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Abstract: In modern aircraft, energy supply management has become a critical matter, since many
aboard electrical loads have to be supplied, especially those related to flight safety. However, at
the same time, the size and weight of electrical generators must be limited because of their on-
board installation. In this paper, the Mixed Integrated Linear Programming (MILP) methodology
has been used to formulate the Supervisor definition of the direct current (DC) microgrid (MG)
on-board system with an extension for the programmable loads. Due to the problem of dimension
increase, two methods have been presented and tested to perform optimal energy management (EM)
aboard an aircraft: the Branch and Bound (B&B) and the Linear Regression Approximation (LRA).
Finally, numerical simulations and results have been provided to validate the proposed optimization
methodologies, according to the dimensions and the complexity of the problem.

Keywords: DC microgrid; inverter controller; More Electric Aircraft; power management strategy;
power system management; modeling; power sharing; MILP

1. Introduction

Over the last few years, the electrical power distribution aboard an aircraft has become
a critical issue because of the rising number of electrical devices installed on-board, which
leads to an increase in supply demand. On the other hand, the size of the power generators
has to be limited in order to reduce both their weight and occupied volume, at the same
time preventing any shortage of energy in order to maintain the correct operation mode of
all the on-board supplied loads.

The power limits impose the rigorous control of the power itself; for this reason, the
on-board power grid commonly integrates protection circuits, remote controllable circuit
breakers and power converters with defined regulators and logics, in order to improve the
power quality and, at the same time, to avoid generator overload. The logics have the task of
disconnecting the low-priority loads, in the case of generator overload, and of reconnecting
them when the overload is over, or, otherwise, controlling their power de-rating.

The family of logics and controls implemented on-board for optimal power flow,
including storage and sources, is generally called Energy Management (EM) and it runs
in a single or distributed board computers, commonly called EM Supervisors. Additional
terms are also introduced to better explain the EM domain: for example, the logics that
have loads as their domain are called Electrical Load Management (ELM), while, if the
logic works at the source level, we simply refer to the terms Source Management. Finally, if
the grid has low storage, we commonly refer to Power Management (PM). In this paper,
we generally refer to the EM term for the logics and control methods, since it is the most
general; reference is made to Supervisor to generally indicate the on-board computer or
the implementation of the algorithm itself, where the EM logics are performed [1–3].
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A classical power flow DC microgrid uses the admittance nodal matrix to model
the grid and to find the equilibrium point; since the instantaneous power is a quadratic
function of voltage, a linear reformulation of the power flow through the first-order Taylor
linearization is needed to solve the problem directly [4]. This approach works well around
the equilibrium point, but it cannot be used far from the standard operating conditions.
Moreover, relevant works have demonstrated that the DC microgrid solution is unique;
this is encouragement to look for a method that can find it directly [5,6].

Therefore, the real-time solution of the nonlinear problems is a major challenge, due
to the computational time. In [7], three methods are proposed. The first two methods
consider nonlinear functions and are solved iteratively, while the third is linear and it is
based on the problem of energy reformulation. In [8], the gradient search method for the
quadratic function is adopted. By writing as functional cost the loss reduction and adding
power limits as constraints, the nonlinear model predictive control can be conveniently
used for this class of problems, commonly called optimal power flow (OPF), but they still
have high computational costs [9,10].

Other authors have investigated the use of expert systems applied to the power flow, to
optimize the objective function when the operating points and/or the grid change [11–13];
in deed, the expert system approach works well when all states of the grid are known,
thus moving the complexity to the design phase. A different approach considers instead
the power balancing as a slack definition of power flow; this allows us to solve the OPF
problem as MILP [14].

The microgrid MILP modeling and the methodology for the optimal scheduling have
been explored in [15]. An MILP-based algorithm for optimizing the flow of energy in power
supply systems on-board an aircraft has been illustrated in [16]; finally, the decentralized
energy management of a community of prosumers using an MILP with local and global
coupling constraints is studied in [17].

