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Abstract: Shortwave radiation density flux (SRDF) modeling can be key in estimating actual evap-
otranspiration in plants. SRDF is the result of the specific and scattered reflection of shortwave
radiation by the underlying surface. SRDF can have profound effects on some plant biophysical
processes such as photosynthesis and land surface energy budgets. Since it is the main energy source
for most atmospheric phenomena, SRDF is also widely used in numerical weather forecasting. In
the current study, an improved version of the extreme learning machine was developed for SRDF
forecasting using the historical value of this variable. To do that, the SRDF through 1981–2019 was
extracted by developing JavaScript-based coding in the Google Earth Engine. The most important
lags were found using the auto-correlation function and defined fifteen input combinations to model
SRDF using the improved extreme learning machine (IELM). The performance of the developed
model is evaluated based on the correlation coefficient (R), root mean square error (RMSE), mean
absolute percentage error (MAPE), and Nash–Sutcliffe efficiency (NSE). The shortwave radiation
was developed for two time ahead forecasting (R = 0.986, RMSE = 21.11, MAPE = 8.68%, NSE = 0.97).
Additionally, the estimation uncertainty of the developed improved extreme learning machine is
quantified and compared with classical ELM and found to be the least with a value of±3.64 compared
to ±6.9 for the classical extreme learning machine. IELM not only overcomes the limitation of the
classical extreme learning machine in random adjusting of bias of hidden neurons and input weights
but also provides a simple matrix-based method for practical tasks so that there is no need to have
any knowledge of the improved extreme learning machine to use it.

Keywords: water resources; Daymet V3; Google Earth Engine; improved extreme learning machine
(IELM); sensitivity analysis; shortwave radiation flux density; sustainable development

1. Introduction

Shortwave radiation is of essential significance in climate research since it controls
the complete energy exchange between the land/ocean surface and atmosphere [1]. It
plays a crucial role in biogeochemical, physical, ecological, and hydrological processes [2].
Shortwave radiation is the energy source that causes photosynthesis, transpiration, evap-
oration, and other significant process connected to agriculture systems. It is incredibly
variable (both temporally and spatially) on the earth’s surface. Precise shortwave radiation
is essential for evapotranspiration models, which are employed to construct irrigation
plans to improve crop yield while saving water and minimizing herbicide, fertilizer, and
pesticide applications [3].

Sustainability 2021, 13, 8009. https://doi.org/10.3390/su13148009 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6906-629X
https://orcid.org/0000-0003-2817-0928
https://orcid.org/0000-0001-6169-3654
https://doi.org/10.3390/su13148009
https://doi.org/10.3390/su13148009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13148009
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13148009?type=check_update&version=2


Sustainability 2021, 13, 8009 2 of 23

Reliable calculation of shortwave radiation is essential as a significant component
of the energy budget to understand global change [4–7]. In the clear sky, most of the
shortwave radiation is caused by direct sunlight. Shortwave radiation is divided into
direct and diffuse components. The direct component is the energy that emanates directly
from the sun’s rays, and particles and molecules disperse the diffuse component in the
air [8]. The amount of diffused shortwave radiation is affected by the height of the sun.
Shortwave solar input stands as an essential component of the surface energy balance and
is considered to be the principal source of energy on Earth [9–12]. The available energy for
hydrological processes such as evaporation and transpiration is strongly affected by solar
radiation. Additionally, biological phenomena such as photosynthesis and the carbon cycle
are also dependent on solar radiation (direct and diffused radiation) [13,14].

Re-analysis datasets are constantly being improved with increasing access to ob-
servational data and advances in modeling and data assimilation systems. The use of
re-analysis data has considerable potential for studying areas with a shortage of terrestrial
data. Re-analysis data are a combination of ground observations, field surveys, and vari-
ous models [15]. Different re-analysis datasets are available on a continental and global
scale today, e.g., Twentieth-Century Reanalysis, Daily Surface Weather and Climatological
Summaries (Daymet), and the Global Land Data Assimilation System. These datasets can
provide continuous data and compensate for the gap between terrestrial data.

The Daymet model includes a set of tools designed to calculate estimates of daily
weather parameters in Canada, the United States, and Mexico. The main advantages of
Daymet are (1) covering the vast majority of North America, (2) providing data on a daily
scale for a long period starting from 1980, (3) low spatial resolution (i.e., one kilometer),
which is higher than other Reanalysis data. According to the mentioned reasons and
increasing the modeling accuracy, Daymet was used to provide shortwave radiation flux
density (SRFD) information.

