intuitive and easier-to-
understand rule bases, they are well-suited to expert system applications where the rules are
created from human expert knowledge. Moreover, the fuzzy inference engine also provides
the aggregation of all of the outputs obtained by each rule, in order to give a single fuzzy set.
Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic. The mapping then provides a basis from which decisions can be made
or patterns discerned. The process of fuzzy inference involves all of the pieces that are
described in Membership Functions, Logical Operations, If–Then Rules and the aggregation
method. The fuzzy inference process consists of several steps: the fuzzification of the input
variables, the application of the fuzzy operator (AND or OR) in the antecedent phase,
the implication from the antecedent to the consequent (inference phase), the aggregation of
the consequents across the rules, and finally the defuzzification step.

The first step (fuzzification) is the determination of the degrees to which the inputs,
always crisp numerical values, belong to each of the appropriate fuzzy sets via membership
functions. Fuzzification associates to each input one or more degrees of membership (values
in the 0–1 interval) in reference to the defined fuzzy sets. After the inputs are fuzzified,
the degrees to which each part of the antecedent is satisfied are known for each rule. If the
antecedent of a rule has more than one part, the fuzzy operator is applied to obtain one
number that represents the result of the antecedent rule. Therefore, this number can be
applied to the output function.

Before applying the implication method, it is necessary to determine the rule weight.
Every rule has a weight (a number from 0 through 1) which is applied to the number
given by the antecedent. Generally, if this weight is equal to 1, it has no effect on the
implication process; it is possible to decrease the effect of one rule with respect to the others
by changing its weight value to something different from 1. After the proper weighting
has been assigned to each rule, the inference is implemented, usually by truncating the
output set with the membership degree resulting from the antecedent. Aggregation is the
process by which the truncated output fuzzy sets, returned for each rule by the inference
process, are combined into a single fuzzy set. Three types of built-in aggregation methods
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are the max (maximum), sum (sum of the rule output sets) and probOR (probabilistic OR)
functions. The output of the aggregation process is one fuzzy set for each output variable.

The final step is the defuzzification of the fuzzy set [62] resulting from the aggregation
phase cited above. The input for the defuzzification process is the aggregate output fuzzy
set; the outcome for each output variable is a crisp value. There are five built-in defuzzifi-
cation methods which are supported: centroid, bisector, the middle of the maximum (the
average of the maximum value of the output set), the largest of the maximum, and the
smallest of the maximum. Among the available strategies, the maximum and the centroid
methods are highlighted. The most popular defuzzification method of the aggregated fuzzy
set is the centroid calculation, which returns the abscissa of its center gravity. According
to the maximum method, instead, the output value is calculated as the point where the
output membership function reaches its maximum. A fuzzy inference diagram displays all
of the parts of the fuzzy inference process, from fuzzification through to defuzzification
(Figure 1). A general schematization of fuzzy logic is shown in Figure 2.
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3. Design of the Fuzzy Decisional Tool

As already indicated, this study aims to develop a decisional tool based on fuzzy
logic for the identification of proper interventions for building energy retrofitting; in the
first instance, we analyzed the winter case, considering the main building components
responsible for the greater heat losses. In particular, focusing attention on external vertical
walls, roofs and glass surfaces, the decisional tool should be able to identify and discern the
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typology of useful intervention which is able to improve the building envelope and, above
all, to indicate a priority in case of multiple interventions. The design of such a system was
carried out, as detailed in the following, by identifying appropriate inputs and outputs,
their discretization, and the associated membership functions, beyond that the rules set.

3.1. Problem Analysis

Aiming to develop the fuzzy tool cited above, the main tasks are the inputs’ def-
inition, the evaluation of the outputs and related characteristics, and the design of the
interference engine.

Therefore, the appropriate inputs among the parameters characterizing the building
envelope efficiency were identified: the transmittance of both vertical and horizontal
opaque walls (Uwall, Uroof), the transmittance of glass surfaces (Uglass), the percentage ratio
of the glass and opaque areas (Window To Wall Ratio—WWR), and the winter energy
demand (WinterEnDem). For the Uwall, Uroof and Uglass parameters, in the case of multiple
component typologies, the weighted mean values (with weights for the corresponding
areas) of the building under study were considered. Several databases were taken into
account in order to evaluate the inputs’ variability ranges, which were representative of
the variable domains and their subdivision in several of the classes determined. For all
of the input parameters, Table 1 shows the defined classes, with data about the related
quantitative limits.

Table 1. Classes of the input variables (VVL = very very low, VL = very low, L = low, M = medium, H = high, VH = very
high, VVH = very very high).

