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Abstract: Effective management of an urban solid waste system (USWS) is crucial for balancing the
tradeoff between economic development and environment protection. A factorial ecological-extended
physical input-output model (FE-PIOM) was developed for identifying an optimal urban solid waste
path in an USWS. The FE-PIOM integrates physical input-output model (PIOM), ecological network
analysis (ENA), and fractional factorial analysis (FFA) into a general framework. The FE-PIOM
can analyze waste production flows and ecological relationships among sectors, quantify key factor
interactions on USWS performance, and finally provide a sound waste production control path.
The FE-PIOM is applied to managing the USWS of Fujian Province in China. The major findings
are: (i) waste is mainly generated from primary manufacturing (PM) and advanced manufacturing
(AM), accounting for 30% and 38% of the total amount; (ii) AM is the biggest sector that controls the
productions of other sectors (weight is from 35% to 50%); (iii) the USWS is mutualistic, where direct
consumption coefficients of AM and PM are key factors that have negative effects on solid waste
production intensity; (iv) the commodity consumption of AM and PM from other sectors, as well as
economic activities of CON, TRA and OTH, should both decrease by 20%, which would be beneficial
to the sustainability of the USWS.

Keywords: ecological relationship; factorial analysis; input-output analysis; optimal path; reduction;
urban solid waste system

1. Introduction
1.1. Importance and Motivation

With rapid urbanization and industrialization, humans consume increasing goods and
services which cause the growth of direct and indirect urban solid waste generation [1].
Urban solid waste often has harmful impacts on human health and the ecological envi-
ronment. Urban solid waste management, regarding the treatment of solid, liquid and/or
atmospheric wastes before they are released into the environment is an issue of growing
global concern [2]. In China, solid waste generation shows a trend of growth, and the corre-
sponding utilization-disposal rate is trending downward. In 2011, the amounts of industrial
solid waste and household garbage reached 3.62 billion and 0.16 billion Mg, respectively.
The disposal rate and utilization rate were about 25.88% and 54.24%, respectively. In 2019,
the amounts of industrial solid waste and household garbage increased to 3.86 billion and
0.24 billion Mg, respectively, whereas the disposal rate and utilization rate were about
24.31% and 53.33%, respectively. Investment in environmental protection occupied about
1.21% of GDP, while investment in solid waste production was much less [3]. Strategies that
can help reduce the negative impacts of large amount of urban solid waste are desired [4].
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The formulation of sound strategies requires the cooperation of numerous economic
sectors [5]. When considering the city as a complex system, various economic sectors have
direct or indirect relationships. The urban system can be treated as a network in which sec-
tors are comparable to nodes and intersectoral transactions correspond to edges [6]. There
are often sectors that are essential to reduce solid waste production as transfer centers [7].
These sectors are located in the middle of the supply chain path and simultaneously mul-
tiple supply chains of different path lengths [8]. The intermediate inputs of these sectors
indirectly promote upstream production, while the intermediate outputs of these sectors
are broadly used by downstream sectors resulting in more generation of direct solid waste
production. Therefore, it is crucial to analyze urban solid waste generation from a system-
atic perspective aimed at recognizing the direct/indirect relationships among economic
sectors, as well as assessing the direct solid waste (i.e., waste generated in the process
of production), and indirect solid waste (i.e., when sector i receives products from other
sectors, direct solid waste in the process of products production is the indirect solid waste
of sector i) embodied in goods flowing within the regional and national scale economic
system. This is helpful for global cities to achieve sustainable development target.

1.2. Literature Review

The physical input-output model (PIOM) proposed by Leontief [9] is effective for
assessing the direct/indirect solid waste embodied in the flow of goods [10]. In the PIOM,
a conventional economic system is transformed into an urban solid waste system (USWS).
It can facilitate managers to account the solid waste flows in a USWS based on the material
balance principle. Liang and Zhang [11] employed a PIOM to investigate the impacts of four
categories of solid waste recycling on urban solid waste metabolism to support sustainable
development. Wang et al. [12] used the PIOM for estimating the whole regional energy
and environmental benefits of solid waste utilization for energy recovery, where power
generation from energy recovery (e.g., waste incineration) and total mitigation potentials
for air pollutant emissions were predicted. Meyer et al. [13] utilized the PIOM to model
three streams of solid waste generated from commercial economic sectors in the United
States; the model ranked all economic sectors based on solid waste production and pointed
out potential areas to continue to pursue innovations in material use. Huang et al. [14]
employed a PIOM to quantify different types of solid waste production recycling over the
period 2005–2017 in China. The results revealed that China experienced an increment in
the recycling of five types of solid waste.