In the last decade, applying the machine learning-based approach to modeling non-
linear complex problems in hydrology and environmental science has attracted many
scholars [16–19]. The main advantages of these approaches are high accuracy, low human
intervention, and continuous improvement [20–22]. One of the commonly used machine-
learning-based techniques is the feedforward neural network, which has been successfully
applied in different fields of science. The main training algorithm in this approach is
backpropagation. The key advantage of this method is the nonlinear mapping of the inde-
pendent input variables and dependent output variable(s), which overcomes the limitation
of the classical regression-based approaches. It should be noted that although non-linear
mapping has several advantages, it preserves some of the limitations of the parent indepen-
dent input variables. For example, it can preserve the expected value of the autocorrelation
function but not the higher-order joint moments and time-asymmetry [23]. The feedfor-
ward neural network trained with the backpropagation algorithm is a well-known machine
learning method. According to easy implementation, suitable performance, and inherent
simplicity [24], it has been successfully applied in different fields of science [25–28]. To
overcome the drawbacks of this approach, including slow convergence, time-consuming
training [29], and trapping in local minima that leads to low generalizability [30], the ex-
treme learning machine (ELM) [31] was introduced. The ELM is a single-layer feedforward
neural network with a fast training process. The main pros of this algorithm are high
accuracy, robustness, least user intervention, rapid learning rate, a learning process that
requires only a single iteration, and high generalization [32]. However, the main drawback
of the ELM is the random generation of the two main matrices, including bias of hidden
neurons and input weights. To remove the main limitation of the ELM, an improved ver-
sion of the ELM is developed based on the orthogonal of the random generation matrices
and the definition of an iteration parameter.

According to current knowledge about the influence of non-renewable energies on the
environment, renewable energy sources have attracted scholars for their research interests.
It is principally because renewable energies are stabilized by natural procedures, which
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do not contribute to climate change, global warming, and greenhouse gases. With the
advancement of science and the discovery of solar radiation as a sustainable source of
renewable energy, it has been considered to overcome the problems caused by fossil fuels.
Moreover, the Sustainable Development Goals, which include various economic, social,
and environmental goals, provide a global framework that the United Nations member
states are committed to achieving [33]. The seventh goal of sustainable development is
to improve access to clean and affordable energy, which aims to ensure that sustainable,
reliable, modern, and affordable energy is accessible to everyone. To achieve this goal,
energy consumption and efficiency must be controlled and monitored. Solar radiation as a
renewable energy source can contribute to the seventh goal of sustainable development [34].
In this regard, it is necessary to develop practical and appropriate models for each region
to achieve sustainable development goals. This study tries to establish a suitable model
for SRFD estimation in Nunavik, which is one of the coldest regions of the world, so that
it can be used to play an effective role in environmental processes such as vegetation
management, water resources management, lake management, control of changes in land
use, and so on.

The primary purpose of the current study is to build an improved version of the ELM
known as IELM for monthly short-term prediction of the Shortwave Radiation Flux Density
(SRFD) in the Nunavik region, Quebec, Canada. It has been shown that key hydrological-
cycle processes (such as evapotranspiration, temperature, and precipitation) exhibit the
so-called long-range dependence that also affects the fractal short-range dependence [35],
and thus, prediction. The novelty of this study is four-fold. (1) Introducing the IELM
to overcome the main constraint of the ELM in random generation of the bias of hidden
neurons and input weights matrices: In this model, iteration parameters and calculation of
orthogonal random generation matrices are considered to find the most reliable results in
terms of simplicity and accuracy simultaneously. The main advantages of this model are
high generalization capability and fast training samples for a large number of iterations.
(2) Coding a JavaScript-based code in the Google Earth Engine environment to extract
SRFD data from the gridded Daymet product: Daymet supplies long-term and continuous
estimates of daily weather and climatology factors generated using ground-based obser-
vations through statistical modeling techniques. (3) Time series-based modeling of the
SRFD is used without requiring other independent variables to develop a simple model.
(4) Apractical matrix-based equation for practical applications is provided.

2. Materials and Methods
2.1. Case Study

SRFD is the main component of energy exchanges between the atmosphere, the Earth’s
surface, and the ocean. Therefore, it affects the context of temperature, atmospheric and
oceanic circulation, and the hydrological cycle [1]. The selected case study is located in the
northern part of Quebec in Canada. The Eastern Hudson Bay Basin is situated in the east
of Hudson Bay (longitudes 76◦40′ W–71◦30’ W and latitudes 54◦50’ N–57◦10’ N), which
is a part of the Nunavik area (Figure 1). Nunavik lies in both the subarctic and Arctic
climate zones. Due to the climatic conditions of this area, access to the site is complex,
and measuring hydrological variables in this area is not only easy but also costly. The
basin’s elevation is between zero and 594 m relative to the mean sea level, and its average
elevation is 300 m. The most important natural phenomena of this basin are clearwater
lakes composed of two separate lakes that occupy the middle part of the basin. The deepest
part of these lakes is 178 m. Annual precipitation in this basin is between 600 to 852 mm
with an average of 726 mm.
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Figure 1. The geographic location of the study area.

