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Abstract: Currently, several traffic conflict indicators are used as surrogate safety measures. Each
indicator has its own advantages, limitations, and suitability. There are only a few studies focusing
on fixed object conflicts of highway safety estimation using traffic conflict technique. This study
investigated which conflict indicator was more suitable for traffic safety estimation based on conflict-
accident Pearson correlation analysis. First, a high-altitude unmanned aerial vehicle was used
to collect multiple continuous high-precision videos of the Jinan-Qingdao highway. The vehicle
trajectory data outputted from recognition of the videos were used to acquire conflict data following
the procedure for each conflict indicator. Then, an improved indicator Ti was proposed based on
the advantages and limitations of the conventional indicators. This indicator contained definitions
and calculation for three types of traffic conflicts (rear-end, lane change and with fixed object).
Then the conflict-accident correlation analysis of TTC (Time to Collision)/PET (Post Encroachment
Time)/DRAC (Deceleration Rate to Avoid Crash)/Ti indicators were carried out. The results show
that the average value of the correlation coefficient for each indicator with different thresholds are
0.670 for TTC, 0.669 for PET, and 0.710 for DRAC, and 0.771 for Ti, which Ti indicator is obviously
higher than the other three conventional indicators. The findings of this study suggest TTC often
fails to identify lane change conflicts, PET indicator easily misjudges some rear-end conflict when
the speed of the following vehicle is slower than the leading vehicle, and PET is less informative
than other indicators. At the same time, these conventional indicators do not consider the vehicle-
fixed objects conflicts. The improved Ti can overcome these shortcomings; thus, Ti has the highest
correlation. More data are needed to verify and support the study.

Keywords: traffic safety estimation; traffic conflict technique; traffic conflict indicator; highway;
vehicle trajectory data; UAV

1. Introduction

Traffic conflict indicators are used as surrogate safety measures to assess the severity
of every traffic conflict. At present, the most common single indicators of traffic conflicts
are as follows: The first measures risk aversion behavior and determines whether there is a
conflict by observing whether an aversion behavior exists as well as the severity based on
the urgency. Most of the assessments are qualitative, and generally include steering and
obvious deceleration (indicated by the turning on of rear (brake and park) lights) [1]. The
second measures the proximity in space and time. The two most common indicators of this
type are the time-to-collision (TTC) [2–4] and the post-encroachment time (PET) [4]. The
third measures characteristics of the vehicle’s own movement, such as deceleration. The
most common indicator of the vehicle’s own movement characteristics is the deceleration
rate to avoid crash (DRAC) [5–7]. In addition, in recent years, some studies have begun to
use combined indicators for conflict identification [8–11]. In general, these traffic conflict
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indicators have played a significant role in the promotion and application of traffic conflict
techniques. However, at this stage, these indicators have their own advantages, limitations
and suitability, and there are differences in the selection of traffic conflict indicators and
corresponding thresholds (see literature review for details).

The road traffic flows in highways have the following characteristics: a large area
that enables the coexistence of car following and merging, many rear-end conflicts, lane
changes conflicts and fixed objects conflicts with little study. Therefore, two questions
follow: First, how can we better recognize when multiple traffic conflicts coexist? Second,
how can we verify and compare the different conflict indicators in terms of their capability
to estimate traffic safety? In response to the above two questions, this study first improves
the conventional indicators based on their characteristics, advantages, and limitations, and
establishes a conflict identification indicator that is more suitable for highways. As for
collection methods, Unmanned aerial vehicles (UAVs) are used to collect high-precision
videos in multiple areas to overcome the deficiencies of the previous cross-section conflict
data collection, and then a large amount of continuous conflict data is obtained using video
recognition and conflict recognition programs. Finally, a conclusive relationship between
serious conflicts and accidents with different thresholds for each indicator is established
based on the real accident data. The aim is to judge the safety estimation ability of each
conflict indicator through the magnitude of correlation, and try to analyze and explain
the reason.

The remainder of the paper is organized as follows. Following the introduction, a
literature review containing traffic conflict indicator, collection methods and processing
means, conflict-accident correlation is presented in Section 2. Section 3 describes data
collection and processing. Section 4 introduces the proposal of improvement indicator Ti
and verification process with other indicators, followed by the results of correlation under
different thresholds of each indicator in Section 5. A discussion and analysis of the results
appears in Section 6. Section 7 concludes the research findings.

2. Literature Review
2.1. Traffic Conflict Indicator

In the past, most research on traffic safety was based on historical accident data, and
although they are logical and reasonable, there are certain limitations. (1) This method
requires a large amount of historical traffic accident data. Compared with foreign countries,
traffic accident data in China are relatively scarce and insufficient. For some newly built
roads that have not been in operation for long periods, or roads that are in work zones, it
is even more difficult to collect accident data. (2) Traffic accidents are inherently random
and contingent. If the amount of accident data is insufficient and does not meet statistical
requirements, the factors that influence traffic accidents cannot be analyzed, and it is diffi-
cult to arrive at useful conclusions on traffic safety estimation and improvement [12–14].
(3) Minor accidents or serious traffic conflicts that did not lead to accidents are often not
recorded. For example, Hauer et al. [15] found that 60% of minor accidents were not
recorded although they often contained a lot of potentially useful information. (4) The
explanation and description of the causes of the accident are often based on people’s sub-
jective perceptions and judgments. These shortcomings will affect the estimation based on
traffic accidents [16]. (5) Analyses can only be done after accidents, which is of a post-hoc
nature. In response to the above shortcomings, international scholars proposed the concept
of traffic conflicts in the 1960s and 1970s, giving a summary of the Traffic Conflict Technique
(TCT) [17]. The TCT can be used to observe and obtain a large amount of data before an
accident and has the statistical advantages of large sample size, short period, small area,
and high confidence level [18].

Current single indicators for measuring the severity of traffic conflicts are mainly
divided into the following categories: (1) risk aversion behavior; (2) proximity in space
and time; and (3) characteristics of the vehicle’s own movement, such as deceleration. The
advantages, advantages, and applicability of each indicator are summarized in Table 1.
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Table 1. Advantages and Limitations of Different Conflict Indicators and the Suitable Environment.

Classification of Conflict Indicators Typical Indicator Advantages Limitations Suitable Environment

Indicators of risk aversion behavior Signs of conflict (lights on for steering
and braking) [19]

Intuitive and straightforward, ideal for
early situations where high-precision

equipment is not available.