The USWS contains various sectors, diversified flows, and compounded interac-
tions [14]. Diagnosing the metabolism of the USWS by analyzing sector metabolic re-
lationships and figuring out hierarchical structure is helpful [15]. The PIOM can be ex-
tended to handle these problems through introducing ecological network analysis (ENA).
Zhang et al. [16] integrated a PIOM with ENA to analyze the directions, locations and
drivers of carbon flows resulting from global trade, where large CO2 transfers were recog-
nized and adjustments of the national mitigation targets were proposed. Wang et al. [17]
coupled a PIOM with ENA to evaluate water-related impacts of energy-related decisions,
where sectoral embodied consumption of water and energy, and their intersector flows,
were mapped. Wang [18] incorporated a PIOM with ENA to comprehensively estimate
the metabolic status of an energy system in China, in which the system properties, indi-
cators of sectors (e.g., the out-degree, betweenness, and closeness centrality degree), and
betweenness-based energy consumption were calculated. Zheng et al. [19] combined ENA
with a PIOM to investigate integral carbon emissions at the city scale; the complex structures
and relationships of carbon emission flows in 2010 due to inter-sector trade were assessed.

In fact, a USWS has complexities related to different production technologies, industry
scales, and pollution intensities. Valuable information is often hidden under the interrela-
tionships between these factors and the consequent effects [20,21]. For example, variations
in metal productive capability can affect the amount of solid waste delivered to the elec-
trical equipment manufacture sector, as well as the amount of solid waste received from
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the metal ore mining sector. Finding crucial impact factors is beneficial to develop more
specific solid waste reduction strategies. Factorial analysis (FA) has the ability to quantify the
sensitivity of model response to significant factors and their interactions [22]. One concern is
that traditional full factorial analysis may be unfeasible when many factors are taken into
account (due to a large number of calculations). Fractional factorial analysis (FFA) is effective
for quantifying the significance of factors by carrying out a small number of computed
cases, which decreases the calculation cost and ensures result accuracy [23]. FFA has been
successfully used in experimental designs for detecting response sensitivity [24–26].

Previous studies proved the feasibility and practicability of PIOM, ENA, and FFA
(a summary of previous literature is presented in Table A1); however, there are some
research gaps to be filled. First, a PIOM can assess physical direct and indirect solid waste
production flows of USWS but has difficulty in analyzing ecological relationships between
various sectors. Secondly, ENA can effectively reveal the metabolic condition including
ecological control and utility relationships but cannot screen the key factors and evaluate
their interactions. Third, FFA can help decision-makers accurately adjust key factors to
improve system performance, with few studies applied FFA to USWS. Fourth, no previous
study has been reported on the integration of PIOM, ENA and FFA for urban solid waste
reduction in USWS.

1.3. Contribution and Novelty

The objective of this study was to develop a factorial ecological-extended physical
input-output model (abbreviated as FE-PIOM) and apply it to a real USWS of Fujian
Province (in China). The innovations and contributions are: (i) a novel integrated model (FE-
PIOM) developed through incorporating a physical input-output model (PIOM), ecological
network analysis (ENA), and fractional factorial analysis (FFA) within a general framework;
(ii) FE-PIOM can analyze urban solid waste production flows and associated ecological
relationships among economic sectors; (iii) FE-PIOM can recognize key factors in complex
USWS, quantify their single and joint effects on USWS performance and provide sound
urban solid waste production control path; (iv) this is the first attempt to apply such an
integrated model (FE-PIOM) to a real case of USWS, and results can help managers to
generate desired strategies for urban solid waste reduction.

2. Materials and Methods
2.1. Physical Input-Output Model

The PIOM originates from the monetary IOM proposed by Leontief, and can reflect
urban solid waste flows among sectors and investigate the multiple sectoral linkages [5,23].
The basic form of IOM can be presented as [27]:

xi =
n

∑
j=1

zij + f di for i = 1 to n (1)

where xi is the total output of sector i, zij is the amount of goods i that sector j consumes,
and fdi is the final demand of sector i. Solid waste intensity is then introduced to transform
the monetary IOM into PIOM as follows [28,29]:

E + εZ = εX (2)

ε = E(X− Z)−1 (3)

F = diag(ε) ∗ Z (4)

where E = [ei]1×n is the amount of sectoral solid waste; ε = [εi]1×n is the solid waste intensity
vector, εi is the embodied solid waste per unit of monetary value of sector i; Z = [zij]n×n, zij
is the amount of goods i that sector j consumes; X = [xj]1×n is the total economic output
and F = [fij]n×n is the solid waste flows among various sectors. By physical units, it is
referred to mass units for presenting waste flows (e.g., Mg). Direct solid waste production
equals the initial input of the monetary-physical input-output table, and the indirect solid
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waste production of each sector equals the sum of its column elements in the physical
input-output table. For instance, sector i produces 1 Mg solid waste per unit product
production, meaning 1 Mg is the amount of direct solid waste in sector i. Sector i sells
product to sector j, implying that the 1 Mg solid waste is indirectly transferred to sector j
(i.e., the amount of indirect solid waste in sector j is 1 Mg).