Based on land cover data (MOD12Q1, 500 m × 500 m) obtained from NASA Land
Processes Distributed Active Archive Center, open shrubland mostly covers the northern
parts of the area with a height of one to two meters, the southern parts mostly include
savannas areas with 10% to 30% tree cover, and most of the cover is grasslands in coastal
regions (Figure 2).
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Solar energy is a clean source that does not introduce any pollutants to the environ-
ment, and it may even overcome the problems caused by fossil fuels. It should be noted
that this is mostly possible if the solar energy is combined with a water-energy nexus
battery (e.g., hydroelectric dam) to be effective and sustainable as an energy source. In this
regard, its efficient use requires practical and effective knowledge [36]. SRFD data provide
information about the impact of solar energy on the Earth in a given area over a period of
time. It should be noted that due to the high cost of observing and measuring, this parame-
ter is not easily accessible. Therefore, there is a need to create an alternative for estimating
this data as well as predicting it [37,38]. Over the past decade, SRFD measurements as well
as sunshine have declined in western Canada and elsewhere. Since the amount of SRFD
is critical for calculating the evapotranspiration, soil melt, snowmelt radiation, and other
hydrological cycle components, it is necessary to provide practical and accurate methods to
estimate it [39]. Because a large volume of the study area is composed of different vegeta-
tion and water, solar radiation has an influential role in the area’s environment. Changes in
solar radiation in each region may affect different parameters such as plant growth period,
photosynthesis, and melting outside the natural time of ice and snow (especially important
due to the cold region) [40,41].

Since the study area is one of the cold regions and its period of frost and snowfall
is high, the management of melting snow and ice is necessary for this region. Therefore,
comprehension of snow and ice melting levels is essential for the proper management of
available water resources, including short-term or seasonal flow forecasts, for hydrological
studies and ice–snow mass balance. SRFD is an effective parameter in this regard [42,43].

2.2. Daymet V3 (Daily Surface Weather and Climatological Summaries)

Daymet V3 provides daily ground-level weather parameters in North America (Canada,
Mexico, USA, Hawaii, and Puerto Rico) (https://daymet.ornl.gov/, accessed on 31 March
2020). This data is available with a spatial resolution of 1000 m and a time interval of
one day. Daymet includes data on daily minimum 2-meter air temperature (◦C), daily
maximum 2-meter air temperature (◦C), precipitation, the partial pressure of water vapor,
duration of the daylight period, snow water equivalent, and shortwave radiation flux [44].

Shortwave radiation flux density (SRFD) was extracted from the gridded Daymet
product for the study area. These data were processed in the Google Earth Engine environ-
ment and provide a monthly time series to apply as input in subsequent analysis. Google
Earth is free, it has up-to-date maps and data, it is available on a wide array of devices, it is
incredibly detailed, and it is very user-friendly. This dataset covers the period from January
1980 to December 2020. To access the SRFD data provided in the Google Earth Engine
by NASA, a JavaScript-based code was offered to extract data for the desired location in
Nunavik.

Google Earth Engine is a cloud platform for global spatial data analysis that allows the
processing of large amounts of data in various fields, including drought, natural disaster
water management, deforestation, vegetation, agriculture, soil studies, climate monitoring,
and conservation of the environment [45]. The Google Earth Engine provides convenient
conditions for developing algorithms and receiving results quickly with easy access and
a user-friendly environment. It improves accessibility and usability by offering Earth
observation data to a wide range of research fields. Additionally, the Google Earth Engine
cloud platform also provides access to relevant data and scripts for users who do not have
the necessary data or computing tools [46,47].

For the current study, 468 SRFD monthly data between 1981–2019 were used to model
SRFD, so that 336 samples (from January 1982 to December 2008) were considered for the
training phase, while the other 132 samples (from January 2009 to December 2019) were
applied to check the performance of the calibrated model. The different values of the SRFD
for both phases are provided in Figure 3. Additionally, the statistical characteristics of the
total, training, and testing data are presented in Table 1.

https://daymet.ornl.gov/
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Table 1. Statistical attributes of SRFD data.

Nbr. Min. Max. 1st Q. Median 3rd Q. Mean σ(n) γ1 γ2

Total 468 41.89 516.18 106.77 243.38 350.39 231.67 131.50 0.11 −1.31
Train 336 43.41 516.18 106.78 245.02 356.37 232.74 131.06 0.08 −1.38
Test 132 41.89 497.03 105.92 232.70 329.67 227.24 128.67 0.08 −1.28

Nbr.: Number of data, Min. and Max.: minimum and maximum of data, 1st Q. and 3rd Q.: first and third quartiles,
σ(n): standard deviation, γ1: skewness, γ2: kurtosis.

2.3. Improved Extreme Learning Machine (IELM)

The backpropagation is a well-established training algorithm for the feed-forward neu-
ral network to solve many nonlinear complex problems leading to acceptable results [48].
However, similar to any machine learning-based approach, the BP has some drawbacks
with its generalization and implementation, including local minima, learning rate, overfit-
ting, low generalization ability [49], and time-consuming training [50].

To overcome the abovementioned limitations, Huang et al. [30] presented the extreme
learning machine (ELM) as a training algorithm for a single-layer feedforward neural
network. Using ELM is so simple that no parameters need to be set other than defining
the network architecture. Therefore, many of the complexities of tuning parameters in
gradient algorithms are not present in this algorithm. Additionally, as the modeling speed
in ELM is so high, most of the training takes a short time with a large amount of data,
which is not easy to model with the classical neural network; it takes about a few minutes.
Therefore, the most important advantages of this method are the least user intervention,
the learning process needing a single iteration, robustness, the fast learning rate, avoiding
local minimizations, high generalization, and high accuracy [51].