Difficult to define and observe with high precision
quantitatively [1].

Traffic conflict observations suitable for
manual investigation.

Indicators based on proximity in space
and time

Distance indicators (collision
distance [20], non-full stopping

distance [21], parking distance ratio [22])

Simpler to calculate than time indicators.

If distance and speed are considered separately,
there may be situations where distance and speed

are both very small/large, for which traffic conflicts
may not be severe. Time indicators that consider

both distance and speed factors are more scientific
indicators.

Currently less frequently used, replaced
by time indicators.

Speed indicators
(conflicting vehicle speeds)

Time indicators
(TTC and derived indicators such as TIT,

TET, TA [2,3])

Capable of calculating the process of
conflict between the vehicles at various

time intervals.

It is more difficult to identify vehicles that
encounter angled lane change conflicts, and the risk
of Non-Collision Course is neglected [27,28]. TTC

was more
informative than PET [4].

More applicable to conflicts between
vehicles on the same trajectory, that is

rear-end conflicts.

Time indicators
(PET-derived indicators [23–25])

Simple definition, with no need to
calculate a collision course, but only a

common area, unlike TTC.

Only applicable to calculations when the rear
vehicle passes through the common area, i.e., in

post-conflict estimation, but not applicable to
pre-conflict estimation [29]

Real-time microscopic data of the two vehicles are
not taken into account; not applicable to studies of

the interaction between vehicles (In a situation
where the rear car is slower than the front car, it still
considers the scenario risky even though logically

no collision would take place).

Better suited for studies on conflicts due
to vehicle merging at intersections.

Time indicators [26] Combines advantages of TTC and PET
indicators

Application still at the theoretical stage and needs
to be supported by more data.

Wider application scope compared to
TTC and PET indicators.

Indicators of vehicle’s own movement
characteristics

Deceleration Rate to Avoid Crash
(DRAC) [5] Similar to TTC, DRAC reflects the risk of a Rear-end conflict per vehicle in most cases
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The threshold values for serious conflicts according to each common indicator are
summarized in Table 2.

Table 2. Serious conflict thresholds for common indicators.

Research Literature Conflict Indicators Type of Road Facility Serious Conflict Threshold

Brown (1994) [30] TTC Intersection 1.5 s
Svensson (1998) [27] TTC Intersection 1.5 s

GETTMAN D et al. [31] PET / 5.0 s
Ozbayet et al. (2008) [32] Modified TTC Road section 4.0 s
Gurleyet et al. (2011) [33] TTC Road section 3.0 s
Auteyet et al. (2012) [34] TTC Intersection 3.0 s

Amir Reza Mamdoohi et al. (2014) [35]

TH

/

2.0 s
TTC 1.5 s
PSD 1 m

DRAC 3.4 m/s2

It can be seen from Tables 1 and 2 that different scholars have differences in the
selection of traffic conflict indicators and their respective thresholds in different scenarios,
and each indicator also has its own advantages, limitations, and suitability.

The prerequisite for measurement indicators such as the TTC/DRAC/TA is that the
traffic participants have a predetermined collision course, such that keeping with the
current and constant driving speeds (where the speed of the vehicle behind is faster than
the vehicle in front) and direction, a collision will inevitably occur according to geometric
calculations. However, Svensson [27] and Tarko et al. [36] found that when two vehicles
approach each other when lane change occurs, even at this moment, no conflict point can
be predicted according to the definition of TTC. The drivers may feel that they are on
a collision course and may thus commit risk aversion behaviors that ultimately lead to
collision. This phenomenon illustrates two problems: First, the non-collision course, which
considers that both vehicle speed and direction can often identify only rear-end, whereas it
is difficult to identify certain dangerous lane-changing behaviors based on the definition.
The assumption of a predetermined collision course is not sufficient to describe all accident
risks, and traffic conflicts in a non-predetermined collision course need to be considered.
Secondly, a traffic conflict is a continuous process in both space and time, and it is necessary
to consider the changes in the vehicles’ motion state caused by the different drivers’ risk
aversion behaviors. These changes may cause the conflict to become weaker and even
disappear, or to become more serious. However, the definition and indicators of TTC
describe only the state at a given instance in time, and it is thus necessary to splice these
scattered “points” into “lines”, which can be realized with a large amount of continuous
vehicle trajectory data.

Compared with TTC, PET has a simple definition and can be easily extracted or
estimated using photometric analysis in video or simulated environment [4]. PET do not
need to calculate a predetermined collision course but only a common area. However, PET
can only be calculated when the rear vehicle passes through the common area, making
them only applicable to post-conflict estimation, and nothing can be done before the
conflict occurs [37]. Another weakness is that these indicators do not consider the real-time
micro data of the two vehicles, which are not easily applied to studies on the interaction
between vehicles.

It should be noted that in recent years, some scholars have proposed new conflict
indicators, such as T2 [26]. T2 is defined as the maximum time required for two traffic
participants to pass the intersecting point of their current directions assuming that the
speed and path direction of the traffic participants remain unchanged. This indicator
combines certain characteristics of both TTC and PET. For example, similar to PET, it only
considers the current directions of the two traffic participants for the common area. As
long as the directions intersect, the calculation is carried out. In this way, the risks of both
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the collision course and the non-collision course are included. At the same time, as both
the TTC and PET indicators require microscopic data from the two conflicting vehicles, the
traffic conflict state at all times can be obtained, and a pre-conflict estimation can be carried
out. These all make up for the shortcomings of PET. However, this indicator has yet to be
widely promoted, and more application scenarios are needed for verification.

In addition, in recent years, some research has begun to use composite indicators for
identification [8]. For example, Behbahani et al. [9] combined the time exposed time-to-
collision (TET) with the time integrated time-to-collision (TIT) and applied it to the collision
avoidance system, which effectively reduced driving errors and rear-end. Alhajyaseen [10]
used the changes in total kinetic energy, collision angle, and PET before and after the
collision to derive a new conflict indicator and proposed safety measures that consider
the probability of the accident and expected severity comprehensively. Wang et al. [11]
made predictions based on extreme value theory and found that the predicted effects
of identification indicators (compared with real accident situations) for different types
of conflicts (such as rear-end and lane changing) are different, and composite indicators
are better than single indicators. Using a bivariate extreme value model, Zheng et al. [8]
found that from among several composite indicators, the composite indicator of TTC and
PET is most relevant to real accidents. This composite indicator can overcome certain
shortcomings of each single indicator and makes the measurement more scientific and
accurate, providing an important idea for future research.

