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Abstract: This article investigates the impact of manufacturing technology on the structure, mechani-
cal, and tribological properties of new antifriction composite materials based on R6M5 high-speed
tool steel grinding waste. The characteristics of the new composite’s structure formation and its
impact on properties after use of the established technological modes, including grinding waste
regeneration, were illustrated. It was demonstrated that such technology is capable of ensuring
microheterogeneous structure. The material’s structure consists of the metal matrix based on R6M5
high-speed tool steel waste and uniformly distributed CaF2 solid lubricant in the steel matrix. As
compared to known iron-based composites, this structure promotes a high degree of mechanical and
tribological properties. During tribological tests, anti-seize thin films of 15–20 µm are formed on the
contacting surfaces. These constantly renewable films contribute to the high antifriction properties
of the composite under the studied friction conditions and provide a self-lubricating effect. Such
films fully cover both the material’s surface and the counterface. The formation of antifriction films
results in the self-lubrication mode. The findings of the study open up the possibility of predicting
the friction behavior of a composite at high temperatures by selecting the initial metal grinding
waste to ensure the appropriate level of properties. The extensive use of various alloy steel-based
industrial grinding waste in the re-production cycle would significantly contribute to resolving the
global environmental problem of protecting the environment from pollution.

Keywords: grinding waste; composite material; technology; structure; properties; antifriction
load; temperature

1. Introduction

Most modern machines and mechanisms have moving friction parts that work in
different conditions. Currently, a large number of antifriction (bearing) cast materials based
on ferrous and non-ferrous metals and composite materials obtained by powder metallurgy
methods have been developed [1–3]. However, in most cases, parts working in friction
units, in particular, plain bearings, fail much earlier than other parts of machines. This
necessitates the completion of work on equipment repair and the production of a large
number of replacement parts. This leads to high material and financial costs. A lot of cast
and composite antifriction materials, such as plain bearings, have been developed and used
today. These are materials based on ferrous and non-ferrous metals, polymer materials,
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etc. This variety of antifriction materials is due to the conditions of their operation during
friction. Such friction conditions vary widely from light conditions to severe operating
conditions at high temperatures, loads, in an aggressive environment, etc. Therefore,
antifriction materials for heavy working conditions take a special place among other
materials working in friction units. Very high demands are placed on such materials. These
materials must retain high mechanical and tribological properties at high temperatures
under the simultaneous action of a load and have sufficient heat resistance. Iron-based
materials are commonly used for extreme operating conditions of bearing materials in
the air at temperatures ranging from 450 to 500 ◦C and increased loads (up to 7.0 MPa).
Other non-ferrous metals, such as copper-based alloys, demonstrate either unsatisfactory
tribological properties or are inoperative under such operating conditions. Moreover, such
materials are expensive [1–3].

Iron-based materials no longer meet the increasing demands of modern equipment.
Cast materials have inadequate performance properties (high friction coefficient and wear)
or are completely inoperative in a variety of cases. Furthermore, cast materials cannot
contain various types of substances in their composition. Current powder materials are
free of such drawbacks, but they are expensive, owing primarily to the high cost of raw
materials (powders) [1,3,4].

At the same time, there are numerous potential sources of low-cost useful raw materi-
als throughout the world. This is the grinding waste from machine-building, metallurgical,
and instrument-making processing of non-ferrous and ferrous metals and alloys. They
are disposed of in large amounts in dumps due to abrasive contamination from grinding
wheels and are not reused in the manufacturing cycle. Pollution of grinding waste with
abrasive particles from grinding wheels (corundum particles) prevents their reuse.

Grinding waste of high-speed tool steels T1, M2 (ASTM International A600 stan-
dard), tool steel 1.3343 (DIN EN ISO 4957), tool steel SKH51 (JIS G4403 standard), and
others are such contaminated waste by abrasives from grinding wheels that makes their
reuse impossible. Tens of tonnes of metal grinding waste are produced every day by
machine-manufacturing, instrument-making, and other businesses. This industrial waste
is extremely polluting to the environment. At the same time, this steel grinding waste
produces a high concentration of useful alloying elements such as W, Mo, V, Co, Al, Ti, Cr,
Nb, and so on. After proper processing, such useful waste can be efficiently used in the
subsequent production cycle.