In this context, the MILP methodology provides very powerful potentialities for smart
grid power flow optimal management, having the capability to respect rules and limits,
finding the optimal solution and reducing the computational cost. The MILP output is
predictable and it can be used for both stability and reliability studies, thanks to its strong
mathematical formulation; this is a great advantage for aeronautical applications. Although
the same results can be achieved with machine learning methods, in any case, they require
access to high-quality data, unavailable at the design stage, as for the considered case
of study [18]. Regarding the drawbacks, the MILP does not easily allow us to take into
account nonlinearities, and, as will be better described later on, this leads to high-dimension
problems [19].

The paper’s contributions cover four aspects: to the best of the authors’ knowledge,
the first one is related to the power flow formulation, which differs from that reported
in other works published in the literature. Some authors consider as constraints both the
bus voltage and the power [14]; this leads to a slack formulation of the MILP problem. By
expressing the voltage constraints in terms of power, the problem becomes homogeneous
and the classic MILP formulation can be adopted. The second aspect concerns the problem
definition with grids having both ON/OFF loads and variable ones; the paper deals with
both the problem definition and the related solution. The third contribution concerns the
real-time MILP solver selection: two very high-performing algorithms are compared to
each other, providing to the readers useful information to select the fastest one, depending
on the size of the problem. Finally, the authors have studied how to use the proposed
method with time-dependent loads, thus maintaining high performance at the same time.

2. Description of the System
2.1. Description of an Electrical Power Center System

Recent energy management systems applied to the electrical plants of large aircraft
provide various solutions for priority-based supply load management; in fact, disconnect-
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ing and reconnecting loads according to their importance, in addition to power regulation,
has many advantages and disadvantages, illustrated in various papers [1,20].

EPC is an Electrical Power Center for aeronautical applications, which deals with
the power regulation of the connected loads; it is equipped with solid-state power con-
trollers (SSPC), which communicate via a Controller Area Network (CAN or CAN Bus)
type 2.0B with a supervisor, where the energy management logic is executed [3]. The
control is able to disconnect or reduce the power to non-essential loads automatically, to
prevent the main generator from being overloaded [21].

The EPC requires two continuous-voltage inputs: 270 V DC for power loads supply
and 28 V DC for feeding the digital parts (micro-controllers, communication devices,
drivers). The details of the required power for each load are shown in Table 1, comprising
also the two electromechanical actuators (EMA), which are the Landing Gear System (LGS)
and Flight Control System (FCS), besides the other connected passive loads (R1–R5):

Table 1. EPC electrical specifications.

Parameters

Supply Value

Power parts 270 V DC
Digital parts 28 V DC

Load Value

L1-LGS (EMA) 63.5 kW
L2-FCS (EMA) 63.5 kW
L3-R1 1 kW
L4-R2 2 kW
L5-R3 3 kW
L6-R4 4 kW
L7-R5 10 kW

The EPC configuration of the flight test stand connections is shown in Figure 1.
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Figure 1. Configuration EPC connected of a demo in flight test [21].
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A starter/generator in the Environmental Control System (ECS) supplies an alternat-
ing current of 115 V AC with variable frequency between 400 and 800 Hz; the transformer-
rectifier unit (TRU1, TRU2) levels up to a 270 V DC output voltage to feed the main power
bus of the EPC; a DC/DC converter provides the 28 V DC voltage from the 270 V DC
voltage bus previously obtained, to supply both EPCs and the other electrical devices
aboard the aircraft.

2.2. Description of a Microgrid

Current EPC systems must have a power management strategy to control the flow
of power in a microgrid system. A typical microgrid is composed of the AC voltage
distribution grid interfaced with a VSI (Voltage Source Inverter) [22], which acts as a
grid formation converter, an energy storage system consisting of a battery bank, and a
bidirectional DC-DC converter [23].

In any DC microgrid system (MG), it is important to use control strategies that include
both stability analysis and cell stabilization techniques [24]. Control is usually classified
into two levels: local and coordinated. The local one is based only on local measurements
and only through a communication line can it be made available among the various
microgrids in order to achieve coordinated control. From the method of communication,
three strategies can be obtained: basic coordinates (or decentralized control), centralized
and distributed [25,26]: decentralized control [27] can be considered an extension of local
control and it is based only on local measurements, while centralized and distributed
control strategies are based on digital communication technologies [28,29].