Then, the amount of sectoral indirect solid waste and sectoral total flows can be
calculated based on Equations (5) and (6) [30]:

IFj =
n

∑
i=1

fij (5)

Ti =
n

∑
j=1

fij + ei (6)

where fij is the direct solid waste flowing from sector i to sector j; ei is the amount of direct
solid waste; IFj is the amount of indirect sectoral solid waste and Ti is the total amount of
waste. Taking all pathway flows with different lengths between two sectors into account,
the dimensionless integral solid waste flow intensity matrix (N) can be obtained through:

gij = fij/Ti (7)

N = (G)0 + (G)1 + (G)2 + . . . (G)∞ = (I−G)−1 (8)

where gij is the dimensionless input-oriented intercomponent flow from sector i to sector j;
Gn is the dimensionless integral flow intensity matrix with n path length and I(n×n) is the
identity matrix.

2.2. Ecological Network Analysis

The dependence and control degrees of one sector to other sectors can present the
system’s ecological hierarchy structure. The dependence degree means the ability of one
sector receives urban solid waste from other sectors, while the control degree denotes the
ability of one sector delivers urban solid waste to other sectors. The sum of all sectors’
dependence (or control) degrees is equal to 1. To reflect how the variations in solid waste
flow of a sector influence the USWS’s ecological hierarchy structure, indexes (i.e., pulling
force weight and driving force weight) in the ecological control analysis method are used
to detect the sectoral dependence and control degrees as follows [31]:

Y = diag(T) ∗N (9)

ID = Y−D = yij − fij (10)

wi =
n

∑
j=1

yij/
n

∑
i=1

n

∑
j=1

yij (11)

wj =
n

∑
i=1

yij/
n

∑
i=1

n

∑
j=1

yij (12)

where Y is the sectoral contribution weight, yij is the integral flow from sector i to j, ID is
the indirect flows of solid waste of sectors, wj is the pulling force weight (PFW) of sector
j, indicating the ability of sectors j receives solid waste from other sectors and wi is the
driving force weight (DFW) of sector i, meaning the ability of sector i delivers solid waste
to other sectors. The difference between PFW and DFW indicates the role one sector plays
in the waste flow chain.

Ecological utility analysis can be utilized to reveal the interconnection among various
sectors in the USWS. The dimensionless direct utility matrix D examines the mutual benefit,
and the integral utility intensity matrix U contains all solid waste interflows pathway. D
and U can be calculated based on Equations (13) and (14) [32,33]:
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D = [dij] = ( fij − f ji)/Ti (13)

U = (D)0 + (D)1 + (D)2 + . . . (D)∞ = (I−D)−1 (14)

Transforming U to sign(U) (including signU(+) and signU(−)) judges the integral
ecological relationships between pairwise sectors. Relationships include: (i) exploitation
(+, −) means sector i exploits j, indicating sector i receive wastes from j (the same applies
to (−, +)); (ii) competition (−, −) means the relationship is harmful to both sectors; (iii)
mutualism (+, +) means the relationship is beneficial to both sectors; (iv) neutralized
(0, 0) means there is no impact on each other. Three indexes are employed to assess the
comprehensive properties of the USWS:

SI =
n

∑
i=1

n

∑
j=1

uij (15)

MI = signU(+)/signU(−) (16)

R =
N(+,+) + N(−,−)

N
(17)

where signU(+) and signU(−) are the number of positive and negative signs in U; N(+, +)
and N(−, −) are the amounts of mutualism and competition relationships and N is the
total number of all relationships. Synergism index (SI) and mutualism index (MI) assess
fitness and symbiosis of the USWS [34]. When MI > 1 and SI > 0, the USWS is mutualistic.
Otherwise, the USWS requires to be modified.

2.3. Fractional Factorial Analysis

The USWS involves a number of economic sectors. These sectors’ solid waste production
may be interrelated to each other, increasing the complexity of the decision-making process.
Fractional factorial analysis (FFA) can be employed to recognize the main factors and detect
their interactions on the response variables of the USWS. Sectoral solid waste production (ei
in E) and sectoral direct consumption coefficient (aij = zij/xj) can be chosen as factors, which
are divided into multiple levels. Solid waste production intensity (abbreviated as SPI) can
be selected as the response when SPI = direct solid waste production (Mg)/gross domestic
product (104 RMB¥ = 1542 USD). Using a fractional factorial analysis can screen main ei and
aij as well as quantify their interactions with reduced experimental cost. Researchers select
an appropriate experimental matrix based on the number of ei and aij [35]. A set of SPI values
are gained by running the EIOM based on the matrix. Fractional factorial analysis quantifies
the sensitivity of SPI to important factors and their combinations through addressing the
curve traits of SPI when factors change at various levels. The quadratic sum for single factor
and two-factor combinations are presented as follows [36,37]:

SSA =
I

∑
i=1

(
J

∑
j=1

K

∑
k=1

Yijk

)2

/JK−
(

I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK (18)