2.2. Traffic Conflict Data Collection Methods and Processing Means

There are three main types of acquisition methods: A. Field Observation, B. Natural-
istic Driving, and C. Traffic Simulation. Considering the cost and some shortcomings of
traffic simulation, this paper only considers the field observation method. The raw data
that we collect will be processed to get the traffic conflict data. We use analysts who have
completed observation training, or a computer with an automatic detection recognition.

Previously, conflict data processing work was mostly completed manually by the
investigators and processing of large, subjective data components was mostly manual.
Thus, the data accuracy and the collection of conflict data types were low. Later, with the
development of computer video recognition technology, automatic identification of traffic
conflict data in video recordings began through video detection technology [16,38,39]. The
technology generally consists of two parts: video vehicle identification and traffic conflict
identification. Due to the limited height of the camera in most cases, the measurement
range of the method is small, usually around 100 m to 200 m. In addition, due to the
problem of large vehicles blocking, the method is generally applicable to low-density traffic.
The method also has requirements for camera lens resolution, placement angle, weather,
environmental brightness, and so on. These traditional methods often observe cross-section
or small-area conflict data, whether collected manually or by video recording.

It is worth mentioning that in recent years, some papers have been published on
automatic conflict detection through video identification by unmanned aerial vehicle flying
at high altitude above research subjects [11]. Compared with traditional cameras, this
device has a good view at high altitude, no shooting angle or blocking problems, and a
large shooting range, which can collect continuous large range vehicle trajectory data with
obvious advantages.

2.3. Conflict-Accident Correlation

Traffic accident data is the most intuitive and logical indicator of traffic safety. If
we want to use traffic conflict technique for reliable estimation and prediction, we must
determine whether there is a connection between traffic conflicts and accidents. There
are three main views on whether there is a strong correlation between traffic conflicts
and accidents: (1) Walsh et al. [40] showed that traffic conflicts and accidents exhibit
linear characteristics. Glauz et al. [41] found a good correlation between various types of
traffic conflicts and accidents, and Hauer et al. [42] obtained the distribution coefficients of
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conflicts and accidents by maximum likelihood estimation. Karim et al. [43] also found a
strong correlation between traffic conflicts and accidents based on data from 51 signalized
intersections in Canada. (2) However, other studies have found no strong correlation
between conflicts and accidents [44,45]. Possible reasons for this contradiction include: a.
There are omissions and inaccuracies in traffic accident data records; b. There are problems
with the method of collecting traffic conflict data; c. Traffic conflicts often collect data
for a small period of time and location, which does not fully coincide with the time and
location of the traffic accident [1]. (3) Still other scholars believe that the validity argument
for traffic conflict techniques is unnecessary. They argue that the most important aspect
of traffic safety research is accident prevention rather than accident prediction, and that
traffic conflict techniques can be used as a tool for diagnosis and estimation and analysis of
road traffic safety without the need to translate traffic conflicts into accidents [46]. Usama
et al. [47] found that the correlation between serious conflicts and accidents under different
TTC thresholds is different. Peesapati et al. [48] obtained similar findings on the PET. Yajie
Zou et al. [49] take uncertainty into consideration when constructing models for clearance
time after accidents by using a Bayesian Model Averaging (BMA) model. Ashutosh Arun
et al. [50] established rigorous relationships between conflicts and crashes, developing
ways to capture road user behaviors into a surrogate-based safety assessment.

2.4. Literature Summary

It can be seen from the above summary that: (1) At present, there is no unified standard
for the selection of traffic conflict indicators and the selection of severe conflict thresholds.
They often need to be determined according to the actual situation, and each indicator has
its own advantages, limitations, and suitability. (2) Many scholars have obtained many
useful conclusions based on traffic conflict technology at intersections and ordinary roads,
but there are fewer studies on highways with more complex and special environments
and multiple traffic conflicts. Moreover, there are road facilities in highways, so a large
number of vehicle accidents occur with road facilities, but there is almost no research on
the recognition of conflicts of fixed objects; (3) Traffic conflict is a continuous process in
time and space, but at present, many traffic conflict methods often obtain cross-section
or small area conflict data. Thus, we need better collection methods; (4) The conflict and
accident correlation analysis can be used to verify the reliability.

3. Data

Two main types of data are collected: 1. Traffic conflict data (See Sections 3.1–3.3 for
details). The conflict data are obtained using conflict identification programs for video
recognition, where the videos are collected by high-altitude high-precision UAV. Compared
with conventional cross-section video capture, UAV have a good high-altitude view and
a relatively large shooting range without the problems caused by shooting angle and
obstacles. Most importantly, they can collect a large amount of continuous data on vehicle
course, overcoming the inability to obtain continuous changes of conflict risk between cross
sections accurately from cross-sectional videos. 2. Traffic accident data (See Section 3.4
for details). The accident data are provided by the local traffic police, road administration
department, and Shandong Hi-Speed Group.

3.1. Video Capture Location and Time

The video data were collected at the Jinan-Qingdao Highway in Shandong Province,
China from 20 August to 8 September 2017. The data collection period includes the morning
peak hours (9–11 a.m.) and the evening peak hours (3–5 p.m.). During the collection period,
the first phase of the expansion project, namely the construction of the roadbed, was
underway. In this phase, both sides of most of the roads were extended and filled with
widened roadbeds. While the original roads remained in use, the normal guardrails on
both sides were removed and replaced by temporary guardrails, the lateral clearance was
compressed by temporary cones at the same time, so fixed object conflicts may increase.
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The roads have four lanes in both directions, with each lane having a width of 3.75 m and a
speed limit of 80 km/h. The highway sections collected in this paper are shown in Figure 1.
The specific segments and locations for the data collection used in this paper are shown in
Table 3. The locations close to each other are grouped into one segment (e.g., K51 + 500 and
K52 + 200 are grouped into Segment 1). For each segment, the traffic environment, traffic
volume, and traffic composition are relatively stable within a certain range.
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Table 3. Cont.

Segment Location of Capture On-Site Pictures Road Conditions
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Table 3. Cont.

Segment Location of Capture On-Site Pictures Road Conditions
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Table 3. Cont.