The authors initiated research work on the regeneration and subsequent use of some
types of ferrous and non-ferrous metal-based grinding waste to obtain new bearings,
and promising results were obtained [5–7]. Such studies are one of the first steps in using
grinding metal waste to make new antifriction composites. Besides, materials scientists [8,9]
around the world have not focused on research devoted specifically to the use of metal
grinding waste in a recycled production cycle, as research journal databases such as Scopus
and the Web of Science affirm. As a rule, world scientists’ research is devoted to the
problems of metal shavings reuse, recycling of metal containers, cans, etc.

Thus, this study represents an innovative topic in the relevant field of knowledge,
which was started by the authors of [5–7]. The complexities arise in grinding waste regen-
eration problems, development of the manufacturing processes, features of the anisotropic
composites structure and their properties, the behavior of materials in the process of fric-
tion at high temperatures, loads, etc. Unfortunately, none of these issues has been studied
well. Thus, a lot of scientific and practical issues remain unresolved in this area. There-
fore, studies devoted to solving the above-mentioned problems are crucially important
and novel.

As a result, developing new composite antifriction materials, for severe operating
conditions and with high-performance properties, out of inexpensive and useful raw
materials is critical. This is particularly true when it comes to locating usable raw materials,
developing resource-saving technology, and protecting the environment from pollution.
This is a critical issue from both a theoretical and a practical standpoint.
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The aim of this research is to investigate the impact of manufacturing technology on
the structure and properties formation of new composite antifriction materials based on
R6M5 high-speed tool steel grinding waste (analog of high-speed steel M2, AISI standard)
with CaF2 solid lubricant additives.

2. Methodology
2.1. Preparatory Procedures

The subject of study is a new antifriction composite material based on R6M5 high-
speed tool steel grinding waste with CaF2 solid lubricant (Table 1) [10,11].

Table 1. Chemical composition of the materials based on R6M5 high-speed tool steel grinding waste.

Components, wt. %

C W Cr Mo Si Mn V S P Fe CaF2

0.82–0.90 5.5–6.5 3.8–4.4 4.8–5.3 0.3–0.5 0.3–0.5 1.7–2.1 0.02–0.025 0.02–0.03 basis 4.0–6.0

R6M5 steel is the closest analog of M2 high-speed tool steel, ASTM standard, com-
ponents, wt.%: C—0.78–0.88; W—5.5–6.75; Cr—3.75–4.50; Mo—4.5–5.5; Si—0.2—0.45;
Mn—0.15–0.40; V—1.75–2.20; S—0.03; P—0.03; Fe –basis. The R6M5 steel grinding waste is
formed during the grinding process of cutters, drills, and similar parts. This waste is pol-
luted with abrasive particles from grinding wheels, such as corundum particles. Therefore,
such waste is usually not used in the subsequent production cycle [6,7]. However, this steel
contains valuable alloying elements (Table 1).

In addition, the specified steel belongs to the class of heat-resistant steels [8–10]. It
retains sufficiently high strength properties up to temperatures of 500–600 ◦C and has a
high heat resistance, which is primarily due to the presence of alloying elements (Table 1).
Therefore, R6M5 high-speed tool steel is attractive for use as the basis for high-temperature
antifriction (bearing) composite material.

To clean the grinding waste from abrasive particles, the method of magnetic separation
was used, which allows separating the metal component from the non-metallic abrasive
one [6,7]. The abrasive remains are 1–2% after the metal waste powders cleaning.

Particles of R6M5 steel powders have the form of microchips with sizes of 0.05–0.15 mm,
which can be seen from Figure 1.

Figure 1. Particles of R6M5 steel powders after regeneration.