Uwall
(W/m2K)

Uroof
(W/m2K)

Uglass
(W/m2K)

WWR
(%)

WinterEnDem
(kWh/m2)

U < 0.3 VL U < 0.5 L U < 1.4 VL % < 6 VL <10 VVL
0.3 ≥ U < 0.55 L 0.5 ≥ U < 0.7 M 1.4 ≥ U < 1.7 L 6 ≥ % < 10 L ≥10 & <30 VL

0.55 ≥ U < 0.75 M 0.7 ≥ U < 1 H 1.7 ≥ U < 2.3 M 10 ≥ % < 17 M ≥30 & <50 L
0.75 ≥ U <1.4 H U ≥ 1 VH 2.3 ≥ U < 3.4 H 17 ≥ % < 20 H ≥50 & <70 M

U ≥ 1.4 VH U ≥ 3.4 VH % ≥ 20 VH ≥70 & <90 H
≥90 & <120 VH
≥120 VVH

In order to make clear the procedure followed, five classes were defined for the Uwall
parameter. Such a subdivision was obtained on the basis of the wall stratigraphy (depend-
ing on the construction typology). In detail, a large database of different opaque walls was
initially formed, considering for each wall its stratigraphy, so as to be able to characterize
the presence of particular elements with higher performance (the insertion of one or more
insulating layers). Therefore, the corresponding Uwall value was determined for each
vertical opaque element. Considering the large variety of limits imposed by the different
European standards, no specific limit imposed by the normative was considered [63]: we
attempted to subdivide the great number of collected data to obtain five uniform classes
of wall typology (Very Low—VL, Low—L, Medium—M, High—H, and Very High—VH
values of the Thermal Transmittance U).

In the same way, we proceeded for the other variables, grouping the variety of the
collected examples in the classes as reported in Table 1. Once the input variables and
the classes of their variability were defined, several building typologies were selected in
order to guarantee a wide applicability of the automatic diagnosis procedure. In particular,
buildings typical of the tertiary sector—i.e., schools, hotels, public offices, and residential
and industrial buildings—were considered. Moreover, cases with as broad as possible
inputs were chosen for each typology, including the marginal cases (in terms of the range of
values related to each class of Table 1), for a total number of case studies of about 45. Then,
all of the input parameters were estimated for these case studies (Table 2 summarizes the
data related to a limited number of examples), identifying the corresponding classes among
the ones in Table 1. For each building, the heating energy requirement was determined by
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means of a suitable calculation program developed by the authors in accordance with UNI-
TS 11300 [64]. It is possible to observe that the warehouse has low thermal transmittance
for walls and high values for the glazing; despite the WWR being very low (<6%), the
mean value of the winter energy demand is Very High (VH). All of the types of building
chosen for the analysis present poor thermal performance and, consequently, high values
of winter energy demand (High, Very High, or Very Very High). Only the public building,
characterized by the largest glazing surfaces in comparison with the opaque ones (very
high WWR), has a lower winter energy demand, thanks to the good performance of the
walls and the roof, and the medium thermal transmittance values for the glazings (about
1.4 W/m2K).

Table 2. Values of the input variables for the different types of buildings analyzed (VVL = very very low, VL = very low,
L = low, M = medium, H = high, VH = very high, VVH = very very high).

Case Study Uwall
(W/m2K)

Uroof
(W/m2K)

Uglass
(W/m2K) WWR (%) WinterEnDem

(kWh/m2)

Warehouse 0.364 L 0.805 H 2.856 H 2.66 VL 96.12 VH
Hotel 1.295 H 1.291 VH 5.848 VH 6.73 L 97.91 VH
Office 1.394 H 1.406 VH 4.337 VH 7.22 L 164.44 VVH

Apartment 0.55 M 0.937 H 2.954 H 7.44 L 73.68 H
Single house 0.272 VL 1.15 VH 2.954 H 7.71 L 116.60 VH

Historical house 1.835 VH 0.88 H 5.941 VH 8.07 L 162.62 VVH
School 1.185 H 0.489 L 2.723 H 8.23 L 97.13 VH

Public building 0.21 L 0.315 L 1.399 M 33.44 VH 39.04 L

Table 2 shows that, for all the cases, the percentage of the transparent elements is
not very high (2.66–8.33%), except for the public building (about 33%). They have poorly
performing glazing systems, with U-values of about 4–6 W/m2K, typical of a single layer
glazed window; values of about 2.7–2.9 correspond to double glazing systems without
thermal surface treatment. Finally, the apartment has a not-very-high energy demand
(about 77 W/m2K) thanks to a medium value of the thermal transmittance of the walls
(only 0.55 W/m2K). Furthermore, regarding output variables, the first step concerned their
identification and the definition of the domains and fuzzy sets reproducing the variables’
subdivision into classes.

As possible interventions for building performance enhancement, the insulation of
opaque vertical surfaces (through a standard internal insulation system), roof insulation,
and the replacement of glass surfaces with specific low-emissivity double glazing (U-value
1.43 W/m2K, solar factor 0.67) were considered in the present study as the more frequent
options. In particular, a coating system applied in the inside walls with a thermal effect was
considered: it is composed of 3 cm of polystyrene and about 0.5 cm of wood-fiber-based
gypsum plaster, for a total thermal transmittance of 0.68 W/m2K. For the roof, an insulation
system positioned between the existing structure and the top part was inserted. It is
composed of 5 cm wood fiber-based panel (thermal conductivity 0.038 W/mK), together
with a waterproof layer and a steam barrier; the new insulating package was installed under
the underlay at the eaves (tiles or other types of covering materials of the roof). Finally,
the glazing systems were replaced by a double glazing system, with a low-e treatment in
the third face (6 mm float, 18 mm air, 8 mm low-e glazing, total thermal transmittance of
1.43 W/m2K).