Segment Location of Capture On-Site Pictures Road Conditions
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3.2. Video Capture Equipment

The equipment used is a PHANTOM 4 PRO UAV by DJI, which flies at a maximum
altitude of 500 m and has a maximum flight time of 30 min. The maximum video resolution
of the lens is 4 K/60 P. The UAV can take videos while hovering, and GPS was used for
positioning. In the experiment, the UAV was hovering while taking videos with the camera
vertically down and flying at a height ranging from 350 m to 450 m. Based on the viewing
angle parameters of the UAV’s lens, the shooting range is approximately 600 m to 700 m in
length and 300 m to 350 m in width. The video captured by UAV is as shown in Figure 2.
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3.3. Video Recognition and Conflict Identification Processes

After shooting the video, the next step is to identify the conflicts using video recogni-
tion and conflict identification. The specific process is as shown in Figure 3.
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Figure 3. Video recognition and traffic conflict identification.

Video recognition process
Image reading and calibration. Owing to the changes in airflow at high altitude as

well as operational issues, the videos captured by the UAV shook slightly, such that the
subsequent images gradually deviated from the original image. Therefore, it was necessary
to match the subsequent images to the frame of the first image as a reference. A relative
coordinate system was established based on the obvious fixed markers (roads or lane lines)
in the first image of each video. Operations such as rotation were carried out based on the
affine transformation relationship between the image frames, and the subsequent images
were calibrated with the first image to eliminate the possible effect of lens shake as much
as possible.
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Vehicle identification. Vehicle identification includes region of interest (ROI) extraction
and vehicle detection. Based on the characteristics of the Jinan-Qingdao Highway with
many large vehicles being driven at high speeds, relatively frequent vehicle diverging
and merging, in a dusty environment with relatively low visibility, an adjacent frame
subtraction algorithm was adopted as the ROI extraction method. Compared with the
background frame subtraction algorithm, this method has an advantage in that moving
objects can be detected well when the background changes, its calculation is simple, and
the method is not easily affected by changes in ambient light. However, it is easy for
this method to fail in the detection of moving objects at a low speed (although there are
almost no slow vehicles on the highway). These characteristics make the adjacent frame
subtraction method more suitable for this research. For vehicle detection, the detection
line method was adopted owing to its simplicity, efficiency, and compatibility with the
highway traffic scene.

Vehicle tracking. Current vehicle tracking methods can be categorized roughly into
region-based methods, dynamic contour-based methods, and feature-based methods. The
region-based tracking methods work better when the number of vehicles is small [3], the
dynamic contour-based tracking methods have a poor effect in the presence of shadows
and road congestion [4], while the feature-based methods require stable images despite
its relatively high accuracy. The number of feature points continues to decrease during
the tracking process, and the feature points need to be re-searched at regular intervals.
The tracking effect of feature point matching is not ideal. Taking into consideration the
actual characteristics of the Jinan-Qingdao Highway, a tracking method that incorporates
spatiotemporal context was selected [5]. This method obtains the optimal target position
by maximizing the target position likelihood function, and it uses fast Fourier transform
for learning. Compared with other mainstream methods, this method is more accurate and
reliable and is considered more effective in implementation.

Result output. Each vehicle is identified and tracked according to the above procedure,
and real-time continuous trajectory coordinates (X/Y), vehicle length and width, vehicle
ID, etc. of all vehicles in the area are output.

Fixed object data. As shown in Figure 4, the fixed objects include the guardrails
and central partition. Since the coordinates of the fixed objects are lacking in the video
recognition, we take a manual marking method to select a point every 30 m on the fixed
objects. Each point is connected by a straight line. Then we use the PICPICK software to
obtain the coordinates of the points to represent the position data of the fixed objects.
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K133 + 500 was used. From data analysis, it was found that the video recognition software
identified 1429 vehicles in total, and continuously tracked 1370 vehicles, while a total of
1536 vehicles were observed with the manual observation. Therefore, the initial successful
recognition rate is about 93.0%, and the continuous tracking rate is about 89.2%. The
specific data are as shown in Table 4.

Table 4. Vehicle recognition rate.

Location Video
Frames

Video
Duration (s)

Vehicles
Identified
Initially

Vehicles
Tracked Con-

tinuously

Vehicles by
Manual

Observation

Initial
Recognition

Rate (%)

Continuous
Tracking Rate

(%)

K51 + 500 33,420 1114 175 165 186 94.1 88.7

K52 + 200 27,030 901 167 158 172 97.1 91.9

K112 + 500 89,880 2996 491 476 543 90.4 87.7

K131 + 500 51,930 1731 223 211 247 90.3 85.4

K133 + 500 63,990 2133 373 360 388 96.1 92.8

Total 266,250 8875 1429 1370 1536 93.0 89.2

Identification accuracy verification. As shown in Figure 5, all the highway lane lines
(white dotted line) in China are 6 m long, and the distance between adjacent segments
of the dotted line is 9 m. Therefore, the accuracy and reliability of the video recognition
program can be assessed using this reference.

Five hundred vehicles appeared in the videos taken at locations, and K51 + 500,
K52 + 200, K112 + 500, K131 + 500, and K133 + 500 are randomly selected, and their
displacements in the X/Y axes within 2 s and corresponding coordinates are recorded. At
the same time, the location of each vehicle in the video is manually marked for comparison
using the software PicPick. From the comparison, it was found that 6.2% of the trajectory
errors are less than 0.3 m, 23.5% are less than 0.5 m, 48.7% are less than 0.7 m, and 84.5%
are less than 1 m. In general, most of the trajectory errors can be controlled within 1 m.
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Conflict identification
The TTC was calculated according to the conventional definition. For vehicles encoun-

tering conflicts during lane change in angle, this definition requires that the shape of the
vehicle be considered and that the x and y coordinates be decomposed before calculation.
This is illustrated in Figure 6.
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The formula is as follows.

TTCn =


null,

Sn − (ln−1 − Bn cos θ)

vnx − v(n−1)x
>

Lny

vny
or

Lny

vny
<

Sn + Bn cos θ

vnx − v(n−1)x

Lny

vny
,

Sn − (ln−1 − Bn cos θ)

vnx − v(n−1)x
<

Lny

vny
<

Sn + Bn cos θ

vnx − v(n−1)x

(1)

where vnx is the x-axis component of the instantaneous speed of the n vehicle, vny is the
y-axis component of the instantaneous speed of the n vehicle, Sn is the headway between
the n-th vehicle and the n − 1 vehicle in the x-direction, ln−1 is the length of the n − 1
vehicle, Bn is the width of the n vehicle, θ is the angle between the speeds of the two
vehicles, Lny is the distance between the n vehicle and the n − 1 vehicle in the y-axis
direction.