SSB =
J

∑
j=1

(
I

∑
i=1

K

∑
k=1

Yijk

)2

/IK−
(

I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK (19)

SSA×B =
I

∑
i=1

J

∑
j=1

(
K

∑
k=1

Yijk

)2

/K−
(

I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK− SSA − SSB (20)

SST =
I

∑
i=1

J

∑
j=1

K

∑
k=1

Y2
ijk −

(
I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK (21)

where I and J are the designed levels of factors A and B, respectively; yijk is the observed value
in the Kth replication when A and B are at level Ith and Jth; SSA, SSB, and SSA×B denote the
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square sum of A, B, and their combinations and SST is the total of squares. The contribution
of each factor is calculated as the sum of its squares to the sum of the total squares.

3. Case Study
3.1. Study Area

Fujian Province lies between latitudes 23◦33′ and 28◦20′ N, and longitudes 115◦50′

and 120◦40′ E. It is an important economic development province with a land area of
121,400 km2 located in the southeast coast of China. The total population of Fujian reached
41.54 million in 2020. It had a gross domestic product (GDP) of 0.677 trillion USD in 2020,
occupying 4.3% of the whole country (the eighth place of all provinces in China). Over the
past 40 years, the economic output of primary industry significantly decreased and the
economic output of tertiary industry greatly increased. In 2017, the primary, secondary,
and tertiary industries accounted for 6.9%, 47.7%, and 45.4% of the total GDP. The amount
of direct urban solid waste reached 73.7 × 106 Mg in 2017, while the corresponding
comprehensive disposal-utilization rate was 66.9%. Compared with 2012, the amount of
direct solid waste decreased 23.3% and disposal-utilization rate also decreased 22.7%. The
decrease in direct waste production indicated that Fujian made some achievements in urban
solid waste production reduction; however, the problem still concerns local managers.

3.2. Data Collection and Analysis

The 42-sector IOT of Fujian Province in 2012 and 2017 were extracted from Fujian
Statistics Bureau. The 42 sectors were merged into nine sectors based on the Industrial
Classification for Nation Economic Activities (GB/T 4754-2017), as described in Table 1. Table 2
lists the merged economic input-output tables in 2012 and 2017. The data of urban solid waste
was obtained from Fujian Statistical Yearbook, related official website and literature [38,39].
A two-level fractional factorial analysis was adopted for designing a set of scenarios. Five
sectoral solid waste production (ei) and five sectoral direct consumption coefficients (aij) were
selected as deigned factors, with each divided into low (L) and high (H) levels. According
to the number of factors, a 2 (10−5) orthogonal array was chosen to present the experimental
scenarios. Thirty-two SPI values were obtained through repeatedly running the model. The
square sum of individual factor and factor combinations was calculated.

Table 1. Abbreviations of 9 sectors.

No. Abbreviation Sector

1 AGR Agriculture, Forestry, Animal Husbandry and Fishery
2 MIN Mining Industry
3 PM Food, Wine, Drink, Tea Manufacturing and Tobacco Processing

Textile Garments Products
Timber Processing

Paper Products
4 AM Petroleum Processing, Coking and Nuclear Fuel Processing

Chemical Products
Nonmetal Minerals Products

Smelting and Pressing of Metals
Metal Products

General and Special Equipment
Transportation Equipment

Electric Equipment and Machinery
Computer, Communication and Other Electronic Equipment

Instruments and Meters Machinery
Others Manufacturing

5 ELE Production and Supply of Electricity, Gas and Water
6 CON Construction
7 TRA Transportation, Storage and Postal Services
8 WHO Wholesale, Retail and Accommodation
9 OTH Other Social Services
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Figure 1. The formulation and application of the FE-PIOM model.

Figure 1 summarizes the formulation and application of the FE-PIOM model. The first
step is to merge a large number of sectors into a small number of sectors in input-output
table and transform the monetary input-output model into physical input-output model to
describe sectoral linkages; calculate the driving force weight and pulling force weight to
detect ecological hierarchy structure and then figure out the exploitation, competition, and
mutualism to calculate ecological pairwise relationships. The second step is to select a set
of proper factors, choose fractional experimental matrix, repeat the first step according to
the matrix, recognize main factors and their interactions and identify a sound strategy.
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Table 2. Merged economic input-output tables in 2012 and 2017 (106 USD).