The correct distribution of resources, while maintaining system efficiency and reliabil-
ity, is one of the main priorities of a DC microgrid system. Indeed, for each type of DC-DC
converter, there are many advantages and disadvantages to be taken into consideration
with regard to the hierarchical control strategies: primary and secondary [30].

A bidirectional regulation system can consist of a transformer-less H-bridge inverter
used to regulate the power flow and to limit the fault current flowing in the distribution
grid: the inverter control strategy checks the power flow at the common coupling point
(PCC), while the operation of the H-bridge allows us to limit the short-circuit current (or, at
least, to regulate it) during a disturbance in the network, fostering its reinstatement after
the fault has been eliminated [31]. Furthermore, accurate transient modeling of faulty DC
microgrids is the basis of fault detection location and isolation [32].

The power management technique applied to the concept of virtual inertia together [33]
with a power management function of the generators allows us to avoid high power
peaks [34] and improves the availability of energy by preventing and without degrading
the DC bus voltage.

3. Electrical Load Management Definition by MILP

In this section, the problem is formulated as Mixed integer Linear Programming
(MILP); the core of the control scheme is reported in Figure 2. For our discussion, we con-
sider the plant status as fully observable, thus allowing the calculation, for each time-step,
of the available power PAV . The MILP based power management control has additional
inputs, which are the load priorities, their power size and the vector ν, having the ele-
ments set to 1, in correspondence with the loads that can be reduced in power, or to 0 for
ON/OFF loads.

The elements of the output vector x can assume 0 value for the OFF state, 1 value for
the ON state and a number between 0 and 1 for those loads allowing the power reduction.
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Figure 2. High level supervisory control.

3.1. Assumptions

In this paper, we consider only the optimal steady-state problem solution; this implies
that the transient is not studied and all the variables are linearly related to each other.
The Thevenin’s Theorem is adopted to model the generator. Moreover, as a simplifying
hypothesis, the grid is fully observable, i.e., the power of the generator and that of the
loads are known.

As an additional assumption, we consider active loads, with power reference as input.
This assumption is not restrictive, as better shown in example two, but, at first, it helps to
keep the problem formulation simple and easy to manage. The priority number assigned
to each load is always known and it changes on event occurrence. Finally, the supervisor
task speed is at least ten times slower than the load’s embedded control, if any.

3.2. MILP Problem Definition

Let us assume n as the number of loads under the control of the Supervisor, each
one defined by the priority number ξ> = (ξ1 ξ2 . . . ξn) ∈ Nn positive integers, and
P> = (P1 P2 . . . Pn) ∈ Rn

+ positive real numbers as the nominal power of each correspond-
ing load. The Supervisor defines the load connections by avoiding the generator overload.
In other terms, the Supervisor must guarantee that ∑n

i=1 Pi ≤ PAV , with PAV the maximum
available power assigned to the loads, calculated as (1), which is the difference between the
nominal power (Pnom) and the power absorbed by loads (Pu) that are not under control.

PAV = Pnom − Pu (1)

The generator model can be expressed in simpler form by using the Thevenin’s
theorem [35]. At steady state, the model is further reduced to an ideal generator with in
series a resistor. The steady-state generator output voltage is calculated as (2).

vo = vg − Rg · i (2)

with being vg the open circuit voltage, Rg the series resistance and i the generator current.
The MIL—STD—704F defines the DC bus voltage limits [36]. By assuming as vmin the
minimum allowed voltage and inom the maximum current corresponding to the mini-
mum voltage, the generator nominal power for users can be defined by multiplying both
members of (2) as:

Pnom = vo · inom = vg · inom − Rg · i2nom (3)

It must be noticed that the new nominal power definition comprises the maximum
working power for the generator Pnom < Pgen−max. Being within the limits of (3) im-
plies also the compliance of the minimum allowable voltage for the DC bus, thus giving
to the MILP problem definition an homogeneous form, consequently overcoming its
slack formulation.
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The output is defined by the vector x> = (x1 x2 . . . xn) ∈ {0, 1}n corresponding to
the status of the switches S> = (S1 S2 . . . Sn), with the assumption of 0 for the open and 1
for the closed state.