The PET is calculated according to its conventional definition. In actual operation,
the following two situations may occur simultaneously. The same two vehicles result in a
relatively large PET in a certain common area, indicating low risk, but a relatively small
PET in a different common area, indicating high risk. In other words, the value of the
PET between the two vehicles changes with the location of the common area, causing
the potential conflict risk to change correspondingly. Therefore, the use of only one cross
section cannot accurately describe the operation status and potential conflict risk of the
entire road segment. Nevertheless, incorporating too many common areas leads to a huge
computation cost. To solve this problem, each target road segment is divided into 10 cross
sections perpendicular to the road, and these are set as the common areas.

DRAC is calculated according to its conventional definition, and its principles and
assumptions are essentially the same as those of TTC.

The improved indicator Ti is calculated according to the formula of Ti in Section 4.
For indicators such as TTC and Ti, which are continuous, once the value is below a

certain threshold, a serious conflict is recorded once. When the value increases above the
threshold and decreases again to below the threshold, another serious conflict is recorded.
This is as shown in Figure 7.
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Since almost no one used conventional indicators to study vehicle-fixed object conflicts
before, there is no vehicle-fixed object conflicts calculation formula for TTC, PET, and DRAC
in this article.

3.4. Accident Data Collection

The accident data are provided by the local traffic police, road administration de-
partment, and Shandong Hi-Speed Group. The data include the time of accident oc-
currence, the location of the accident occurrence, the vehicle type, the type of accident
(rear-end/roll over/vehicle-fixed objects such as temporary roadside guardrails, central
partition guardrails, etc.), weather, degree of severity, number of deaths/injuries, and
damage to road furniture/features. Table 5 shows some of the traffic accident data.

At the same time, in order to meet the required data sample size (If only the accident
data from 20 August to 8 September 2017 is collected during the time period of video
data, the amount of accident data is too small), an attempt is made to ensure that the
accident data selected occurs within a certain time period around when the conflict data is
collected. The conflict data were collected from November 2016 to November 2017, when
the road segment was still in the first stage of reconstruction and expansion, and the main
work was construction of the roadbed on both sides. At this stage, factors such as traffic
volume, traffic composition, lateral clearance, and traffic organization changed very little.
In addition, only accident data within a 5 km range before and after the target road segment
was used. For example, as shown in Table 3 Segment 1 (video location K51/K52), the range
of the collected accident data is K45–K55. In Table 3 Segment 2 (video location K57/K58),
the range of the collected accident data is K55–K65.

The overall statistics are as follows:
The number of accidents between vehicles and fixed objects (hit against temporary

roadside guardrails/central partition guardrails) accounted for 22% of the total number of
accidents, and the number of accidents between vehicles accounted for 78% (Figure 8a). The
financial losses caused by vehicle and fixed object accidents accounted for 27% (Figure 8b).
It can be seen that the proportion of vehicle-fixed object accidents in the highway is not
small, and the consequences are serious. This is in line with our research purpose—the
vehicle-fixed object conflict in the highway needs to be studied.
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Table 5. Chart of historical traffic accident data (Partial translation display).

Number Time of Accident
Occurrence

Location of Accident Occurrence
(Stake Number/Orientation)

Vehicle Type of
Accident Type of Accident Weather Level of Severity Number of

Death
Number of

Injured
Road Financial

Loss ($)

1 2016/9/15 Direction from Qingdao to Jinan
K64 + 700 small car and truck raer-end sunny slight 0 0 120

2 2016/9/20 Direction from Qingdao to Jinan
K81 + 100

small car and small
car raer-end sunny ordinary 0 0 715

3 2016/9/24 Direction from Jinan to Qingdao
K105 + 200 truck roll-over sunny ordinary 0 0 415

4 2016/9/24 Direction from Qingdao to Jinan
K81 + 180 small car roll-over sunny ordinary 0 0 280

5 2016/9/27 Direction from Jinan to Qingdao
K101 + 600 small car roll-over sunny ordinary 0 0 580

6 2016/9/29 Direction from Qingdao to Jinan
K55 + 100 truck fire sunny ordinary 0 0 1760

7 2016/10/1 Direction from Qingdao to Jinan
K76 + 100 small car hit the central

partition guardrail sunny ordinary 0 0 980

8 2016/10/5 Direction from Jinan to Qingdao
K44 + 100 truck and truck raer-end sunny ordinary 0 0 515
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Figure 8. (a) Proportion of vehicle-vehicle and vehicle-fixed object actual accidents. (b) Proportion of vehicle-vehicle and
vehicle-fixed object actual accidents of financial losses.

4. Methods

The method used is shown as a flowchart in Figure 9.
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4.1. Definition and Calculation of Improved Conflict Indicator Ti

From the above literature review, it can be seen that there are currently three problems
with conflict indicators. While the TTC indicator often fails to identify lane change conflicts,
it clearly defines the rear-end risk. The PET indicator easily misjudges rear-end conflicts, as
even when the speed of the rear car is slower than that of the front car, the PET value will
also be generated. In addition, although it is easy to calculate the PET, the intermediate
microscopic process is missing (only the time difference between the vehicles passing
through the common area is necessary), making it impossible to know whether the conflict
risk changes continuously.

Based on the characteristics of the above indicators and inspired by the idea reported
by T2, this study builds on their advantages to define a new improved traffic conflict
indicator called Ti. According to the video recognition and the conflict identification
program, it is judged whether it is a rear-end conflict or a lane change conflict based on
the current direction angle of the two conflict vehicles. Then, if the current direction of
the vehicle intersects with the road fixed objects, it is regarded as a vehicle-fixed objects
conflict. The specific definition and calculation of Ti are as follows:

Ti (rear-end conflict)
In the case of an rear-end conflict, the Ti indicator has the same definition as the TTC

indicator, and the problem with the PET indicator does not occur. In other words, when
the speed of the rear vehicle is slower than the speed of the front vehicle, there will be no
conflict according to this indicator.