After cleaning, the metal powders were subjected to regenerative annealing at temper-
atures of 850–1000 ◦C in a hydrogen atmosphere to remove excess oxygen, which is present
in the form of iron and alloying elements oxides. The oxygen content in the R6M5 steel
waste powders is 0.8–1.0% before annealing, which negatively affects the structure and me-
chanical properties of materials [7]. In addition, an increased amount of oxygen requires an
increase in pressing loads to achieve the proper density of the briquettes and also increases
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the press-forms wear. The regenerative annealing reduces the total oxygen concentration
in powders from 1.0% in initial content to 0.4% after annealing. This contributes to the
homogeneous microstructure formation.

After the reduction annealing, the conglomerates were ground on a crushing ma-
chine, and the particle size distribution was determined. After crushing the conglomerate,
the powders were sieved into fractions. For the experiments, powders of R6M5 steel
with dimensions of 160–200 µm were used since these dispersed powders provide the
best formability.

For severe operating conditions of a friction pair, when the influence of high temper-
atures (up to 500 ◦C) is present among other loading factors, and no liquid lubricant is
efficient, it is especially important to protect the friction surfaces from increased wear and
seizure. For this, substances that act as a solid lubricant are used.

The use of a certain substance is determined by the material of the contact surfaces,
friction conditions, mechanical and chemical properties of substances, their thermal stability
in relation to the environment, and interaction with the materials of the friction pair.
Currently, more than 100 substances were investigated and described [6,7,12–16], and they
are used as solid lubricants.

The number of recommended anti-seize lubricants is explained by the variety of
operating conditions for antifriction parts. Therefore, certain antifriction additives are used
when they give the greatest effect precisely for certain specific conditions. Meanwhile, the
experience of work [12–16] and the analysis of literary sources on this issue convincingly
showed the promise of using calcium fluoride as a solid lubricant specifically for extreme
operating conditions (high temperatures, loads, aggressive environment—air).

Considering the rather high thermal and chemical stability of CaF2 [16,17], it can be
assumed that bearing (antifriction) materials with the addition of calcium fluoride will
meet the requirements of friction and wear in severe operating conditions. The amount of
CaF2 was chosen in the range of 4–6 wt.% for the following reasons [6,7]: with a content
of less than 4% CaF2, the functions of a solid lubricant are not fully fulfilled, and with a
content of more than 6–8%, the strength and plasticity of the material are very reduced.

2.2. Preparation of Powder Charge, Compaction, and Sintering

Thus, after carrying out preparatory operations for cleaning grinding waste steel,
preparing powders of solid lubricant CaF2 (drying for 1 h at 120◦C and sifting fractions to
125 µm), the initial charge was prepared.

The components of the charge (R6M5 steel waste and CaF2 powders) were mixed in a
can mixer for 4 h and subjected to pressing at a pressure of 700–900 MPa. As a result of
pressing, briquettes were obtained with a porosity of 20–22%. Pressing at pressures less than
700 MPa results in a high porosity of 34–36%, and this leads to an almost complete loss of the
briquettes integrity. At pressures of more than 900 MPa, stratification of briquettes occurred,
which was associated with the difference in the density of the charge’s initial components.

After pressing, the samples of materials were sintered in a muffle furnace in dried
hydrogen (dew point is −40 ◦C). Studies of the sintering temperature influence for compos-
ite’s properties were performed in the temperature range 800–1200 ◦C. Changes in some
properties of the investigated material depending on the sintering temperature are shown
in Figure 2.

As it can be seen from Figure 2, the evolution of the porous and grain structure of a
powder material during sintering significantly affects the properties of materials, and this
is the more noticeable and influential, the higher the sintering temperature.

It can be seen from Figure 2 that the volume shrinkage, hardness, and impact tough-
ness of the material increase with an increase in the sintering temperature, but the rate of
increase in these characteristics is not the same. This is due to the phenomenon of struc-
tural sensitivity of various properties. Thus, according to [18–21], the plastic properties
of materials (also magnetic) have the highest structural sensitivity, followed by strength
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characteristics such as hardness, strength, elastic modulus, and, finally, magnetic induction
and electrical conductivity.