The MILP problem is reported in terms of (4)

max
x

ξ>x

subject to P>x ≤ PAV

(4)

with ξ and P defined above. Let us introduce a new priority vector ξ̃ obtained by sorting
the priority vector ξ in descending direction, with the assumption that a higher number
corresponds to higher priority. The vector P̃ is obtained from P with the condition of
having the same index order of ξ̃. Thanks to the load properties and to the formulation of
the problem as reported in (4), two considerations can be consequently stated:

Definition 1. Let ΣP(k) indicate the cumulative sum of the first P̃(k) elements, with k ∈W as
the integer positive number.

Corollary 1. The cumulative sum of the vector power P̃ increases monotonically.

Corollary 2. The quadratic function (ΣP(k)− PAV)
2 has only one minimum point k∗.

The optimization problem (4) cannot yet be used to solve the above-defined problem
illustrated in Figure 1, since some loads can be derated in power, while other ones allow
only shedding. This issue can be solved with a different definition of the state variable x
for loads allowing the power derating: in fact, by considering the load as a set of m small
loads, each one having the same priority, the associated scalar state xi is substituted by
the vector x>i = (χi1 χi2 . . . χim) ∈ {0, 1}m with ξ>i = (ξ∗i ξ∗i . . . ξ∗i ) ∈ Nm a vector
having all elements equal to the scalar value associated to the element i. For most common
problems, a division into m = 1024 set of power elements is acceptable for the application
of our proposed methodology; in fact, by substituting the vectors into (4), we obtain a
new set of variables: for example, if the third load is variable, the new vectors become:
ξ> = (ξ1 ξ2 ξ∗3 ξ∗3 . . . ξ∗3 . . . ξn) ∈ Nn+m−1 and x> = (x1 x2 χ31 χ32 . . . χ3m . . . xn) ∈
{0, 1}n+m−1. The power ratio for the load i is finally calculated as:

Pderated
i =

Pi
m

m

∑
j=1

χij (5)

Even if the problem dimension increases, however, the MILP output now directly
gives the solution to the problem. As a drawback, the MILP solver has a critical issue due
to the performance impact in terms of computational burden.

The optimization problem (4) can be formulated also as the knapsack problem and
several algorithms are proposed in the literature to solve it [37]. In this paper, two different
approaches are studied and compared to each other in terms of the steps needed to reach
the optimal solution. It must be noticed that the number of steps is directly related to the
performance in terms of computational time. The first considered method is the branch-
and-bound (B&B) one, commonly adopted to solve searching problems; it also allows the
introduction of heuristics to speed up the convergence to the optimal solution. The second
method uses the system knowledge to speed up the research of the sub-optimal solution
and, finally, it refines the output by analyzing the slope error.

3.3. Branch-and-Bound Method

The branch-and-bound (B&B) algorithm is based on a tree search strategy and, in
its original form, it divides the problem into a set of small sub-problems. This implies
that the space solution is divided into smaller regions and the final solution is found
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recursively (i.e., branching); the rules established previously are used to prune off regions
of the search space that are probably sub-optimal (i.e., bounding). For the problem (4), the
binary branching formulation can be adopted.

The tree must be constructed respecting the priorities and the power level of each
node, as shown in Figure 3a. In its more general formulation, the tree itself is constructed
respecting the priorities of the nodes, and the search engine must calculate at runtime
for each node whether the cumulative sum of the node power until the node under
test satisfies (4). A small optimization is achieved by changing the top node, but the
performance can be doubled at maximum. Therefore, a better approach must be adopted
to reduce the computational time.

By assigning to each node the cumulative power Σp(k), the tree can be constructed by
considering the relationship between the cumulative powers. Then, (4) is implicitly defined
with tree construction. Each node is associated with the subspace of the solutions; the
left branch is related to the ones having higher cumulative power, the right branch to the
smaller cumulative power. The search stops at a node having a greater value, respecting
the condition expressed in (4).