Ti (lane change conflict)
In the case of a lane change conflict, the Ti indicator combines the characteristics

of PET (common area) and takes the intersection of the current driving directions of the
two vehicles as the potential conflict point. Thus, a Ti value is generated when the two
vehicles change lanes, and the potential risk due to lane change conflict is not neglected,
as with the conventional TTC definition. Moreover, the conflict risk information with
Ti is more abundant than PET because of calculation all the time based on continuous
trajectory data.

Judge whether rear-end or lane change conflict
First of all, we can obtain the current driving direction of the vehicle through the

continuous coordinate data of the vehicle, and then judge whether it is a rear-end conflict
or a lane change conflict according to the angle θ between the driving directions of the two
vehicles, shown in Figure 10. In theory, an angle θ of 0◦ is a rear-end conflict, and an angle
θ of 0–90◦ is a lane change conflict. However, according to the actual data accuracy error,
when we are processing the data, we define θ at 0–2◦ as a rear-end conflict and θ at 2–90◦

as a lane change conflict. See the figure below for details.
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Ti (vehicle-fixed objects conflict)
Considering that vehicles may have a conflict or accident with fixed objects in the

highways (such as temporary roadside guardrails, central partition guardrails, etc.), cases
involving contact between vehicles and fixed objects has been included.

The line on the right shows the fixed objects on the roadside, and the conflict point is
the intersection between the extension line of the vehicle’s driving direction at the current
moment and the fixed objects.

The definition and calculation are shown in Figure 11.
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4.2. Conflict and Accident Rates in Correlation Analysis

To exclude the influence of other factors, we use the conflict and accident rates to
calculate Pearson correlation for the 10 segments in Table 3.

Serious conflict rates
The formula is as follows:

rc =

n
∑
1

Ci/qiLi

n
(2)

where rc is serious conflict rate of segments, Ci is total number of serious conflicts identified
during sampling period at location of capture i (based on every threshold), qi is through-
traffic volume during the sampling period at location of capture I (2 h of morning and 2 h
of evening peak at each location of capture), Li is the length of the i location of capture,
n is number of locations of caption included in each segments(e.g., Segment 1 in Table 3
contains two locations of caption, K51 + 500 and K52 + 200).

Accident rates
Statistics on historical accident data for a total of 10 km, approximately 5 km be-

fore and after each capture locations of the road. (Segment 1: K45–K55, Segment 2:
K55–K65, Segment 3: K110–K120, Segment 4: K125–K135, Segment 5: K180–K190, Segment
6: K190–K200, Segment 7: K250–K260, Segment 8: K260–K270, Segment 9: K270–K280,
Segment 10. K280–K290).

To calculate the road accident rate, the formula is as follows:

ra =
An

qn
(3)

where ra is accident rate of the segments, An is the total number of accidents each segment
(November 2016–November 2017), qn is average daily traffic during the sampling period at
each segment (November 2016–November 2017).

In addition, considering that other conflict indicators do not consider vehicle-fixed
object conflicts, vehicle-vehicle and vehicle-fixed object conflict-accident correlation are
considered separately, and only Ti performs vehicle-fixed object correlation analysis.

Pearson correlation formula



Sustainability 2021, 13, 9278 20 of 30

This article uses Pearson correlation analysis, and the calculation formula of the
correlation coefficient is as follows:

rxy =

n
∑

i=1

(
xi −

−
x
)(

yi −
−
y
)

√√√√(
n
∑

i=1
xi −

−
x
)2 n

∑
i=1

yi −
−
y

)2
(4)

In the formula, x,y are the mean values of the variables x and y respectively, xi and yi
are the i-th observation of variables x and y respectively.

5. Results

Calculation of serious conflict-accident correlation at different thresholds for each
indicator are as follows:

5.1. Conflict-Accident Correlation at Different Thresholds for Each Indicator

TTC
TTC is used as the traffic conflict indicator, and the correlation between the serious

conflict rate and the accident rate with different threshold values for each road segment is
compared. The results are shown in Figure 12. For threshold values ranging from 1 s to 10 s,
the correlation decreases with increase in the threshold value, stabilizes at 4 s and above,
and the highest correlation occurs when the threshold value is 1 s. This phenomenon shows
that the reliability of identifying the risk of traffic conflicts is low when the TTC indicator is
at a high threshold.

Theoretically, this phenomenon occurs because all conflicts that are detected are close
to collisions when the TTC threshold is infinitely small. If a sufficient amount of accurate
data is used, all collision accidents can be identified, such that the correlation between the
serious collision rate and the accident rate becomes close to 1. Conversely, when the TTC
threshold is assumed to be infinitely large, although all collisions can be identified, many
traffic conflicts with almost no actual risk (for example, TTC 20 s) are also included because
the threshold is too high, which will reduce the correlation between the serious collision
rate and the accident rate. In summary, the smaller the threshold value, the higher the
ability of TTC to identify traffic accidents.
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Figure 12. Conflict-accident correlation coefficient with different thresholds of TTC.
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PET
PET is used as the traffic conflict indicator, and the correlation between the serious

conflict rate and the accident rate with different threshold values for each road segment is
compared. The results are shown in Figure 13. For threshold values ranging from 1 s to
20 s, the correlation gradually increases with the increase of the threshold value, reaching
a maximum after 8–10 s. This phenomenon shows that the PET indicator has a relatively
good reliability in terms of identifying the risk of traffic conflicts with a high threshold, but
the growth in correlation slows down after reaching a certain threshold value.

The reason for this diametrically opposite phenomenon compared with that of TTC
may be because PET obtains cross-sectional observation data, unlike TTC, which obtains a
continuous value (supported by continuous trajectory data). As mentioned in the literature
review, the cross-sectional observation values only reflect the risk when passing through
the corresponding cross-section during the process of conflict, neglecting the complete
evolution of the traffic conflict with less risk information; thus, a higher threshold value is
required to include enough data.
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Figure 13. Conflict-accident correlation coefficient with different thresholds of PET.

DRAC
Here DRAC is used as the traffic conflict indicator, and the correlation between the

serious conflict rate and the accident rate with different threshold values for each road
segment is compared. The results are shown in Figure 14. Within the range of 1–10 m/s2,
the correlation increases with the increase of the threshold value, and the highest correlation
occurs at a threshold value of 10 m/s2.