The opportunity levels for these intervention typologies, therefore, were chosen as
the output variables of the fuzzy tool. Specifically, the opportunity-level variables for the
insulation of opaque vertical surfaces, roof insulation and the replacement of glass surfaces
with specific low-emissivity double glazing were named “InsulVertSurf”, “InsulRoof” and
“LowEmissGlass”, respectively. Moreover, for each intervention (i.e., for each of the output
variables), five classes, from 1 to 5, were defined for the level of opportunity (1—much
necessary; 2—necessary; 3—programmable; 4—poorly necessary; 5—not necessary).
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After the definition of the input and output variables, and their related classes, the
associated membership functions (MFs) were set. Figure 3 shows the MFs considered for
the Uwall, Uroof and Uglass parameters. Each function ranges between 0 and 1, depending
on the transmittance values. Values greater than 0 are for MFs from “very low” to “very
high” for thermal transmittance, steadily increasing from 0 to about 5–6 W/m2K (for the
specific divisions in classes see Table 1, in the first, second, and third columns). The MFs
defined for the WWR and the winter energy demand (WinterEnDem) are depicted in
Figure 4. MFs with values greater than 0 switch from “Very Low” (values close to 1 for
WWR lower than 6%) to “Very High“ (values close to 1 are achieved for WWR higher than
20%), depending on the WWR value. Similarly, this occurs for the Winter Energy Demand;
values close to 1 are achieved for the “Very Very Low“ MF for an input parameter lower
than 10 kWh/m2 year, while they are achieved for “Very Very High“ MF when the Winter
Energy Demand exceeds 120 kWh/m2 year. Finally, Figure 5 reports, as an example, the
triangular MFs chosen for the output variable “InsulVertSurf”, which represents the level of
opportunity of opaque wall insulation varying from degree 1 to degree 5 (it is highlighted
as the discretization and the relative MFs are the same for the three output variables).
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3.2. Design of the Inference Engine: Definition of the Rules Set

After the discretization of each variable, the different mechanisms of interaction have
to be specified, defining the inference rules set. Because the task of an expert system is to
make an independent decision with regard to some situations of uncertainty, not based on
a deterministic model, proper rules and the reasonableness of the decisions taken by the
system were defined in retrospect.

To this aim, a certain amount of data was produced by means of simulations and
the evaluations of experts. In the following, some details are provided in reference to
this preliminary phase. Specifically, in order to assess the actual efficiency improvements
resulting from the implementation of specific interventions, and therefore their opportu-
nity (degree from 1 to 5) for each investigated building, the winter energy savings were
evaluated by means of a suitable software tool (in accordance with UNI-TS 11300 [64]).
It was used to predict the winter energy savings in the case of the realization of a single
intervention among the ones detailed in Section 3.1 (that is the insulation of the vertical
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surface, the roof insulation and the replacing of the glazing surface with low-e solutions,
and so on). Mainly on the basis of such outcomes (in terms of the required Energy Demand
and the corresponding Energy Saving (in %) obtained after the application of the inter-
vention), beyond that, the intervention typology (taking into account the related cost and
technical feasibility, both quantitative and qualitative parameters), the authors assigned for
all of the analyzed buildings the proper level of opportunity from 1 (low effectiveness) to
5 (high effectiveness).

Thus, a dataset constituted by experts’ evaluations, made on both quantitative and
qualitative criteria, was determined for a large number of buildings, each subjected to all
of the investigated interventions applied singularly. Table 3 reports only some examples,
for the sake of brevity, in order to highlight the several building typologies considered. It is
evident, as for the warehouse, that the most convenient intervention is the insulation of the
roof, whereas the requalification of the transparent surfaces is not suitable, considering the
low WWR-value. For the hotel and the office types, the insulation of vertical surfaces is
the best intervention (for an energy saving in the 17–20% range). The same refurbishment
intervention is suggested for historical houses and schools (with the thermal transmittance
of the walls being High and Very High). For the public building, the window replacement is
the most suitable solution, because the walls and the roof have good thermal performance,
and consequently the enhancement of opaque envelope insulation does not improve
it further.

Table 3. Energy Saving (%) and opportunity (Opp.) of the intervention for some of the buildings.

Insulation of Vertical Surface Low Emission Glass Surface Insulation of Roof Surface

Case Study
Energy

Demand
(kWh/m2)

Energy
Saving (%) Opp.

Energy
Demand

(kWh/m2)

Energy
Saving (%) Opp.

Energy
Demand

(kWh/m2)

Energy
Saving (%) Opp.

Warehouse 92.24 4.04% 4 94.64 1.54% 5 75.91 21.03% 1
Hotel 76.55 20.81% 1 88.48 8.47% 2 85.51 11.54% 3
Office 136.15 17.20% 1 154.86 5.83% 2 126.7 22.95% 1

Apartment 65.39 11.25% 2 70.16 4.78% 4 59.01 19.91% 2
Single house 114.06 2.18% 4 110.98 4.82% 3 78.4 32.76% 1

Historical house 98.51 39.42% 1 151.97 6.55% 2 157.4 3.21% 4
School 72.97 24.87% 1 96.15 1.01% 5 95.1 2.09% 4