(a) (b)

𝜉!, 𝑃!
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𝑛
2
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Figure 3. Different branch-and-bound tree constructions. (a) Each node is defined by two variables,
the priority level and the load power. The tree construction is priority-based. (b) The tree is
constructed by considering the cumulative power as a function of the priorities and the top node is
the one that balances the tree.

Despite the new solution, this still does not ensure that the tree is fully balanced,
i.e., the left path has the same depth as the right path, and its structure is close to that of
Figure 3b. The algorithm explores the tree until the cumulative power is greater than the
available power PAV . As an example, we can refer to the to the algorithm of Figure 4a
by assuming the tree nodes having as structure the left and right pointer, the cumulative
sum value and the k index. The search time depends on the number of nodes that must be
considered to find the optimal solution and finally depends on the tree balancing level.

As a case study, we consider the one reported in Figure 4b, having eight nodes and
assuming PAV = 20 kW; starting from the top, the solution is searched in the right branch
since the beginning nodes have cumulative power greater than PAV . Since the second node
is smaller than the reference power, another test is made on its left node, but the test is
not passed since it is associated with 25 kW as cumulative power. The optimal solution is
given with only three steps, approximately equal to the depth of the position of the node d.
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constructed respecting the priorities and the cumulative power.

Assuming that the tree is balanced, the number of steps required to reach the solution
depends on the height of the tree or the depth of the k element:

εk = d(k) (6)

The worst case ε∗ is calculated as:

ε∗ = ceil(log2(N + 1)) (7)

with ceil being a function that rounds the number to the nearest major integer and
log2 x = log x/log 2.

3.4. Proposed Method—Linear Regression Approximation (LRA)

If all loads are equal, the ΣP(k) variable increases linearly and can be expressed with
the form ΣP(k) = a · k. The minimum of the quadratic function:

J(k) = (ΣP(k)− PAV)
2 (8)

is k∗ and, in the case of all loads equal each other, is placed at the point k∗0 = PAV/a.
The coefficient a can be approximated with a = Σp(N)/N = P and it is equal to the

average power of the loads; finally, the k value can be calculated as:

k∗0 =
PAV

P
(9)

If k∗0 6= k∗, the gradient method approach is adopted to find the solution. The algorithm
searches the point that minimizes (8) and, thanks to the two corollaries previously reported,
the local study of the function allows us to fully understand the side of the minimum with
respect to the test point. To better understand this process, we can refer to the Figure 5,
where the sign of the J variation is reported by changing the k index in both directions.
By assuming as positive the direction associated with the k increasing and as negative the
opposite one, starting from a generic point of the curve, the direction for the minimization
of the function is given by the following relationship:

dir = −sign(∆J) · sign(∆k) (10)
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The algorithm stops when J(k± 1) > J(k).

J(k)

k
!∗
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∆! > 0

∆# < 0
∆! < 0

∆# > 0
∆! < 0
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∆! > 0
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&'( = −,'-.(∆") / ,'-.(∆$)

&'( = 1
$ = $!∗

" $ + &'( > " $ ?

END

$ = $ + &'(

Y

N

INIT

(a) (b)

Figure 5. Gradient method for the determination of the minimum value of the quadratic function
J(k). (a) Direction definition as function of ∆J and ∆k, (b) algorithm flow chart.

Now, let us check the error in the case of loads with different rated power.
If the load’s nominal power is relatively great compared to the available power, the

solution is found in a few steps. For our study, then, we have to consider the worst case,
i.e., several loads, with each one having small nominal power compared with PAV . In
order to better understand this point, we first assume n = 80 small loads having power in
the range [0 , 0.0467] PAV . Due to the unpredictable knowledge of the distribution of the
power set, the Monte Carlo numerical approach is adopted to perform a statistical analysis.
Figure 6 reports the stochastic test, repeated with 1000 different sets of vectors P, each one
randomly generated. The J(k) function defined in (8) is shown in the Figure 6a subplot
with the corresponding minimum point marked in red. The second subplot of the same
figure reports the prediction error, calculated as: ek = k∗ − k∗0; the x-axis values are the
corresponding error test numbers.