The modeling process in ELM consists of three main stages: (1) random determina-
tion of input weights and bias matrices of hidden neurons, (2) calculation of the hidden
layer outputs matrix using randomly generated matrices and activation function, and (3)
calculation of output weights through a linear process. Accordingly, among three different
matrices that need to be quantified, only the output weights are calculated analytically, and
the other two matrices are randomly set. The least-square solution of a linear system is
considered to define the output weights matrix.

To model a problem, it is first necessary to specify the inputs and outputs of the
problem. For the input matrix with d independent inputs and the output of the problem
with m, the outputs are InVi ∈ RDM and Tai ∈ Rz, respectively. The number of S training
samples are defined as {(InVi, Tai)}S

i=1. By considering the f(·) as activation function and
NHN as number of hidden neurons, the output of the feedforward neural network is
considered as follows:

Oi =
NHN

∑
j=1

βjf(aj × InVi + bj, ), i = 1, 2 . . . , S (1)
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where NHN is the number of hidden neurons, S is the number of training samples, βj ∈ Rz

is the output weight matrix that connects the jth hidden node to the corresponding hidden
node, z is the number of the output variable, and Oi and InVi are the output and input
variables, respectively. bj ∈ R is the bias of the jth hidden neuron, and aj ∈ RDM is the
input weights that link the input variables to the jth hidden node and aj · InVi denotes the
inner product of the aj and InVi. The mathematical form of the different activations applied
in the current study are as follows:

Sine
f(OutW, b, InV) = sin(OutW× InV + b) (2)

Radial Basis Function

f(OutW, b, InV) = exp(−(OutW× InV + b)2) (3)

Triangular Basis Function

f(OutW, b, InV) =

{
1− |OutW× InV + b| OutW× InV + b ≥ 0
0 otherwise

(4)

Hardlimit

f(OutW, b, InW) =

{
1 If OutW× InV + b ≥ 0
0 otherwise

(5)

Sigmoid

f(OutW, b, InV) =
1

1 + exp(−(OutW× InV + b))
(6)

Tangent hyperbolic

f(OutW, b, InV) = tanh(OutW, b, InV) =
exp(2(OutW× InV + b))− 1
exp(2(OutW× InV + b)) + 1

(7)

The matrix-based form of Equation (1) with N separated equations is defined as
follows:

Tβ = O (8)

where T, β, and O (O = [O1, . . . , ON]
T) denote hidden neurons’ output, output weight,

and output, respectively. The hidden neurons output matrix (T) is defined as follows:

T(OuTW1, . . . , OuTWL, INV1, . . . , INVN, b1, . . . , bL, )

=

 f(OuTW1 × INV1 + b1) L f(OuTWNHN × INV1 + bNHN)
M O M

f(OuTW1 × INVDM + b1) L f(OuTWNHN × INVDM + bNHN)


DM×NHN

(9)

The two matrices T and β in Equation (8) are unknown. The H is calculated using input
weights and the bias of hidden neuron matrices that both of them are randomly assigned.
Therefore, T is calculated without the experience of training samples. Consequently, the
output weights matrix (β) is the only unknown matrix that should be calculated through
the training phase. To find this matrix, Equation (8) as a linear system should be solved.

The dimension of the T is DM × NHN. The NHN is generally higher than the input
variables (DM), and therefore, the H is not a square matrix. Thus, finding the output
weights matrix using Equation (8) is not simple [30]. To find the output weights matrix, the
optimal least square solution of the output weights matrix by loss function minimization is
calculated as follows:

EELM = MIN‖O− Tβ‖ (10)

where the output weights matrix calculated through the least square solution of the above
equation is calculated as:

β̂ = T+y (11)
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where T+ denotes the Moore–Penrose generalized inverse of the T [52]. The solution of
Equation (10) for NHN < S is as follows:

β̂ = (TTT)
−1

TTO (12)

The dimensions of the bias of hidden neurons, input weights, and output weights
matrices are “1 × NHN”, “DM × NHN”, and “1 × NHN”, respectively. Therefore, the
number of all tuned parameters through the training phase of the ELM is as follows:

k = NHN + DM×NHN + NHN = NHN(DM + 2) (13)

The ratio of the randomly generated parameters that are related to the input weights
(i.e., DM × NHN) and bias of hidden neurons (i.e., 1 × NHN) to the output weight (i.e.,
1 × NHN) is as follows:

R =
NHN + DM×NHN

NHN(DM + 2)
=

NHN(d + 1)
NHN(d + 2)

= 1− 1
DM + 2

(14)

If the number of input variables is one, the R is more than 0.66. Therefore, it is
observed that two-thirds of the parameters tuned in the modeling using ELM are randomly
determined, which has a significant impact on the modeling results. An inaccurate value
of these parameters may reduce the generalizability of the developed model. Therefore, in
this study, two competencies are performed on the original ELM: (1) considering iteration
parameter for ELM and (2) applying the orthonormal basis for the range of input weights
and bias of hidden neuron matrices. Using these two competencies, the new version of the
ELM is named improved ELM (IELM). The flowchart of the developed IELM is presented
in Figure 4.Sustainability 2021, 13, x FOR PEER REVIEW 9 of 24 
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2.4. Uncertainty Analysis