Public building 39.04 0.0% 5 38.99 4.65% 4 39.04 0.0% 5

After the preliminary phase devoted to the realization of a dataset constituted of
experts’ evaluations, the definition of the inference rules set was performed according to
a two-steps procedure. At first (step 1), a preliminary design was carried out in order to
achieve the convergence of the diagnostic tool output on the experts’ evaluations. The
first subjective assessment allowed us to identify and to correct the most egregious faults,
so that the subsequent design step (step 2) could concentrate on performance optimization,
improving a system that was already working in a substantially correct way. Therefore,
additional simulations and experts’ evaluations corresponding to conditions different
from those considered in step 1 were defined and carried out. The information obtained
during these tests was used to modify and to adapt the system, in order to make it more
suitable to the task it must perform. Table 4 reports the resulting rules set, representing the
knowledge base of the developed fuzzy inference system. The antecedent (the ‘if’ section)
and the consequent (the ‘then’ section) of the rules describe the mode of thinking of the
Fuzzy Logic system, specifically in terms of the correlation between the few considered
parameters, characteristic of the envelope, and its energy performance and the degree of the
effectiveness achievable thanks to each intervention. This is highlighted as, in particular,
all of the rules were formulated with the unit weight and considering an ‘and’ logical
connection for the antecedent part.
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Table 4. Rules of the fuzzy system.

If (UWall is high) and (URoof is high) and (UGlass is high) and (WWR is medium) and (WinterEnDem is very very high) then
(InsulVertSurf is degree1)(InsulRoof is degree3)(LowEmissGlass is degree2)

If (UWall is high) and (URoof is high) and (UGlass is veryhigh) and WWR is low) and (WinterEnDem is very high) then (InsulVertSurf
is degree1)(InsulRoof is degree3)(LowEmissGlass is degree2)

If (UWall is veryhigh) and (URoof is high) and (UGlass is veryhigh) and (WWR is low) and (WinterEnDem is very very high) then
(InsulVertSurf is degree1)(InsulRoof is degree4)(LowEmissGlass is degree2)

If (UWall is veryhigh) and (URoof is high) and (UGlass is veryhigh) and (WWR is high) and (WinterEnDem is very very high) then
(InsulVertSurf is degree1)(InsulRoof is degree2)(LowEmissGlass is degree1)

If (UWall is low) and (URoof is high) and (UGlass is high) and (WWR is verylow) and (WinterEnDem is very high) then (InsulVertSurf
is degree4)(InsulRoof is degree1)(LowEmissGlass is degree5)

If (UWall is verylow) and (URoof is high) and (UGlass is high) and (WWR is low) and (WinterEnDem is very high) then (InsulVertSurf
is degree4)(InsulRoof is degree1)(LowEmissGlass is degree3)

If (UWall is low) and (URoof is high) and (UGlass is high) and (WWR is medium) and (WinterEnDem is high) then (InsulVertSurf is
degree2)(InsulRoof is degree3)(LowEmissGlass is degree3)

If (UWall is medium) and (URoof is high) and (UGlass is high) and (WWR is low) and (WinterEnDem is high) then (InsulVertSurf is
degree2)(InsulRoof is degree2)(LowEmissGlass is degree4)

If (UWall is high) and (URoof is low) and (UGlass is high) and (WWR is low) and (WinterEnDem is very high) then (InsulVertSurf is
degree1)(InsulRoof is degree4)(LowEmissGlass is degree5)

If (UWall is low) and (URoof is low) and (UGlass is medium) and (WWR is veryhigh) and (WinterEnDem is low) then (InsulVertSurf is
degree5)(InsulRoof is degree5)(LowEmissGlass is degree4)

If (UWall is verylow) and (URoof is low) and (UGlass is verylow) and (WWR is veryhigh) and (WinterEnDem is low) then
(InsulVertSurf is degree5)(InsulRoof is degree5)(LowEmissGlass is degree5)

If (UWall is high) and (URoof is high) and (UGlass is veryhigh) and (WWR is low) and (WinterEnDem is very very high) then
(InsulVertSurf is degree1)(InsulRoof is degree1)(LowEmissGlass is degree2)

For the aggregation step, which combines the outputs of all of the activated rules to
give rise to a single output fuzzy set, the maximum method was applied. Figure 6 shows
an example of an operating point where the rules currently enabled are highlighted; the
related system response is also visible (levels of opportunity of 2, 2 and 4, respectively, for
the insulation of opaque vertical surface, insulation of the roof, and low-emission glasses).
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4. Validation of the Developed Tool

Finally, the tool was validated considering buildings not used in the development
step, for a total of 20 cases. In particular, Table 5 summarizes—for brevity—only five
examples (each related to a different building typology), which were chosen because
they are representative of the tool performance. By analyzing these data, the agreement
is evident between the degrees of opportunity initially attributed by the authors (i.e.,
the experts’ evaluation) through suitable evaluations (energy saving, intervention cost
and feasibility) and the ones supplied by the developed tool. In particular, the best
correspondence was obtained for warehouses and schools, as shown in Table 5. These
results validate its good performance, and beyond that the effectiveness of the methodology
proposed concerning the application of fuzzy logic techniques.

Table 5. Results for the validation of the developed tool (VL = very low, L = low, M = medium, H = high, VH = very high).