Output

Input Intermediate Demand Final
Demand

Import Import from
Other Provinces

Total
OutputAGR MIN PM AM ELE CON TRA WHO OTH

In 2012

Intermediate
input

AGR 3731 9 21,560 1276 1 770 83 3232 325 18,403 244 2590 46,555
MIN 56 2253 772 19,410 4658 630 18 0 2 1311 4501 12,849 11,758
PM 5793 189 80,049 7430 125 1237 486 3952 6523 110,528 12,345 4611 199,356
AM 5387 2055 19,024 135,624 1677 42,888 8856 1359 7270 119,423 36,241 36,670 270,652
ELE 570 653 4219 10,304 6444 692 1520 590 1844 3267 678 0 29,425
CON 447 22 227 303 109 1237 615 14 467 117,306 36,221 0 84,652
TRA 580 1040 5814 14,375 4348 6273 580 566 2232 12,003 8528 0 39,283

WHO 717 324 6373 8237 1951 2413 1144 1647 7987 24,287 2348 0 52,733
OTH 1770 817 5344 9181 2765 3031 9106 10,170 20,175 74,040 17,740 17 118,642

Added value 177,671 27,503 4397 55,975 64,512 7346 25,480 16,874 31,080 71,817 0 0 0

In 2017

Intermediate
input

AGR 5635 6 34,154 1820 0 160 4866 692 786 27,473 9784 4707 61,102
MIN 54 6112 13,257 24,993 3807 4367 7 0 152 141 24,102 16,587 12,201
PM 7094 317 174,240 17,362 144 20,976 9144 8746 10,322 189,337 18,374 8410 410,896
AM 7768 534 43,473 207,395 2215 30,917 13,514 732 7617 157,184 78,588 31,481 361,282
ELE 571 439 4899 3574 18,867 680 4220 460 5870 1961 0 426 41,113
CON 627 25 1182 982 723 1331 1345 153 974 145,435 0 352 152,426
TRA 1183 454 11,048 7535 954 44,847 8090 2085 7611 24,938 0 4428 104,318

WHO 798 198 14,900 7825 2587 2726 5977 1422 8144 47,164 0 3858 87,883
OTH 1853 354 10,851 8040 2559 4505 14,481 23,786 56,404 118,745 32 11,611 229,935

Added value 229,443 35,518 3762 102,892 81,757 9257 41,917 42,675 49,807 132,055 0 0 0
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4. Results and Discussion
4.1. Status in 2012 and 2017

Table 3 lists sectoral solid waste production, solid waste production coefficients,
and export/import of solid waste in Fujian. The total waste production approached
275.66 × 106 t in 2012, where the direct and indirect productions accounted for 34.82% and
65.18%, respectively. Total waste production decreased to 236.05 × 106 t in 2017, with
direct and indirect productions decreasing by 23.23% and 9.63%, respectively. The amount
of indirect waste production was more than that of direct waste production, implying
the significance of the indirect production flow calculation. In 2012, PM, AM, and CON
were the dominant contributors, occupying 27.73, 42.75 and 12.59% of the total solid waste
production. In 2017, the proportions of the three sectors’ production were 34.17, 34.50,
and 11.59%, respectively. These results revealed that solid waste was mainly produced by
primary manufacturing (PM) and advanced manufacturing (AM). In addition, PM was
the biggest solid waste net exporter (23.982 × 106 t in 2012 and 22.019 × 106 t in 2017) and
CON was the largest importer (13.627 × 106 t in 2012 and 10.229 × 106 t in 2017). Fujian
highly relied on clothing, lithium cells, auto parts manufacturing and food processing, and
large amounts of construction materials were purchased from other provinces. Therefore, a
future reduction strategy should focus on cutting down waste from these sectors.

Table 3. Results gained from physical input-output table in Fujian in 2012 and 2017.

Sector

Sectoral Direct
Solid Waste
Production

(106 Mg)

Sectoral Indirect
Solid Waste
Production

(106 Mg)

Total Solid Waste
Production
Coefficient

(10−6 Mg/USD)

Final
Demand

Production
(106 Mg)

Export
(106 Mg)

Import
(106 Mg)

Net Import
(106 Mg)

In 2012

AGR 1.091 5.899 3.598 2.115 0.649 0.426 −0.223
MIN 1.776 2.295 8.296 0.125 0.329 6.007 5.678
PM 30.105 46.337 9.188 11.898 30.484 6.502 −23.982
AM 40.871 76.985 10.435 20.202 31.802 31.750 −0.052
ELE 4.444 5.991 8.498 1.109 0.050 0.240 0.191
CON 12.783 21.925 9.825 46.873 1.224 14.851 13.627
TRA 0.921 6.051 4.253 1.224 0.906 1.514 0.607

WHO 1.236 4.220 2.479 1.346 1.167 0.243 −0.924
OTH 2.781 9.950 2.571 7.277 0.668 1.905 1.237

In 2017

AGR 1.138 4.164 2.080 2.331 0.054 1.257 1.204
MIN 0.807 1.526 4.582 0.009 0.018 7.780 7.762
PM 27.185 53.466 4.703 9.887 27.277 5.257 −22.019
AM 23.903 58.004 5.433 20.911 14.725 24.954 10.229
ELE 2.720 5.639 4.872 0.387 0.012 0.087 0.075
CON 10.085 17.274 4.301 26.090 0.013 0.063 0.050
TRA 1.943 8.459 2.389 2.038 0.449 0.442 −0.007