The quantitative appraisal of the uncertainty analysis (UA) in the estimation of the
shortwave radiation flux density (SRFD) has employed the developed improved extreme
learning machine (IELM) instead of the original ELM. For a fair comparison of the different
IELM-based models, the UA is utilized to the test data [53,54]. The use of test data in
calculating and checking the UA of the developed IELM model has the advantage that
its performance is examined for testing data without any role in model training. The
generalizability of this model can be confirmed. The first step in UA is the calculation of
the individual estimation error (IEE) as follows:

Ei = SRFDE,i − SRFDO,i (15)

where SRFDE,i, and SRFDO,i are ith estimated and observed SRFD, respectively, and Ei is
the IEE of the ith sample. The IEE for all samples are applied to calculate mean estimation
error (MEE) as follows:

E =
S

∑
i=1

Ei (16)

where E is the MEE and S is the number of samples. Using the calculated E and IEE for all
samples (Ei), the standard deviation of the estimation error (SDEE) is calculated as follows:

SDEE =

√√√√ 1
N− 1

N

∑
i=1

(
Ei − E

)
(17)

The negative (or positive) value of the MEE demonstrates that the estimator model
underestimated (or overestimated) the observed values of the SRFD. To approximate a
confidence band around the estimated values of an error, the ±1.96 SDEE is calculated.

2.5. Workflow Approach

In this section, the workflow approach of the current study is presented. This workflow
comprises four main steps: data collecting, model definition, tuning IELM parameters, and
performance evaluation. Performing all four steps will lead to achieving the optimal model
in SRFD estimation.

The first step is collecting data. To collect data, SRFD is extracted from the Daymet
dataset by developing a JavaScript-based code in Google Engine Cloud. Using the devel-
oped code, the daily SRFD dataset from January 1981 to December 2019 is selected. The
second step is the definition of the inputs to apply developed IELM-based MATLAB code
to SRFD estimation. To do that, the auto-correlation function is employed [55]. Using this
function, the most effective lags of the SRFD are found and defined as different combina-
tions of these lags to find the best model. The third step is the definition of IELM parameters
for all input combinations, defined in the previous step. To define IELM parameters, the
type of activation function, the number of hidden neurons, and iteration number must be
pre-defined by the user. It should be noted that the maximum number of hidden neurons
should be considered. As the maximum allowable value of the hidden neurons should
be considered, the number of optimal tuning parameters through the training phase will
be less than the training samples. According to that, the number of columns and rows
in the input weighs is identical to the number of input variables (InV) and the number
of hidden neurons (NHN), respectively. The bias of hidden neurons (BHN) and output
weights are two matrices with one column in which the number of rows is equal to NHN.
The maximum allowable NHN is calculated as follows:

Max. NHN <
TrSa

InV + 2
(18)

where TrSa is the number of training samples.
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Besides the maximum allowable NHN, the activation function type and iteration
numbers also must be pre-defined. The iteration number is considered in the range of 100
to 100,000. At the same time, the six different activation functions, including hyperbolic
tangent, Sigmoid, hard limit, Sin, radial basis function, and triangular basis function,
are investigated to find the optimum one. The final step of the IELM modeling is the
performance evaluation of the developed models to find the optimum one. In this step,
different statistical indices and uncertainty analysis are employed to find the optimum
one. The schematic workflow for shortwave radiation flux density modeling is provided in
Figure 5.
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2.6. Comparison Measures

In this section, four different statistical indices, including correlation coefficient (R),
root mean squared error (RMSE), mean absolute percentage error (MAPE), and Nash–
Sutcliffe model efficiency coefficient (NSE), are used to assess the performance of the
developed IELM model in SRFD estimation. The RMSE index is of considerable importance
in studying environmental and climatic parameters and is widely used in these fields [56].
However, this index is not practical enough to check the average performance of a model,
which may be a misleading index of the average error [57]. Scale dependency is one of the
main drawbacks of RSME, allowing outliers to have a significant impact on the obtained
results of this index, which will make it difficult to evaluate the model, and any fraction
of the data will cause fundamental changes in the results [58]. Therefore, it is necessary
to use other indices along with it. Scholars often employ MAPE because of its intuitive
understanding in terms of relative error [59]. In addition to these two relative (MAPE)
and absolute (RMSE) indices, two correlation-based indices (i.e., R and NSE) are also used.
According to the characteristics of each indicator, their simultaneous application can be an
excellent approach to assess the efficiency of the developed IELM-based models in SRFD
estimation. The mathematical definition of the R, RMSE, MAPE, and NSE is defined as
follows:

R =

 ∑S
i=1
(
SRFDO,i − SRFDO

)(
SRFDE,i − SRFDE

)√
∑S

i=1

(
SRFDO,i − SRfDO

)2
∑S

i=1
(
SRFDE,i − SRFDE

)
 (19)

RMSE =
1
S

√√√√ S

∑
i=1

(SRFDO,i − SRFDE,i)
2 (20)

MAPE =
100
S

S

∑
i=1

(∣∣∣∣SRFDO,i − SRFDE,i

SRFDO,i

∣∣∣∣) (21)

NSE = 1− ∑S
i=1(SRFDO,i − SRFDE,i)

2

∑S
i=1
(
SRFDO,i − SRFDO

) (22)

where SRFDO,i and SRFDE,i are the observed and estimated values of the ith samples of the
SRFD, respectively, N is the number of samples, and SRFDO and SRFDE are the mean of
the observed and estimated SRFD, respectively.