Case Study Uwall Uroof Uglass WWR Energy
Demand

Opp. Degree for
Opaque Surface

Insulation

Opp. Degree
for Roof

Insulation

Opp. Degree
for Low

Emission Glass

By
Authors By Tool By

Authors By Tool By
Authors By Tool

Apartment H H H L H 2 1.82 2 2.16 4 3.62
Hotel H H H L H 1 1.32 3 2.62 3 2.61

Warehouse VL H H VL VH 4 4.02 1 1.02 3 3.00
School L H H H VH 2 1.98 3 3.00 3 3.01

Historical house H H H L VH 1 1.18 3 2.73 2 2.18

5. Conclusions

This paper addresses the development of an automatic evaluation system, based on a
fuzzy logic technique, to support the best choice of energy saving measures to be applied
to existing buildings. The tool was developed considering winter heating, considering
some elements of the building envelope, and it was successfully validated in order to
support the effectiveness of the presented methodology. The main outcome of this paper
is a new methodology proposed for the development of decisional tools for the energy
refurbishment of buildings. It represents a relevant innovation with respect to the state of
the art, with a potential significant impact on the operators (e.g., designers) of the building
retrofitting field. The proposed system, which is suitable for the analysis of the building
sector, reduces the uncertainty of the decision about the opportunity of some of the main
interventions and produces a strong reduction in the expert evaluation effort.

The initial part of the paper reports a short description of the main elements of fuzzy
logic. Then, the design of the automatic system for the evaluation of the best energy saving
measures is described. The design of the fuzzy decisional tool starts from the analysis
of the main elements responsible for the greater heat losses during the winter season,
and the consequent identification of the priority of the useful interventions. This work
represents only the initial step in the research for a tool which is able to solve complex and
different problems with a single informatics tool and a single language. The developed tool
was successfully tested on buildings which were different from the ones considered in the
development phase, in order to verify the validity and the reliability of the proposed system.
In the future, the developed methodology will be improved, considering for example a
larger range of applications, the extension of the considered intervention typologies, and
the application to the summer case. In particular, it is necessary to increase the number
of cases to be considered as inputs for the network in order to train the fuzzy tool. The
architectural design and the category of building have great influence on the effectiveness
of the fuzzy instruments, the development of different tools for each typology will be
interesting. Furthermore, the number of buildings to be tested and not used for the
development of the tool should be also increased in order to verify the effectiveness of the
developed tool.
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The proposed methodology, rather than the tool currently developed—which, as
indicated above, could be improved—can provide a significant impact in the framework
of a project qualification. The reduction in the uncertainty of the decision about the
opportunity among several interventions over a very wide application framework, as well
as the reduction in the evaluation time, could significantly contribute to the control of the
project quality in the energy building requalification. This advantage is typical in project
activities when a multitude of different parameters have to be considered over a very
wide set of application typologies. A previous experiment, but in a different ambit of civil
engineering, was performed by one of the authors who contributed to the development of
an expert system applied to the evaluation of the rehabilitation quality following the 1997
Umbria earthquake [65].
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Nomenclature

InsulVertSurf output variable relative to the insulation of the vertical opaque surface
Window to Wall

percentage of the glass area to the opaque
Ratio WWR
InsulRoof output variable relative to the insulation of the horizontal opaque surface
LowEmissGlass output variable relative to a low-emission glass surface
u fuzzy set variable
Uwall thermal transmittance of the vertical opaque surface, W/(m2 K)
Uglass thermal transmittance of the glass surface, W/(m2 K)
Uroof thermal transmittance of the horizontal opaque surface, W/(m2 K)
WinterEnDem winter energy demand, kWh/m2 year
µ membership function

References
1. Harvey, L.D. Reducing energy use in the buildings sector: Measures, costs, and example. Energy Effic. 2009, 2, 139–163. [CrossRef]
2. Lam, J.C.; Wan, K.K.W.; Tsang, C.L.; Yang, L. Building energy efficiency in different climates. Energy Convers. Manag. 2008,

49, 2354–2366. [CrossRef]
3. Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing building retrofits: Methodology and state-of-the-art. Energy Build. 2012, 55, 889–902.

[CrossRef]
4. Asadi, E.; Silva, M.G.; Antunes, C.H.; Dias, L. Multi-objective optimization for building retrofit strategies: A model and an

application. Energy Build. 2012, 41, 81–87. [CrossRef]
5. Choi, J.K.; Morrison, D.; Hallinan, K.; Brecha, R. Economic and environmental impacts of community-based residential building

energy efficiency investment. Energy 2014, 78, 877–886. [CrossRef]
6. Wada, K.; Akimoto, K.; Sano, F.; Oda, J.; Homma, T. Energy efficiency opportunities in the residential sector and their feasibility.

Energy 2012, 48, 5–10. [CrossRef]
7. BPIE. Europe’s Buildings under the Microscope; Buildings Performance Institute Europe: Brussels, Belgium, 2011.
8. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social

Committee and the Committee of the Regions: A Roadmap for Moving to a Competitive Low Carbon Economy in 2050; Brussels COM:
Brussels, Belgium, 2011.