WHO 1.637 3.836 1.492 2.438 0.499 0.240 −0.259
OTH 4.283 9.985 1.487 7.149 0.220 0.722 0.503

Figure 2 describes the direct and indirect solid waste flows among sectors in 2012 and
2017. Each sector has a specific color and the line between sectors indicates the direction of
waste flows. The width of the line in each sector represents the amount of waste inflow and
outflow. All direct waste flows are positive, while indirect waste flows have positive and
negative values. A positive value means one sector receives waste from the other sector,
whereas a negative value denotes one sector delivers waste to the other sector. It can be
seen that direct waste mainly flowed to CON, while indirect waste flowed to all sectors. In
Figure 2a,b, the largest contributor of direct waste flow was AM, which contributed 54.23%
and 44.18 % of the total amount in 2012 and 2017, respectively. It contributed a large part
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of its direct waste flow to CON and PM (occupying 27.62% in 2012 and 23.67% in 2017)
and itself (accounting for 60.50% in 2012 and 66.01% in 2017). In Figure 2c,d, AM was still
the largest contributor of indirect waste flow, which contributed 73.29% and 57.62 % of the
total amount in 2012 and 2017, respectively. The indirect waste of AM flowing to all other
sectors was almost the same (occupying 20% to 30%). These results show the relationship
of indirect waste flows is more complicate than that of direct flows.

Figure 2. Direct and indirect solid waste flows among sectors. (a) 2012_direct; (b) 2017_direct;
(c) 2012_indirect; (d) 2017_indirect.

Figure 3a displays the sectoral DFW (driving force weight) and PFW (pulling force
weight) in 2012 and 2017, representing the control and dependent degrees of a sector on
the USWS. AM’s DFW and PFW were the highest; the values of DFW were 71.34% in 2012
and 55.43% in 2017; the values of PFW were 16.90% in 2012 and 17.89 % in 2017. These
results indicate that AM was the biggest control sector and dependent sector that affected
upstream sectors (basic industries that provide raw materials and primary products) and
downstream sectors (advanced industry that consumes products from upstream). The
sectoral total weight equals the difference between sectoral DFW and sectoral PFW. The
sector was a controller in the system when DFW was greater than PFW, whereas the
sector was a dependent sector in the system when DFW was smaller than PFW. Thus,
AM finally acted as a controller, since its DFW was greater than PFW (Sectoral total
weight = DFW−PFW > 0). It was obvious that AM and PM were dominant sectors that
controlled the other producers, while the seven sectors (i.e., AGR, MIN, ELE, CON, TRA,
WHO, and OTH) depended on the other sectors’ product supply. In 2017, the total weight of
AM and PM decreased by 7.34% compared with 2012 due to reduced economic production
scales. Generally, the ecological hierarchy structure was not healthy due to the high sectoral
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total weight value of AM. Carrying out reduction measures from the production side
(especially from AM) could be helpful for adjusting hierarchy structure of the USWS.

Figure 3. Ecological network analysis. (a1) sectoral DFW and PFW in 2012; (a2) sectoral DFW and PFW in 2017; (b1) sectoral
pairwise relationships in 2012; (b2) sectoral pairwise relationships in 2017.

Figure 3b shows the sectoral pairwise relationships related to solid waste production
in 2012 and 2017, with a total of 45 pairs of relationships in each year. Exploitation
relationships contributed 54.77% and 68.89% to all pairs of relationships in 2012 and 2017.
The proportions of mutualism relationships were 13.33% in 2012 and 6.67% in 2017. High
value of SI (i.e., SI = 8.96 > 0 in 2012, SI = 9.65 > 0 in 2017) indicated the synergistic effect of
the USWS. A high value of MI (i.e., MI = 1.38 > 1 in 2012, MI = 1.31 > 1 in 2017) showed that
the USWS was mutualistic. Results of sectoral pairwise relationships were acceptable for
decision makers. However, the number of mutualism relationships in 2017 was less than
that in 2012. In order to make the USWS more beneficial, exploitation relationships needed
to be transformed to mutualism relationships, as much as possible, through adjusting
strategies. It was also found that the production structure of Fujian had little changes.

4.2. Identification of Key Factors

Based on the former status analysis, the effects of different sectoral solid waste produc-
tion coefficients and sectoral direct consumption coefficients on USWS performance can be
quantified. The designed factors, and corresponding experimental scenarios, are presented
in Table A2. Figure 4 presents half-normal plots of the standardized effects. The further a
factor lies away from the red line, the corresponding effect is more obvious. The significant
factors that affected the SPI were AM_a, PM_a, AM_e and PM_e. The most important factor
causing solid waste pollution in Fujian Province was AM_a, which contributed 64.71% in
2012 and 51.14% in 2017, followed by PM_a accounting for 22.01% and 37.04%. SPI was
sensitive to the changes in sectoral direct consumption coefficients of AM and PM. These
results implied that unit GDP solid waste production of AM and PM were higher than in
other sectors. The contributions of AM_a decreased and PM_a increased in 2017, indicating
that the Fujian Province gradually focused on the economic development of PM.