3. Results and Discussion
3.1. SRFD Modeling

Before starting the modeling, the input parameters need to be determined. In the
current study, historical values of the SRFD are used to estimate this parameter at future
times. Indeed, the time series concept is used to solve the problem. Hence, effective lags
are determined using the auto-correlation function. It indicates the correlations between
the past and future values of the desired parameters (i.e., SRFD in the current study). The
auto-correlation function of the SRFD time series was shown the most critical lags are 1 and
2. Additionally, Lag 12 is also evident as the periodic term. In addition to these three lags
and to find a more reliable model, Lag 3 is also considered as one of the input parameters
in the IELM-based modeling:

SRFD(t) = f(SRFD(t− 1), SRFD(t− 2), SRFD(t− 3), SRFD(t− 12)) (23)

According to the above equation, the number of fifteen input combinations with one
to four input variables is defined as provided in Figure 6.
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3.2. Most Optimum Hidden Neurons

After defining different input combinations, finding the optimal number of neurons
for SRFD estimation is required. For this purpose, Model 15 with SRFD (t − 1), SRFD (t
− 2), SRFD (t − 3), and SRFD (t − 12) as input parameters (Figure 6) is employed. Addi-
tionally, by keeping other tuning parameters constant, including the activation function
(i.e., Sigmoid) and iteration number (10,000 iterations), the optimal number of neurons
is found. It should be noted that this number can be changed in the range of 1 to Max.
NHN (Equation (18)). The reason for limiting the number of hidden layer neurons to Max
is that increasing NHN could result in higher generalizability of the model so that if this
limitation is not taken into account, the generalizability of this model may be doubtful.

The total number of data is 468, 70% of which have been selected as training samples,
and 30% of the samples were considered testing samples. Taking into account the delays
created in the modeling process, the value of TrSa is 336 (this number can be varied by
changing the inputs). Given that the modeling process was initially performed using
all lags (Model 15), the value of InV is equal to four. Consequently, the Max. NHN is
calculated as 55 (Equation (18)).

The statistical indices of the developed IELM with different hidden neurons are
provided in Figure 7. The minimum values of NSE and R are less than 0.6 and 0.8,
respectively. As the number of the hidden layer neurons increases, the value of these two
indices increases significantly. In NHN > 10, the value of both indices is more than 0.9,
which is an acceptable value. Although the growth of the value of these two indices is
also observed in most models with NHN > 10, the growth rate compared to NHN < 10
has a significant decrease. The upward trend presented in the correlation-based indices
(i.e., R and NSE) is also observed as a similar downward trend in RMSE and MAPE (%). A
significant point is a sharp decrease in the value of R and NSE as well as the increase in
the RMSE and MAPE (%) at NHN = 31, which is significantly different from the values of
its neighbors. One of the reasons for the performance of Model 31 may be the number of
iterations, so for this model, the number of more iterations was examined, but there was
no effective change in the performance of the model in the testing stage. Another reason
can be the lack of accurate assignment of the input weights and bias of hidden neuron
parameters, which has led to a significant reduction in the generalizability of this model.
The results of this figure show that the best performance is obtained at NHN = 27 (R = 0.98;
NSE = 0.96, RMSE = 25.02; MAPE (%) = 10.64). Therefore, the number of hidden neurons
in the following modeling process is considered to be 27.
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3.3. Activation Function Selection

After determining the optimum number of hidden neurons, six activation functions,
including hyperbolic tangent, sigmoid, radial basis function, triangular basis, hard limit,
and sine, are evaluated in this section. The statistical indices of the IELM with defined
input combinations in Model 15 and different activation functions are provided in Figure 8.
As shown in this figure, although hyperbolic tangent, hard-limit, and sigmoid activation
functions have close results, the RMSE value for sigmoid is improved by 12.2% and 4.2%
compared to hard-limit and hyperbolic tangent, respectively, which indicates sigmoid func-
tion performs better than the other two functions. The RMSE for the other three functions
(i.e., sine, radial basis, and triangular basis) is about ten times the value of this index for
sigmoid. Moreover, the value of MAPE error index for sigmoid is 10.64% and for hard limit
and hyperbolic tangent functions are equal to 12.44% and 11%, respectively. The NSE index
shows the same results for the three mentioned activation functions. Additionally, the
correlation coefficient value indicates the equality of this index in the hyperbolic tangent
and sigmoid functions with a value of 0.98, while this value for the hard limit is 0.97.
Therefore, it can be concluded that sigmoid has shown better performance compared to
the other activation functions.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 24 
 

 

Figure 7. Statistical indices of the developed IELM with different hidden neurons. 