A significant increase in volume shrinkage and mechanical properties (HB and KC)
begins with a sintering temperature of 900 ◦C. At lower sintering temperatures 800–900 ◦C,
the volume shrinkage of the material is much lower (Figure 2). Here, shrinkage is largely
due to interparticle displacement, and the interparticle contacts are not yet mature enough,
and they contain so-called suture porosity. Therefore, the corresponding properties are too
small, namely hardness and especially the ductility of samples sintered at 800–900 ◦C.

Figure 2. Dependence of the composite R6M5 + 5% CaF2 properties on the sintering temperature:
1—impact toughness, 2—hardness, 3—volume shrinkage.

An essential increase in volumetric shrinkage at 1200 ◦C for the studied material, as
well as an increase in mechanical properties, indirectly indicates the diffusion processes
activation and the formation of interparticle contacts. This also indicates an increase in the
alloying degree of solid solutions and phases formed during sintering.

Sintering at temperatures above 1200 ◦C is impractical due to the beginning of calcium
fluoride dissociation, and complete decomposition of CaF2 occurs at 1314 ◦C [3,17].

Thus, it was found the sintering should be carried out at temperatures of 1150–1200 ◦C,
which provide the maximum density. After sintering, the porosity was 11–13%, and rather
high mechanical properties were formed (Figure 2).

2.3. Examination Techniques

The structure was studied using optical and raster electron microscopes; calcium
fluoride in the matrix was identified using scanning electron microscopy (SEM). The
mechanical properties of the samples were determined by standard methods. Tribological
tests were performed on a VMT-1 friction testing machine (the temperature of up to 500 ◦C,
the sliding speed of V = 1.0 m/sec, and the load of 1.5–7.0 MPa), the counterface was
made of the R18 cast tool steel (analog of high-speed steel T1, AISI standard, hardness
54–57 HRC). The counterface material R18 steel corresponded to the material of the real
shafts in the high-temperature friction units. The R18 steel has the following chemical
composition, wt. %: 0.73–0.83 of carbon, to 0.5 of silicon, to 0.5 of manganese, 3.8–4.4 of
chromium, 17.0–18.0 of tungsten, to 1.0 of molybdenum, 1.0–1.4 of vanadium, to 0.03 of
sulfur, to 0.03 of phosphorus, and iron as the base.
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3. Results and Discussion

A complex heterogeneous structure was formed as a result of the developed techno-
logical modes of manufacturing. The microstructure consists of a metal matrix based on
R6M5 steel grinding waste and particles of CaF2 solid lubricant (Figure 3).

Figure 3. Microstructure of the composite R6M5 + 5% CaF2. (a) not etched thin section; (b) etched
thin section.

The metal matrix of the R6M5 + 5% CaF2 material has a pearlite–carbide structure,
consisting of the α-solid solution and alloying elements carbides (Figure 3b). Particles
of CaF2 solid lubricant are uniformly distributed in the metal matrix of the composite
(Figure 3a).

The specified structure is the most favorable for the optimal combination of high
mechanical and tribological properties from the point of view of the general regularity for
antifriction purposes materials. The properties of the examined composite are presented in
Tables 2 and 3.

Table 2. Mechanical properties of composite based on R6M5 steel waste powders.

Composition, wt. % Bending Strength,
σs, MPa

Impact Toughness,
KC, J/m2 Hardness, HB, MPa

R6M5 + 5CaF2 320–360 690–710 800–820

Fe3CMo (ZhC3M) [3] 250–270 550–580 600–620

Table 3. Tribological properties of composite based on R6M5 steel waste *.

Composition, wt. % Bending Strength,σs,
MPa

Impact Toughness,
KC, J/m2 Hardness, HB, MPa

R6M5 + 5CaF2 320–360 690–710 800–820

Fe3CMo (ZhC3M) [3] 250–270 550–580 600–620
*—friction coefficient and wear rate at t = 450 ◦C.