Figure 5 shows the effect plots of significant factors, which described the single and
joint effects of the imperative factors on SPI. In Figure 5(a1,b1), results indicate that PM_a,
AM_a, ELE_a and OTH_a had negative effects on SPIm, while other factors had positive
effects on SPI. For example, in 2012, the average value of SPI was 0.632 under L level of
PM_a and 0.533 under H level of PM_a. To reduce the SPI of USWS, the increment of
factors that had negative effects, and the decrement of factors that had positive effects,
might be helpful. In terms of joint effects presented in Figure 5(a2,b2), the most significant
interactions between two sectors were CON_e*OTH_e in 2012 (contributed 1.53%) and
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TRA_e*OTH_e in 2017 (contributed 2.53%). The two crossed lines denote that the effect
of another factor changes when one factor is at different levels. These demonstrated
that control of the economic products of social service sectors (e.g., public infrastructure
management sub-sector, culture, sports and entertainment sub-sector) can help reduce the
SPI, even if the amounts of solid waste production of CON and TRA increased.

Figure 4. Half-normal plots of the standardized effects: (a) 2012; (b) 2017.

Figure 5. Effect plots of significant factors. (a1) main effect in 2012; (a2) joint effect in 2012; (b1) main effect in 2017; (b2) joint
effect in 2017.
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4.3. Adjustment of USWS

Figure 6 presents the values of solid waste production intensity (SPI) under 32 sce-
narios, showing the value of SPI was volatile. The SPI approached 0.487 (under S32) in
2012 and reached 0.228 (under S32) in 2017. The SPI decreased by 1.43% (under S4) to
18.89% (under S1) in 2012, and the SPI declined by 3.51% (under S6) to 17.98% (under S1)
in 2017. Under S1, the strictest direct solid waste reduction policy was implemented in all
sectors, while the sectoral direct consumption coefficients were maintained at high levels.
Under S4 and S6, the loose direct solid waste reduction policy was implemented to PM,
while the sectoral direct consumption coefficients of PM and AM were maintained at high
levels. This implies that conducting strict environmental policy on AM and PM, as well as
reducing the commodity consumption of CON, TRA, and OTH from other sectors (e.g.,
improve material usage efficiency and develop advanced material) would be useful for
reducing SPI of the USWS.

Figure 6. The values of solid waste production intensity (SPI) under 32 scenarios: (a) 2012; (b) 2017. (“S” means “Scenario).

Figures 7–9 describe results of sectoral solid waste production and ecological network
analysis under six scenarios in 2012 and 2017. Corresponding SPI values were lower than
the actual values. In Figure 7, results showed that the amounts of solid waste production
decreased by 3.82% (under S27) to 17.95% (under S1) in 2012 and decreased by 3.39%
(under S27) to 16.30% (under S1) in 2017. The reduction of AM solid waste production
was the highest among all sectors. In 2012, the amount decreased 34.438 × 106 t (under
S27) to 49.834 × 106 t (under S1); in 2017, the amount reduced 1.511 × 106 t (under S27) to
13.885 × 106 t (under S1). These results reveal that the selected scenarios can effectively
reduce solid waste production. In Figure 8, results indicate that the total weights of all
sectors changed with the varied scenarios, implying that the system hierarchy structure
was sensitive to the variations in factors. In 2012, the total weight of PM and AM were
in the range of 61.47% (under S1) and 63.71% (under S4), an increase of −0.87% to 1.37%
compared with that under S32. In 2017, the total weight of PM and AM was in the range of
53.53% (under S1) and 54.24% (under S6), a decrease by 0.75% to 1.46% compared with that
under S32. According to former descriptions in status analysis, it was desired that the total
weight of PM and AM should decrease. These results indicate that the selected designed
scenarios could help adjust the hierarchical structure of USWS. In Figure 9, results show
that the number of mutualistic, competitive, and exploitation relationships had no obvious
changes; other measurements needed to be detected.
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Figure 7. Sectoral urban solid waste production under different scenarios.

Figure 8. Sectoral total weight under different scenarios.
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Figure 9. Pairwise sectoral relationships under different scenarios. (a1) 2012_S1; (a2) 2012_S6; (a3) 2012_S7; (a4) 2012_S26;
(a5) 2012_S27; (a6) 2012_S29; (b1) 2017_S1; (b2) 2017_S6; (b3) 2017_S7; (b4) 2017_S26; (b5) 2017_S27; (b6) 2017_S29.