The reason for this phenomenon is similar to that of TTC because the principles and
assumptions of DRAC are basically the same as those of TTC. When a traffic conflict occurs,
the vehicle needs to decelerate within a short period of time to avoid the traffic conflict.
The more serious the traffic conflict, the higher the vehicle deceleration required to ensure
safety. When DRAC is infinitely large, the detected conflict at this time is close to the
collision. Therefore, the higher the threshold value, the greater the ability of DRAC to
identify traffic accidents.
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Figure 14. Conflict-accident correlation coefficient with different thresholds of DRAC.

Ti
Because the Ti indicator combines the definitions and calculation methods for three

types of traffic conflicts (rear-end collision, lane change conflict, and vehicle-fixed object
conflict), it is necessary to set different thresholds for the different types of traffic conflicts
when verifying the correlation.

The correlation between the serious conflict rates and the accident rates for each road
segment with different rear-end collision thresholds (under the average of each lane change
conflict threshold) of Ti indicator is compared. The results are shown in Figure 15. From 1 s
to 10 s, the correlation decreases with the increase of the threshold value, and it stabilizes at
6 s, with the highest correlation occurring at a threshold value of 1 s. Because the calculation
formula for Ti is consistent with that for TTC in the case of rear-end collision, the trends
are similar.
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Figure 15. Conflict-accident correlation coefficient with different rear-end conflict thresholds of Ti.

The correlation between the serious conflict rate and the accident rate for each road
segment with different lane change conflict thresholds (under the average of each rear-end
conflict threshold) of Ti indicator is compared. The results are shown in Figure 16. From
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1 s to 5 s, the correlation increases with the increase of the threshold value, and it stabilizes
at 5 s, and then decreases. Therefore, the optimal threshold value can be set as 5 s.

Sustainability 2021, 13, x FOR PEER REVIEW 23 of 31 
 

end conflict threshold) of Ti indicator is compared. The results are shown in Figure 16. 
From 1 s to 5 s, the correlation increases with the increase of the threshold value, and it 
stabilizes at 5 s, and then decreases. Therefore, the optimal threshold value can be set as 5 
s. 

 
Figure 16. Conflict-accident correlation coefficient with different lane change conflict thresholds of 
Ti. 

The results of correlation coefficient with different combinations of thresholds for 
rear-end and lane change conflict of Ti are shown in Figure 17: when the threshold for a 
rear-end conflict is from 1 s to 3 s and the threshold value for a lane change conflict ranges 
from 5 s to 8 s, the correlation is highest. 

 
Figure 17. Conflict-accident correlation coefficient with different combinations of thresholds for rear-end and lane change 
conflict of Ti. 

Using Ti as the traffic conflict indicator, for each road segment with different thresh-
old values, the correlation between the serious conflict rate with fixed objects and the ac-
cident rate with fixed objects is compared. The results are shown in Figure 18. From 1 s to 

0.
72
92 0.
75
39

0.
75
59 0.
76
98 0.
78
39

0.
78
43

0.
78
26

0.
78
45

0.
77
95

0.
77
54

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

1 2 3 4 5 6 7 8 9 10

Co
rre
la
tio
n
co
ef
fic
ie
nt

Ti lane change conflict thresholds (s)

*

* *
*

* * * * * *

*p-value<0.05

Figure 16. Conflict-accident correlation coefficient with different lane change conflict thresholds of Ti.

The results of correlation coefficient with different combinations of thresholds for
rear-end and lane change conflict of Ti are shown in Figure 17: when the threshold for a
rear-end conflict is from 1 s to 3 s and the threshold value for a lane change conflict ranges
from 5 s to 8 s, the correlation is highest.
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Figure 17. Conflict-accident correlation coefficient with different combinations of thresholds for rear-end and lane change
conflict of Ti.

Using Ti as the traffic conflict indicator, for each road segment with different threshold
values, the correlation between the serious conflict rate with fixed objects and the accident
rate with fixed objects is compared. The results are shown in Figure 18. From 1 s to 10 s, the
correlation first increases and then decreases as the threshold value increases. The highest
correlation at a threshold of 0.704 occurs at 5 s.
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Figure 18. Conflict-accident correlation coefficient with different vehicle-fixed object conflict thresholds of Ti.

5.2. Comparison of Various Indicators

For comparison with other indicators, the Ti indicator with the same threshold value
of the rear-end conflict and lane change conflict is chosen. The result is shown in Figure 19.
The highest value of the conflict-accident correlation with different threshold values among
the four indicators is 0.784, which is obtained when the Ti indicator has a threshold value
of 5 s. The average value of the conflict-accident correlation with different threshold values
of the four indicators is 0.771 for Ti, 0.670 for TTC, 0.669 for PET, and 0.710 for DRAC. The
average value of the conflict-accident correlation of Ti indicator is significantly higher than
that of the other three indicators. Therefore, with the target conditions of this study, the Ti
indicator is better than the conventional TTC, PET, and DRAC indicators, as it can truly
reflect the traffic risks in the Jinan-Qingdao Highway better.
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Figure 19. Conflict-accident correlation coefficient with different thresholds of various indicators.
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6. Discussion
6.1. Case Analysis

Scenario 1 (lane change conflict):
Where VlX is the speed in the y-axis direction of the leading vehicle, VlY is the speed

in the x-axis direction of the leading vehicle, Vf X is the speed in the x-axis direction of the
following vehicle.

Scenario 1 (Figure 20) show a possible lane change conflict. Based on the TTC defini-
tion, the velocity of the lane-changing vehicle is decomposed into its x and y components,
and calculations are carried out to determine whether it will collide with vf (also decom-
posed into x and y components). DRAC is similar too.
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Figure 20. (a) TTC cannot identify lane change conflict in scenario 1. (b) Ti can identify lane change conflict in scenario 1.

In this case, it was found that the two vehicles do not collide (in x and y axes) with
TTC-based calculation (1). As shown in Figure 20a, two vehicles (N and N-1) with dashed
line did not create conflict point and collide. However, a Ti value can be obtained according
to the Ti definition for lane change conflict as shown in Figure 20b. It shows that Ti can
better identify the risk of lane change conflict compared with TTC.

Scenario 2 and Scenarios 3 (rear-end conflict):
Where Vl is the speed of the leading vehicle, Vf is the speed of the following vehicle.
Scenarios 2 and 3 (Figure 21) show the vehicle following situation at a certain time.