The mean error is found in one step and the worst case is in 9 steps. The worst case
increases its steps when the loads have wide variation of nominal power; for this reason, a
deeper study is needed to better understand this point.

Let us evaluate the prediction error of the random function ek(j) = k∗(j)− k∗0(j), with
j being the power “granularity”, i.e., the maximum power that each load can assume with
respect to the available power, as defined in (11).

j =
max(P)

PAV
(11)

Each sample of Figure 7 is the statistical analysis of 1000 random numerical experi-
ments, as conducted for Figure 6, by fixing the j value.

It can be observed that the mean error has a limited reliance on j and it is always less
than 1.5. For j > 0.02, the variance and the maximum error also decrease, thus making the
proposed method interesting as an alternative approach to the branch-and-bound one, or
as a heuristic methodology for developing fast research algorithms.
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error value.

4. Results

In this section, the branch-and-bound method is compared with the proposed linear
regression one, in order to compare them in terms of time-computing performance, thus
defining a new heuristic method to improve the Supervisor speed; the comparison results
are reported in Table 2.
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Table 2. Methods comparison. d is the depth of the node, n is the number of elements, k0 = 3.7,
a = 0.19, j0 = 0.017.

Method Mean Steps Maximum Steps

Branch-and-Bound d ceil(log2(n + 1))

LRA constant < 1.5 k0 + a/(j + j0)

As a conclusion from the comparison, we have that branch-and-bound method’s
step time is a function of the distance between the solution node and the top node. The
proposed LRA method requires a mean step smaller than a constant, i.e., less than 1.5. By
comparing both methods in the worst case, the branch-and-bound one needs an increase in
the number of tests to reach the solution in a logarithmic relationship with the connected
loads; in fact, tripling the steps, the number of loads must increase in the magnitude of
one decade.

Figure 8 reports in detail the comparison between the two methods. The graph is
useful to select the best algorithm for the application by considering the worst case. Starting
from the problem size n, the blue line gives the maximum number of steps needed to reach
the problem solution. If we draw a horizontal line passing for this point, we obtain an
intersection with the red line. The corresponding point gives the maximum allowable
granularity j associated with the same maximum number of steps. If the problem under
study has better granularity, the LRA method wins over the branch-and-bound method.
As an example, if n = 10,000, the LRA method wins for j > 0.005. The LRA always wins in
the case of j > 0.1 as its trend does not depend on the problem dimension, thus becoming
simply a function of the granularity of the loads.
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Figure 8. Maximum number of steps for branch-and-bound and LRA algorithm for different granu-
larity values and numbers of elements.

The graphical method of Figure 8 can be also expressed in mathematical terms as
follows: by comparing the maximum steps for the two methods, the condition making the
LRA method perform better than the B&B one can be easily established, as defined in (12):

n = 2
(

k0+
a

j+j0

)
− 1 (12)

For example, if j ≥ 0.02 p.u., the worst case is confined under 10 steps, as regards the
branch-and-bound method, but with n∗ = 456, as shown following the gray dotted lines
in Figure 8.
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For those problems having a size of thousands of elements, the LRA method shows
better performance with j > 0.02, since it monotonically decreases the number of steps by
increasing j and it also shows the opposite convexity trend with respect to B&B.

The last aspect that we can consider for the comparison is the memory usage: the LRA
algorithm needs a vector of n nodes, as the output is the vector index itself, while the B&B
needs 4n nodes, i.e., three times greater than the LRA; for embedded applications, with
a limited amount of memory, this is a critical aspect and it suggests that the LRS method
should be preferred for all those applications having thousands of elements.

In summary, both the advantages and disadvantages of the two proposed methods
are highlighted in Table 3.

Table 3. Comparison between the two high-performance methods.

Method Strength Weakness

B&B computational time known a priori high memory usage
time-consuming for lots of elements

LRA low memory consumption variable execution timereduced computational time

4.1. Numerical Results

In this section, two numerical tests have been conducted, as better described in the
following two subsections.