9. Eurostat. Energy, Transport and Environment Indicators; Eurostat: Luxembourg, 2011.

http://doi.org/10.1007/s12053-009-9041-2
http://doi.org/10.1016/j.enconman.2008.01.013
http://doi.org/10.1016/j.enbuild.2012.08.018
http://doi.org/10.1016/j.enbuild.2011.10.016
http://doi.org/10.1016/j.energy.2014.10.082
http://doi.org/10.1016/j.energy.2012.01.046


Sustainability 2021, 13, 9318 15 of 16

10. Ben, H.; Steemers, K. Energy retrofit and occupant behaviour in protected housing: A case study of the Brunswick Centre in
London. Energy Build. 2014, 80, 120–130. [CrossRef]

11. Lechtenböhmer, S.; Schüring, A. The potential for large-scale savings from insulating residential buildings in the EU. Energy Effic.
2010, 4, 257–270. [CrossRef]

12. Hestnes, A.G.; Kofoed, N.U. Effective retrofitting scenarios for energy efficiency and comfort: Results of the design and evaluation
activities within the OFFICE project. Build. Environ. 2002, 37, 569–574. [CrossRef]

13. Italian Government. Legislative Decree No. 59/2009. 2 April 2009. Available online: https://www.gazzettaufficiale.it/eli/id/20
09/06/10/009G0068/sg (accessed on 10 June 2021).

14. European Parliament and Council. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the
Energy Performance of Buildings. Off. J. Eur. Union 2010, L153, 13–35.

15. Directive 2012/27/EU of the European Parliament and of the Council, of 25 October 2012 on Energy Efficiency. Available online:
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=celex%3A32012L0027 (accessed on 10 June 2021).

16. Available online: www.enea.it (accessed on 25 February 2021).
17. ENEA-Agenzia Nazionale Per le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile. Rapporto Energia e

Ambiente–Analisi e Scenari. 2009. Available online: http://old.enea.it/produzione_scientifica/pdf_volumi/V2010-REA2009.pdf
(accessed on 25 February 2021).

18. Law No. 373/76. Norme Per il Contenimento Del Consumo Energetico Per Usi Termici Negli Edifici. Available online: https:
//www.gazzettaufficiale.it/eli/id/1976/06/07/076U0373/sg (accessed on 10 June 2021). (In Italian).

19. IEA. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings; IEA: Paris, France, 2008.
20. Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments.

Build. Environ. 2011, 46, 922–937. [CrossRef]
21. Doukas, H.; Nychtis, C.; Psarras, J. Assessing energy-saving measures in buildings through an intelligent decision support model.

Build. Environ. 2009, 44, 290–298. [CrossRef]
22. Lollini, R.; Barozzi, B.; Fasano, G.; Meroni, I.; Zinzi, M. Optimization of opaque components of the building envelope, Energy,

Economic and Environmental Issues. Build. Environ. 2006, 41, 1001–1013. [CrossRef]
23. Dylewski, R.; Adamczyk, J. Economic and environmental benefits of thermal insulation of building external walls. Build. Environ.

2011, 46, 2615–2623. [CrossRef]
24. Aktacir, M.A.; Buyukalaca, O.; Yılmaz, T. A case study for influence of building thermal insulation on cooling load and

air-conditioning system in the hot and humid regions. Appl. Energy 2010, 87, 599–607. [CrossRef]
25. Comaklı, K.; Yuksel, B. Optimum insulation thickness of external walls for energy saving. Appl. Therm. Eng. 2003, 23, 473–479.

[CrossRef]
26. Persson, M.; Roos, A.; Wall, M. Influence of window size on the energy balance of low energy houses. Energy Build. 2006,

38, 181–188. [CrossRef]
27. Hwang, R.L.; Shu, S.Y. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential

for PMV-based comfort control. Build. Environ. 2011, 46, 824–834. [CrossRef]
28. Lau, H.C.W.; Cheng, E.N.M.; Lee, C.K.M.; Ho, G.T.S. A fuzzy logic approach to forecast energy consumption change in a

manufacturing system. Expert Syst. Appl. 2008, 34, 1813–1824. [CrossRef]
29. Kalogirou, S.A. Artificial neural networks in energy applications in buildings. Int. J. Low-Carbon Technol. 2006, 1, 201–216.

[CrossRef]
30. Ekici, B.B.; Aksoy, U.T. Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 2009,

40, 356–362. [CrossRef]
31. Yokoyama, R.; Wakui, T.; Satake, R. Prediction of energy demands using neural network with model identification by global

optimization. Energy Convers. Manag. 2009, 50, 319–327. [CrossRef]
32. Marvuglia, A.; Messineo, A.; Nicolosi, G. Coupling a neural network temperature predictor and a fuzzy logic controller to

perform thermal comfort regulation in an office building. Build. Environ. 2014, 73, 287–299. [CrossRef]
33. Castro, S.S.; Suárez López, M.J.; Menéndez, D.G.; Marigorta, E.B. Decision matrix methodology for retrofitting techniques of

existing buildings. J. Clean. Prod. 2019, 240, 118153. [CrossRef]
34. Rosso, F.; Ciancio, V.; Dell’Olmo, J.; Salata, F. Multi-objective optimization of building retrofit in the Mediterranean climate by

means of genetic algorithm application. Energy Build. 2020, 216, 109945. [CrossRef]
35. Krarti, M. An overview of artificial intelligence-based methods for building energy systems. J. Sol. Energy Eng. 2003, 125, 331–342.