3.3. Activation Function Selection 

After determining the optimum number of hidden neurons, six activation functions, 

including hyperbolic tangent, sigmoid, radial basis function, triangular basis, hard limit, 

and sine, are evaluated in this section. The statistical indices of the IELM with defined 

input combinations in Model 15 and different activation functions are provided in Figure 

8. As shown in this figure, although hyperbolic tangent, hard-limit, and sigmoid activa-

tion functions have close results, the RMSE value for sigmoid is improved by 12.2% and 

4.2% compared to hard-limit and hyperbolic tangent, respectively, which indicates sig-

moid function performs better than the other two functions. The RMSE for the other three 

functions (i.e., sine, radial basis, and triangular basis) is about ten times the value of this 

index for sigmoid. Moreover, the value of MAPE error index for sigmoid is 10.64% and 

for hard limit and hyperbolic tangent functions are equal to 12.44% and 11%, respectively. 

The NSE index shows the same results for the three mentioned activation functions. Ad-

ditionally, the correlation coefficient value indicates the equality of this index in the hy-

perbolic tangent and sigmoid functions with a value of 0.98, while this value for the hard 

limit is 0.97. Therefore, it can be concluded that sigmoid has shown better performance 

compared to the other activation functions. 

 

Figure 8. Statistical indices of the developed IELM with different activation functions. 

  

Figure 8. Statistical indices of the developed IELM with different activation functions.



Sustainability 2021, 13, 8009 14 of 23

3.4. Iteration Number

The third parameter is used to determine the iteration number. Many iterations in
IELM modeling are used to overcome the problems caused by randomly determining the
two matrices of bias of hidden neurons and input weights, which include at least 66% of
the total parameters optimized during the training process (Equation (14)).

In the next step, the effect of iteration number in SRFD modeling was investigated.
To investigate the impact of changes in the iteration number, a boxplot diagram was used
to obtain the best number of iterations in the modeling process. In this study, 15 different
values were used for the iteration number in the range of 10,000–100,000, similar to Table
2. The distribution of RMSE values for various iterations is shown in Figure 9. According
to the high value of RMSE for some models, the maximum value of RMSE in this figure
was plotted in two ranges, [0, 2×107] and [0, 160]. Additionally, the boxplot parameters,
including minimum, maximum, median, first quartile (Q1), and third quartile (Q3), are
provided in Table 2. The difference between Q1 and Q3 is known as IQR. Using IQR, the
minimum and maximum values are calculated as Q1 − 1.5 × IQR and Q3 + 1.5 × IQR,
respectively. Values smaller than the minimum and larger than the maximum are known
as outliers. Indeed, if a number outside this range is recorded, it indicates that the amount
of model error that is considered as RMSE in some cases might be very small or very large.
Figure 9 shows that at iteration number = 30,000, the RMSE value also reaches 2×10-7, a
high value for this index. By limiting the error range to [0, 160], it can be seen that in all the
values defined for the iteration number, a very large number of iterations record an error
value greater than the maximum value (=Q3 + 1.5 Q IQR). Except for iteration numbers =
10,000 and 30,000, in other cases, the changes’ range minimum, maximum, Q1, and Q3 are
almost constant.

Table 2. Boxplot parameters for 15 iteration numbers.

No. It. Number Max Min Median Q1 Q3

1 1000 50,000 29.93 47.46 42.15 54.57
2 2000 51,000 30.57 47.90 42.71 54.75
3 3000 1,201,000 28.47 47.83 42.69 55.16
4 5000 619,000 29.16 47.68 42.37 54.86
5 10,000 1000 21.11 62.40 47.64 81.13
6 15,000 619,000 29.16 48.02 42.66 55.16
7 20,000 498,000 24.83 47.84 42.60 54.94
8 30,000 20,386,000 44.18 99.93 82.81 120.11
9 40,000 435,000 24.47 47.71 42.57 54.79

10 50,000 1,019,000 27.10 47.72 42.53 54.83
11 60,000 997,000 26.75 47.79 42.59 55.00
12 70,000 1,714,000 25.68 47.66 42.48 54.81
13 80,000 2,108,000 25.91 47.79 42.59 54.99
14 90,000 1,327,000 26.21 47.72 42.48 54.80
15 100,000 2,506,000 26.44 47.76 42.57 54.92
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In Model 5 (iteration number = 10,000), the median is 62.4, which indicates that 50%
of the data model from 10,000 runs is in the range of 47.64 to 81.13, while the lowest error
recorded in this case is equal to 21.11. In all other models with different iteration numbers,
the minimum error value is greater than 21.11, which indicates the better performance of
Model 5 (Figure 9).

Figure 10 signifies the statistical indices of the best IELM-based model with the
different iteration numbers. According to this figure, the lowest MAPE (%) was recorded
for the iteration number = 10,000 (MAPE (%) = 10.64). The correlation-based indices (i.e., R
and NSE) for all iteration numbers except 30,000 are very close together. The lowest and
highest values of R are 0.973 and 0.982, respectively, and the lowest and highest of the
NSE are 0.945 and 0.964, respectively. The lowest RMSE is related to the 20,000 iteration
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(RMSE = 24.83). Considering the values of different indices, the iteration number = 10,000
is selected as the optimum value of the iteration number (R = 0.98, NSE = 0.96, RMSE =
25.02, and MAPE (%) = 10.64).
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3.5. Input Combination Selection

After determining the modeling parameters in IELM, the effect of each input is
examined by considering 15 input combinations, defined in Figure 6. The presented
models in this figure are divided into four general categories: models with one, two, three,
and four inputs, which include four, five, four, and one input combinations, respectively.