The generator feeds seven loads L1. . .L7, having the nominal power reported in Table 1,
and external loads too, fully observable but not under the control of the supervisor. We
refer to the one wire power flow circuit of Figure 9 and we assume Pgen = Pu + ∑7

i=1 Pi
for each timepoint. The power flow circuit is commonly used for studying large plants,
also with three phase circuits; for these, each load is characterized by its active and reac-
tive power [38]; for DC grids, instead, the loads are fully described by a scalar number
representing their power.

L1 L2 L3 L4 L5 L6 L7

Other loads

Generator

P1 P2 P3 P4 P5 P6 P7 Pu

Pgen

- ON/OFF loads
- Programmable loads

Figure 9. Power distribution circuit.

As for the test, we assume, as an example, that the loads L3, L4, L6 and L7 are
variable with 128 steps. The remaining loads can be only switched OFF. With the proposed
configuration, the problem dimension is n = (128 + 1) · 4 + 3 = 519. To reduce the post-
processing analysis, the load priorities increase from left to right, so ξ1 > ξ2 > . . . > ξ7.
As better described in the second test, the assumption of knowing the load power, or of
fixing it at the nominal value, is not restrictive, since the power variation can be considered
outside the MILP formulation.

4.1.1. The Available Power Changes as Ramp

The first test has been conducted with the loads reported in Table 1, by assuming all
of them at nominal power, as shown in Figure 9, in which the single-line diagram of the
on-board plant is provided. Note that other loads (indicated with Pu) can be also connected
to the plant, without any restrictions on the applicability of our proposed method.
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The available power, defined as (1), changes as a ramp and it is shown by the blue
line in Figure 10a. For the definition, the PAV is the maximum power that loads can absorb;
in other words, the cumulative sum of load power, shown with the red line in Figure 10a,
never can exceed the available power. Note that the power requested by the loads is
always lower than the available power, both in ON/OFF and in the linear ones. The rules
are always respected and the MILP always selects the configuration that maximizes the
number of the supplied loads.

            
 

 

 

  
 
 

  

            
 

 

 

  
 
 

  

            
 

 

 

  
 
 

                   

            
 

 

 

  
 
 

                   

            
 

 

 

  
 
 

  

            
 

 

 

  
 
 

                   

            

        

 

 

 
  
 
 
                   

            

        

 

 

  

  

  

  

  

 
 
 
 
  
  
 
 

               

              

(a)

(b)

Figure 10. Test case for different available power and derating loads. (a) Available power com-
pared with absorbed power, (b) p.u. setting for loads depending by properties: fixed loads and
variable loads.

The ON/OFF loads are connected only in the case where the cumulative power is
below the available power. The variable loads change their power according to a ramp
trend. Figure 10b shows the load activation times and related p.u. power. By taking
into account that the L1 load has the higher priority, while L7 has the lowest one, it
can be observed that the activation sequence is always respected. It must be noticed
that, for variable loads, the output of (5) has been considered instead of the binary load
decomposition. As the test results conclude, the MILP formulation respects the available
power limits, maximizes the absorbed power and respects the load priorities, thus feeding
first higher-priority loads.

4.1.2. The Loads L1 and L2 Have Power Depending on the Time t

When one or more loads change their power, two approaches can be adopted. The
simplest one is to update the cumulative power vector for each change, but, in this way,
the solution is reached very slowly, thus reducing the system performance. A different
approach, adopted in this subsection, generalizes both the load power and the avail-
able power.

Let us write the load power as:

P̃Lk(t) = PLk + pLk(t) (13)

where PLk is the constant term used for the power vector construction and pLk(t) is the
time-dependent term taking into account the power variation.

By fixing the power vector P̃, the resulting available power can be calculated as
reported in (14), i.e., as the difference between the available power (previously calculated
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using (1)) and the time-dependent term pLK. The new formulation is not limited to one
load and it can be generalized for all loads only by changing the nominal power during the
time of supervision.

P̃AV(t) = PAV(t)− pLk(t) (14)

For the test, the loads L1 and L2 are assumed as time-dependent, as shown in Figure 11c.
The blue line represents the instantaneous power of the loads, the activation time, the peak
value of the requested power and, finally, the duration time depending on the loads; indeed,
all these parameters are outside the control of the supervisor. For the MILP definition, the
load nominal power has been considered, as shown with the red dotted line in the same
figure; as a consequence, the pLK(t) can be calculated from (13) and it is shown as a yellow
line in the figure. Finally, pLK(t) is used to define the available power P̃AV(t) in (14), as
indicated by the blue line in Figure 11a.