[CrossRef]
36. Dounis, A.I. Artificial intelligence for energy conservation in buildings. Adv. Build. Energy Res. 2010, 4, 267–299. [CrossRef]
37. Karatasou, S.; Santamouris, M.; Geros, V. Modeling and predicting building’s energy use with artificial neural networks: Methods

and results. Energy Build. 2006, 38, 949–958. [CrossRef]
38. Reynolds, J.; Rezgui, Y.; Kwan, A.; Piriou, S. A zone-level, building energy optimisation combining an artificial neural network,

a genetic algorithm, and model predictive control. Energy 2018, 151, 729–739. [CrossRef]
39. Rafe Biswas, M.A.; Robinson, M.D.; Fumo, N. Prediction of residential building energy consumption: A neural network approach.

Energy 2016, 117, 84–92. [CrossRef]

http://doi.org/10.1016/j.enbuild.2014.05.019
http://doi.org/10.1007/s12053-010-9090-6
http://doi.org/10.1016/S0360-1323(02)00003-3
https://www.gazzettaufficiale.it/eli/id/2009/06/10/009G0068/sg
https://www.gazzettaufficiale.it/eli/id/2009/06/10/009G0068/sg
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=celex%3A32012L0027
www.enea.it
http://old.enea.it/produzione_scientifica/pdf_volumi/V2010-REA2009.pdf
https://www.gazzettaufficiale.it/eli/id/1976/06/07/076U0373/sg
https://www.gazzettaufficiale.it/eli/id/1976/06/07/076U0373/sg
http://doi.org/10.1016/j.buildenv.2010.10.021
http://doi.org/10.1016/j.buildenv.2008.03.006
http://doi.org/10.1016/j.buildenv.2005.11.011
http://doi.org/10.1016/j.buildenv.2011.06.023
http://doi.org/10.1016/j.apenergy.2009.05.008
http://doi.org/10.1016/S1359-4311(02)00209-0
http://doi.org/10.1016/j.enbuild.2005.05.006
http://doi.org/10.1016/j.buildenv.2010.10.009
http://doi.org/10.1016/j.eswa.2007.02.015
http://doi.org/10.1093/ijlct/1.3.201
http://doi.org/10.1016/j.advengsoft.2008.05.003
http://doi.org/10.1016/j.enconman.2008.09.017
http://doi.org/10.1016/j.buildenv.2013.10.020
http://doi.org/10.1016/j.jclepro.2019.118153
http://doi.org/10.1016/j.enbuild.2020.109945
http://doi.org/10.1115/1.1592186
http://doi.org/10.3763/aber.2009.0408
http://doi.org/10.1016/j.enbuild.2005.11.005
http://doi.org/10.1016/j.energy.2018.03.113
http://doi.org/10.1016/j.energy.2016.10.066


Sustainability 2021, 13, 9318 16 of 16

40. Roman, N.D.; Bre, F.; Fachinotti, V.D.; Lamberts, R. Application and characterization of metamodels based on artificial neural
networks for building performance simulation: A systematic review. Energy Build. 2020, 217, 109972. [CrossRef]

41. Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. Artificial neural networks to predict energy performance and
retrofit scenarios for any member of a building category: A novel approach. Energy 2017, 118, 999–1017. [CrossRef]

42. D’Amico, A.; Ciulla, G.; Traverso, M.; Lo Brano, V.; Palumbo, E. Artificial Neural Networks to assess energy and environmental
performance of buildings: An Italian case study. J. Clean. Prod. 2019, 239, 117993. [CrossRef]

43. Chegari, B.; Tabaa, M.; Simeu, E.; Moutaouakkil, F.; Medromi, H. Multi-objective optimization of building energy performance
and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy Build. 2021, 239, 110839.
[CrossRef]

44. Zekic-Susac, M.; Has, A.; Knezevic, M. Predicting energy cost of public buildings by artificial neural networks, CART, and
random forest. Neurocomputing 2021, 439, 223–233. [CrossRef]

45. Zhang, T.; Liu, Y.; Rao, Y.; Li, X.; Zhao, Q. Optimal design of building environment with hybrid genetic algorithm, artificial neural
network, multivariate regression analysis and fuzzy logic controller. Build. Environ. 2020, 175, 106810. [CrossRef]

46. Escandón, R.; Ascione, F.; Bianco, N.; Mauro, G.M.; Suáreza, R.; Sendra, J.J. Thermal comfort prediction in a building category:
Artificial neural network generation from calibrated models for a social housing stock in southern Europe. Appl. Therm. Eng.
2019, 150, 492–505. [CrossRef]

47. Grieu, S.; Faugeroux, O.; Traoré, A.; Claudet, B.; Bodnar, J.L. Artificial intelligence tools and inverse methods for estimating the
thermal diffusivity of building materials. Energy Build. 2011, 43, 543–554. [CrossRef]

48. Doukas, H.; Patlitzianas, K.D.; Iatropoulos, K.; Psarras, J. Intelligent building energy management system using rule sets.
Build. Environ. 2007, 42, 3562–3569. [CrossRef]

49. Poco, E.R.G.; Sousa, J.M.C.; Costa Branco, P.J. Improving the energy efficiency of aging retail buildings: A large department store
in Lisbon as case study. Energy Syst. 2020. [CrossRef]

50. Caccavelli, D.; Genre, J.L. Diagnosis of the degradation state of building and cost evaluation of induced refurbishment works.
Energy Build. 2000, 31, 159–165. [CrossRef]