5. Conclusions

A factorial ecological-extended physical input-output model (FE-PIOM) was devel-
oped for enhancing urban solid waste system (USWS) performance, which integrated
techniques of physical input-output model (PIOM), ecological network analysis (ENA),
and fractional factorial analysis (FFA). The FE-PIOM could effectively assess urban solid
waste productions and embodied flow path, quantify single and joint effects of multi-
ple factors, as well as provide sound urban solid waste reduction path. The developed
FE-PIOM was employed to a real case study of Fujian, an important economic develop-
ment province in China, for supporting the tradeoff between economic development and
environmental protection.

The main findings are summarized as: (i) the amount of indirect waste production
was higher than the direct waste production, with the indirect production occupying more
than 60 to 70% of the total production (i.e., the sum of direct and indirect productions);
(ii) the indirect waste flows were more complicated than those of direct flows; (iii) solid
waste mainly was produced by primary manufacturing (PM) and advanced manufacturing
(AM), accounting for 30% and 38% of the total production, respectively; (iv) AM was the
biggest sector which controlled the other producers, while its control weight was too high
(35 to 50% of the total weight); (v) the USWS was mutualistic due to SI > 0 and MI > 1;
(vi) AM_a (i.e., direct consumption coefficient of AM) and PM_a (i.e., direct consumption
coefficient of PM) were the most important factors which had negative effects on USWS
solid waste production intensity (SPI), contributing 50–60% and 22–37% to standard effects;
(vii) the interactions between CON_e*OTH_e (i.e., solid waste production of CON*solid
waste production of OTH) and TRA_e*OTH_e were obvious; (viii) for enhancing USWS
performance, reducing the commodity consumption of AM and PM from other sectors by
20% (e.g., improve material usage efficiency and develop advanced material), as well as
decreasing economic activities of CON, TRA, and OTH by 20%, would be useful.
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This is the first attempt to apply the FE-PIOM to a real-world case, and results can
support decision makers to adjust related economic activity strategies for reducing urban
solid waste production, improving ecological hierarchy structure and promoting ecological
pairwise relationships. More efforts can be made in future work. This research used the
input-output tables of 2012 and 2017 due to data limitation; meanwhile, the production
structure of Fujian had little changes in previous years. Predicting future input-output
tables (e.g., for the periods of 2021–2025, 2026–2030, and 2031–2035) using the RAS method
could help plan an optimal urban solid waste reduction path. It is essential to integrate
fuzzy/stochastic analysis methods into the FE-PIOM to cope with the inherent uncertainties
existing in economic growth, industrial structure transition and solid waste reduction.
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Appendix A

Table A1. Summarization of Previous Literature.

Category Description References

Physical input-output model

Investigate the impacts of four categories of solid waste recycling on
urban solid waste metabolism to support sustainable development. Liang and Zhang

Estimate the regional energy and environmental benefits of solid waste
utili-zation for energy recovery. Wang et al.

Rank economic sectors based on solid waste productions and pointed
out potential areas to pursue innovations in material use. Meyer et al.

Quantify different types of solid waste production recycling over the
period 2005–2017 in China. Huang et al.

Ecological network analysis

Analyze the directions, locations, and drivers of carbon flows resulting
from global trade. Zhang et al.

Evaluate water-related impacts of energy-related decisions. Wang et al.

Estimate the metabolic status of energy system in China. Wang

Investigate integral carbon emissions at city scale. Zhang et al.

Fractional factorial analysis Experimental designs for detecting response sensitivity in
environmental fields.

Jiang et al.
Gerrewey et al.
Li et al.
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Appendix B

Table A2. Designed Scenarios.

Scenario PM_e AM_e

ELE_e
(in 2012)

CON_e
(in 2012)

OTH_e PM_a AM_a

ELE_a
(in 2012)

CON_a
(in 2012)

OTH_a
CON_e

(in 2017)
TRA_e

(in 2017)
CON_a

(in 2017)
TRA_a

(in 2017)

1 L L L L L H H H H H
2 H L L L L L L L L H
3 L H L L L L L L H L
4 H H L L L H H H L L
5 L L H L L L L H L L
6 H L H L L H H L H L
7 L H H L L H H L L H
8 H H H L L L L H H H
9 L L L H L L H L L L

10 H L L H L H L H H L
11 L H L H L H L H L H
12 H H L H L L H L H H
13 L L H H L H L L H H
14 H L H H L L H H L H
15 L H H H L L H H H L
16 H H H H L H L L L L
17 L L L L H H L L L L
18 H L L L H L H H H L
19 L H L L H L H H L H
20 H H L L H H L L H H
21 L L H L H L H L H H
22 H L H L H H L H L H
23 L H H L H H L H H L
24 H H H L H L H L L L
25 L L L H H L L H H H
26 H L L H H H H L L H
27 L H L H H H H L H L
28 H H L H H L L H L L
29 L L H H H H H H L L
30 H L H H H L L L H L
31 L H H H H L L L L H
32 H H H H H H H H H H
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