With the new definition of the load power, the Supervisor allows the loads L1 and L2
to be connected, but this matter does not automatically imply that L1 or L2 are effectively
absorbing power. For the algorithm test, it must be verified first that the absorbed power
never exceeds the limits, which are now a function of the time-dependent load power. As
can be observed, the absorbed power (red line) in Figure 11a is always less than or equal to
the available power (blue line), so that the power limits are always respected. As regards
the activation sequence, the available power is always greater than zero, thus allowing the
first six loads to be always connected, as shown in Figure 11b. Only the low-priority load
L7 has been used to avoid power overload by reducing its absorbed power.
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Figure 11. Test case for different available power and derating loads, with L1 and L2 changing with
steps. (a) Available power compared with absorbed power, (b) p.u. setting for loads depending on
properties: fixed loads and variable loads, (c) L1 and L2 power.

5. Discussion

This paper initially defines the problem of the power management for on-board
electrical systems. In particular, our case study deals with a power management method
installed aboard an aircraft. Our proposed method leads to the definition of the optimal
configuration of the fed loads, so that both their priorities in supply needs (due to the flight
necessities) and the generator power limit constraints are respected in any situation.
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The proposed method’s strength consists of describing the problem considering some
loads as ON/OFF switches, i.e., they allow only shedding and some other variables.

Linear programming strictly defines a problem with integer value variables, but its
adoption cannot be applied when they are both integer and continuous.

By dividing the large loads into smaller ones, each one described by only an integer
variable (ON/OFF), it has been possible overcome to the limitation of power derating, but
the growth of the problem dimensions has been consequently increased.

For all these reasons, two very high-performing methods have been compared, in
order to evaluate the best one for the desired application (load feeding aboard an aircraft).

Many simulations have been carried out in order to validate the proposed method.

6. Conclusions

In this paper, the optimal power flow problem for a small priority-centered microgrid
is proposed and solved by using the MILP theory.

Despite the fact that the MILP is promising for this class of problem, thanks to the
reduced time needed to reach the optimal solution, its use for the DC power distribution
systems is still a challenge due to the quadratic problem formulation when the grid is
expressed in terms of the conductance matrix.

The power-balancing method for a steady-state grid is proposed, obtaining as a first
benefit the linear formulation of the problem; moreover, the new model allows us to express
the voltage limits in terms of power, giving a homogeneous formulation to the problem.

As an additional contribution, the MILP method has been extended also to variable
loads; the proposed methodology allows us to manage both ON/OFF and variable loads
using the same formulation; in fact, the variable loads are seen as tens of small ON/OFF
loads and their contribution in terms of power is given by the number of small virtual
loads connected to the bus over the size.

With this last assumption, the dimension problem consequently increases, so that
the last contribution of the paper has necessarily to be the performance study of the
two high-speed algorithms here presented. Finally, the paper considers loads having an
instantaneous power function of the time; it has been reported an additional method that
does not need any change in the cumulative power vector, thus keeping its performance
still satisfactory in terms of computational burden.

Future works will be related to the study and the implementation of real-time per-
formance tests using different-order smart grids, taking into account also the transient
phenomena.
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B&B Branch and Bound
CAN Controller Area Network
ECS Environmental Control System
ELM Electrical Load Management
EM Energy Management
EMA Electro Mechanical Actuator
EPC Electrical Power Center
EPGDS Electrical Power Generation and Distribution System
FCS Flight Control System
GCU Generator Control Unit
LGS Landing Gear System
LRA Linear Regression Approximation
MEA More Electric Aircraft
MG Microgrid
MILP Mixed Integrated Linear Programming
OPF Optimal Power Flow
PCC Point Common Coupling
PM Power Management
SSPC Solid-State Power Controller
TRU Tranformer Rectifier Unit
VSI Voltage Source Inverter
WIPS Wing Ice Protection System
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