51. Jaggs, M.; Palmer, J. Energy performance indoor environmental quality retrofit—A European diagnosis and decision making
method for building refurbishment. Energy Build. 2000, 31, 97–101. [CrossRef]

52. Kerdan, I.G.; Raslan, R.; Ruyssevelt, R.; Gálvez, D.M. ExRET-Opt: An automated exergy/exergoeconomic simulation framework
for building energy retrofit analysis and design optimization. Appl. Energy 2017, 192, 33–58. [CrossRef]

53. Chiesa, G.; Di Vita, D.; Ghadirzadeh, A.; Muñoz Herrerab, A.H.; Rodriguez, J.C.L. A fuzzy-logic IoT lighting and shading control
system for smart buildings. Autom. Constr. 2020, 120, 103397. [CrossRef]

54. Mattoni, B.; Gori, P.; Bisegna, F. A step towards the optimization of the indoor luminous environment by genetic algorithms.
Indoor Built Environ. 2017, 26, 590–607. [CrossRef]

55. Ilbeigi, M.; Ghomeishi, M.; Dehghanbanadaki, A. Prediction and optimization of energy consumption in an office building using
artificial neural network and a genetic algorithm. Sustain. Cities Soc. 2020, 61, 102325. [CrossRef]

56. Mpelogianni, V.; Groumpos, P.P. Using fuzzy control methods for increasing the energy efficiency of buildings. Int. J. Monit.
Surveill. Technol. Res. (IJMSTR) 2015, 3, 22. [CrossRef]

57. Mpelogianni, V.; Giannousakis, K.; Kontouras, E.; Groumpos, P.P.; Tsipianitis, D. Proactive building energy management methods
based on Fuzzy Logic and Expert Intelligence. IFAC-Pap. 2019, 52, 519–522. [CrossRef]

58. Sugeno, M. Industrial Applications of Fuzzy Control; Elsevier Science Pub. Co.: Amsterdam, The Netherlands, 1985.
59. Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. Available online: https://www.sciencedirect.com/science/article/pii/S001

999586590241X (accessed on 25 February 2021).
60. Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 1975,

7, 1–13. [CrossRef]
61. Available online: https://it.mathworks.com/help/fuzzy/fuzzy-inference-process.html#FP347 (accessed on 28 January 2021).
62. Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic. Theory and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 1995.
63. Law Decree No.192/06. Attuazione Della Direttiva 2002/91/CE Relativa al Rendimento Energetico Nell’edilizia” as Modified by

Law Decree No. 311/06, “Disposizioni Correttive ed Integrative al Decreto Legislativo 19 Agosto 2005, n. 192, Recante Attuazione
Della Direttiva 2002/91/CE, Relativa al Rendimento Energetico Nell’edilizia. Available online: https://www.camera.it/parlam/
leggi/deleghe/06192dl.htm (accessed on 10 June 2021). (In Italian).

64. ISO. UNI/TS 11300: 2008. Energy Performance of Building Part 1, 2, 3, 4; ISO: Geneva, Switzerland, 2008.
65. De Sortis, A.; Nasini, U.; Aisa, E.; Gravina, A.; Fantozzi, F.; Barelli, L. Una procedura per la valutazione della qualità della

ricostruzione dopo il sisma del 1997 in Umbria—Parte I: Metodologia. In Proceedings of the XI Congresso Nazionale “L’ingegneria
Sismica in Italia”, Genova, Italy, 25–29 January 2004.

http://doi.org/10.1016/j.enbuild.2020.109972
http://doi.org/10.1016/j.energy.2016.10.126
http://doi.org/10.1016/j.jclepro.2019.117993
http://doi.org/10.1016/j.enbuild.2021.110839
http://doi.org/10.1016/j.neucom.2020.01.124
http://doi.org/10.1016/j.buildenv.2020.106810
http://doi.org/10.1016/j.applthermaleng.2019.01.013
http://doi.org/10.1016/j.enbuild.2010.10.020
http://doi.org/10.1016/j.buildenv.2006.10.024
http://doi.org/10.1007/s12667-020-00377-w
http://doi.org/10.1016/S0378-7788(99)00030-4
http://doi.org/10.1016/S0378-7788(99)00023-7
http://doi.org/10.1016/j.apenergy.2017.02.006
http://doi.org/10.1016/j.autcon.2020.103397
http://doi.org/10.1177/1420326X15608229
http://doi.org/10.1016/j.scs.2020.102325
http://doi.org/10.4018/IJMSTR.2015100101
http://doi.org/10.1016/j.ifacol.2019.12.597
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://www.sciencedirect.com/science/article/pii/S001999586590241X
http://doi.org/10.1016/S0020-7373(75)80002-2
https://it.mathworks.com/help/fuzzy/fuzzy-inference-process.html#FP347
https://www.camera.it/parlam/leggi/deleghe/06192dl.htm
https://www.camera.it/parlam/leggi/deleghe/06192dl.htm

	Introduction 
	General Overview of Building Energy Retrofitting 
	State of the Art in Artificial Neural Network and Fuzzy Logic Tools 
	Aim of the Study 

	Description of the Method: Fuzzy Logic 
	Design of the Fuzzy Decisional Tool 
	Problem Analysis 
	Design of the Inference Engine: Definition of the Rules Set 

	Validation of the Developed Tool 
	Conclusions 
	References