Analysis of Table 2 shows the material based on R6M5 steel waste powders has much
higher mechanical properties compared to the known antifriction composite such as iron-
graphite alloyed with 13% Mo [3]. This is due to the high degree of the new composite
alloying, which provides the formation of the above-described homogeneous structure.

The series of tribological tests were carried out at various loads to determine the
rational load ranges for the new composites. During the experiments, 10 samples were
tested at each load.

The antifriction properties of the examined composite based on R6M5 steel waste
powders are presented in Table 3 compared to the known one.
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As shown in Table 3, the structure of materials based on R6M5 steel waste provides a
high level of tribological properties that remain in a wide range of loads on a friction pair at
an external heating temperature of 500 ◦C in an aggressive environment (air). Tribological
tests at loads of 1.5–7.0 MPa allowed determining the rational operating range of the
composite based on R6M5 steel waste with the CaF2 solid lubricant additions.

By analyzing the data in Tables 2 and 3, it becomes obvious the new composite has
higher both mechanical and antifriction properties in comparison with the currently used
material for similar conditions [3]. Waste-based composite is also able to operate at higher
temperatures and withstand much higher maximum loads. In addition, the new composite
contains powders of a more efficient solid lubricant such as CaF2 for high-temperature
operation, as opposed to graphite in the known composite [3] applied in similar conditions.

During the friction process, anti-seize thin films of 15–20 µm are formed on the
contacting surfaces, which are carriers of high antifriction properties. Such films are the
third participant in the friction process. The self-lubrication mode is realized due to the
formation of such antifriction films.

These films completely cover both the surface of the material and the counterface. An
image of the friction surfaces is shown in Figure 4.

Figure 4. Friction surfaces. (a) composite R6M5 + 5% CaF2; (b) counterface of R18 high-speed
tool steel.

Antifriction films are constantly formed and wear out at the same time. Under
researched friction modes, there is a balance between the wear rate of these films and the
rate of new films areas formation. Such antifriction films cover the contact surfaces and
protect the friction pair from intense wear.

4. Conclusions

The research results showed the possibility of the alloyed grinding waste effective
for the manufacture of new composites with high functional properties. The experimental
results showed the selected manufacturing modes provide the formation of a complex
heterophase structure of composites based on R6M5 steel high-alloyed waste powders.
Such structure ensures a high level of functional properties of new antifriction composites
manufactured from regenerated grinding waste.

Comprehensive studies demonstrated the features of the formation of the composite’s
structure using R6M5 steel waste powders as a basis, taking into account the nature of the
components present. This allows predicting the nature of the strengthening and material’s
antifriction behavior, and hence functional properties.
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The approach chosen in the research opens up wide possibilities for controlling the
composites’ structure and properties by choosing the initial waste powders introduced into
the starting powder mixture to form the strong metal matrix and adding the solid lubricant
by the necessary amount [22,23].

As studies have shown, the new material’s rational operating range is followed: the
external working loads on contact pair of 1.5–7.0 MPa at a temperature of 500 ◦C in air
and a sliding speed of 1 m/sec, when the composite demonstrates the highest properties,
which ensure the friction pair stable operation.

Further research will be aimed at determining the elemental and phase composition of
the formed antifriction films, which provide high functional properties in severe operation
modes. It is also planned to carry out experimental studies to expand the range of using
the valuable grinding waste of ferrous and non-ferrous metals for quality antifriction part
manufacturing.

The results of comprehensive research indicate the feasibility and great possibilities
of using a wide range of alloyed steel grinding waste in the re-production cycle for the
manufacture of high-quality parts for different operating conditions.

The widespread use of valuable industrial grinding waste in the re-production cycle
will make a great contribution to solving the global environmental problem of protecting
the environment from pollution. The reuse of hundreds of tonnes of metal waste will
significantly reduce their disposal to dumps, which will contribute to metal reuse, recycling,
and circular economy strategies. The primary metal manufacturing processes accompany
significant GHG emissions and other environmental impacts, and these belong to energy-
intensive processes [24,25]. Through enhanced recycling or reuse, we can reduce these
environmental impacts and energy use, thus ultimately contributing to global sustainability.
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