According to the definition of PET, its value is the time difference between the leading
and following vehicles passing through the common area. In scenario 2, the speed of the
following vehicle is slower than leading vehicle (Vf = 76 km/h < Vl = 79 km/h). In this
scenario, no conflict is expected, but a PET value will still be generated (PET = 1.89 s in this
scenario). This shows that PET leads to invalid values in some scenarios (actually, a safe
situation in scenario 2). In scenario 3, the speed of leading vehicle Vl = 73 km/h and the
speed of the following vehicle Vf = 76 km/h; PET = 1.85 s in this scenario. Considering
scenarios 2 and 3, it can be seen that, to obtain the PET value, only the time difference
between the two vehicles passing through the common area needs to be calculated, while
other microscopic data (such as leading and following vehicle speeds, acceleration, etc.)
are not required. As a result, there is too little information available. As shown in the above
example, the two PET values are almost the same, but the actual risks of vehicle rear-end
conflict differs in the two scenarios (the former scenario has no risk).
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Where Vl is the speed of the leading vehicle, Vf is the speed of the following vehicle.
In the same example, the Ti indicator is used to identify and find that there is no

conflict risk under scenario 2 as the following vehicle is slower than the leading vehicle
based on Ti definition and calculation formula in Section 4.1 (Figure 22a). In scenario 3, the
Ti value can be calculated according to the definition (Figure 22b).
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Scenario 4 (vehicle-fixed object conflict)
Where V is the speed of the vehicle.
From scenario 4 (Figure 23), it can be seen that the Ti value for vehicle-fixed object

conflict can be obtained using the definition of Ti on the conflict with fixed objects.
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6.2. Proportion of Conflicts and Accidents Based on Various Indicators

The following figures show the proportion of conflict types based on various indicators
and the actual accident types:

It can be seen from Figure 24 that compared with PET and Ti, TTC and DRAC has
a weaker ability to recognize lane change conflicts, which is also in agreement with the
characteristics of the TTC indicator itself. In contrast, Ti can identify most conflicts which
consist of more lane change conflicts than other indicators. This may be the reason why the
average value of the conflict-accident correlation of Ti indicator is significantly higher than
that of the other three indicators.

At the same time, neither TTC nor PET nor DRAC indicators are used to identify
vehicle-fixed object conflicts. It can be seen from Figures 8a and 25 that in the actual accident
data, the proportion of vehicle-fixed object accidents in the Jinan-Qingdao Highway reaches
78%, which is much higher than that of vehicle-vehicle accidents. Conventional indicators
such as TTC and PET cannot identify conflicts between vehicle and fixed objects. The
number of vehicle-fixed object conflicts identified by the Ti indicator accounts for 71% of
the total number of conflicts, which is closer to the real situation. From the perspective of
the type recognition rate, Ti can better identify vehicle-fixed object conflicts.
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Overall, TTC and DRAC are prone to fail to identify many lane change conflicts, PET
is prone to produce some misjudge for rear-end conflicts where the leading vehicle is faster,
and PET is less informative than other indicators.

The improved Ti were both able to overcome the deficiencies of the TTC and PET ex-
tension indicators, so this may be the reason for their highest relevance. This phenomenon
is also reflected in other papers, such as Wang et al. [15] who collected intersection conflict
data by UAV and made predictions based on extreme value theory, and found that the
predictive performance (compared with real accidents) of the recognition metrics under
different types of conflicts (e.g., rear-end and lane change) was different. TA (similar to
TTC) and PET combinations have nearly the highest correlation coefficients for real-end
and lane change accidents, higher than single TTC, TA, PET, and DRAC. The study [12]
proposes a bivariate extreme value model to integrate different traffic conflict indicators for
road safety estimation, and the model is validated with actual crash data. Based on video
data collected from four signalized intersections in two Canadian cities, computer vision
techniques were utilized to identify rear-end traffic conflicts using several indicators. The
results show that TTC&PET has the most accurate crash estimates.

It is seen that the combination of TTC and PET tends to identify traffic risks better.
This paper is from the characteristics of TTC, PET and other indicators, improved indicators
Ti to complement the shortcomings, so the accident correlation is stronger.

7. Conclusions

In this paper, multiple sections of continuous high-precision video of the Jinan-
Qingdao highway are collected by high-altitude unmanned aerial vehicle. The vehicle
trajectory data outputted from the video recognition are further obtained through each
conflict indicator procedure to obtain the conflict data under different conflict indicators.
Based on the advantages, disadvantages and applicability of the conventional indicators,
an improved indicator Ti is proposed, which includes the definition and calculation of
three types (rear-end, lane change and vehicle-fixed object conflict).

The results show that under the selected threshold range in this paper, TTC, PET
and DRAC have the highest correlation when the threshold is 1 s, 8–10 s and 10 m/s2

respectively, and the improved indicator Ti has the highest correlation when the rear-end
conflict threshold is 1–3 s, the lane change conflict threshold is 5–8 s and the vehicle-fixed
object conflict threshold is 5 s. At the same time, the average values of accident correlation
of the indicators under different thresholds are: Ti is 0.771, TTC is 0.670, PET is 0.669 and
DRAC is 0.710. The average value of correlation of Ti indicators is obviously higher than
the remaining three conventional indicators, which can better reflect the real traffic risk.

The findings of this study suggest that TTC and DRAC are prone to misjudge lane
change conflicts, PET is prone to fail to identify rear-end conflicts where the leading
vehicle is faster, and PET is less informative than other indicators. At the same time,
none of these indicators take into account vehicle-fixed object conflicts. The improved
Ti all overcome these deficiencies, so the Ti are relatively most relevant, and their safety
evaluation capabilities are stronger.

It is noted that there are several limitations of this study. Due to practical reasons
such as cost and other limitations, the conflict data were collected from a relatively small
number of locations (18 in total) and for a relatively short period of time (2 h per location
for the morning and evening peaks). It is not possible to correspond to the location and
time of the accident data collection. Although we control for other variables to remain
relatively stable by trying to ensure that the location and time period is as close as possible
to that of the conflict data collection, there is still a more or less adverse effect. The solution
to this problem would be to subsequently collect as much location and time range data on
traffic conflicts and accidents as possible to make the correlation study more convincing.
The ideal situation would be to collect continuous traffic conflict data for the whole period
and the whole road. More data validation of other locations is needed.
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