Models 1 to 4 are single-input models that include Lag 1, 2, 3, and 12. Among the
models presented with a single input, it is observed that the highest value of correlation-
based indices (i.e., R and NSE) is related to Model 4 (R = 0.983, NSE = 0.966) so that the
closest value of these two indices to Model 4 corresponds to Model 1 (R = 0.892; NSE =
0.756). The results of these two indices in Lag 2 and Lag 3 are significantly different from
the other two lags because in Lag 3, the NSE index has a negative value (NSE = -0.691).
The value of this index in Lag 2 (NSE = 0.106) is approximately 10% of the value of this
index in Lag 12. In addition to these two indices, Model 4 (i.e., Lag 12) also offers the best
performance in RMSE and MAPE indices, so that the modeling relative error is less than
9% (MAPE (%) = 8.88), while the value of this index for Models 2 and 3, whose inputs
are Lag 2 (MAPE (%) = 88.23) and Lag 3 (MAPE (%) = 90.28), is about ten times the value
of this index in Model 4. According to the explanations provided, Lag 12 has the most
effectiveness, and Lag 1 is in the second place for one-step-ahead modeling of SRFD by
considering only one lag.

Although Lag 2 had the weakest performance among all lags, its combination with
Lag 1 (Model 5) (R = 0.956; RMSE = 37.645; MAPE (%) = 20.038; 0.911) increased the
performance of Model 1, which uses only Lag 1 so that the values of R, RMSE, MAPE, and
NSE indices have increased by 7.24%, 34.42%, 55.88%, and 20.47%, respectively, compared
to Model 1.

The combination of Lag 3 with Lag 1 has also led to Model 6 (R = 0.975; RMSE =
28.833; MAPE (%) = 13.352; 0.948), which is more accurate than Model 1. According to the
results presented for single-input models, the weakest performance was observed for Lag
3. Therefore, it was expected that using Lag 2 in combination with Lag 1 would provide
better performance than combining Lag 3 with Lag 1, but Model 6, whose inputs are Lag
1 and Lag 3, compared to Model 5, whose inputs are Lag 1 and Lag 2, provided better
performance. Therefore, it is concluded that to achieve the optimal model, it is necessary to
examine the synergy of different parameters with each other.
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Considering that in single-input models, the best performance was obtained for Lag 12,
which was significantly different from other lags, it is expected that the combination of this
lag with one of the other lags (i.e., Lags 1, 2, and 3 as Models 8 to 10, respectively) leads to
a more accurate result compared to Models 5 to 7. The results presented in Figure 11 show
that the performance of Model 4, whose only input was Lag 12, has been slightly improved
by Models 8 to 10 (two-input models). In Models 8 to 12, correlation based-indices (i.e.,
R and NSE) and RMSE experienced an increase in accuracy compared to Model 4, which
has only one input (i.e., Lag 12). Still, for MAPE, this trend is not incremental in all three
models. In Models 8 and 10, which use Lag 1 and Lag 3 (respectively) as input in addition
to Lag 12, the MAPE is increased by about 2.5%, while in Model 9, which uses Lags 2 and
12 to estimate SRFD, the value of this index has decreased. Therefore, it is concluded that
the simultaneous combination of Lag 12 and Lag 2 offers the best performance between
models with 1 to 2 inputs. As the number of model inputs increases to 3 and 4 (Models 11
to 15), it is observed that in all models, correlation-based indices decrease, and both RMSE
and MAPE indices are increased. Therefore, it is concluded that Model 9 is the best input
combination for SRFD estimation.
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3.6. Comparison of the IELM with ELM

Figure 12 illustrates the scatter plot of the observed and predicted SRFD by ELM and
IELM. According to this figure, most of the estimated samples by IELM are in the range
of ±10%, while the results provided by ELM in different SRFD ranges have many errors.
Most of the estimated samples by the ELM in the range of 180–350 are fixed so that in this
range, the estimated points do not follow the 45-degree line and are presented almost in a
horizontal line.
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In both ELM and IELM methods, the errors are presented in both under and overesti-
mate forms, and the only significant difference is the modeling error values. The indices
presented in the figure show that correlation-based indices (i.e., R and NSE) in the IELM
method have increased by about 3.9% and 9% compared to ELM. An increase of about
47% and more than 17% was observed in RMSE and MAPE, respectively. Therefore, it is
determined that the developed method in the current study (i.e., IELM) has well overcome
the limitations of the ELM method.

3.7. Uncertainty Analysis of the IELM Models Versus ELM

The uncertainty analysis (UA) results are summarized in Table 3. The mean estimation
error (MEE), standard deviation of estimation error (SDEE), 95% estimation error interval
(EEI), and width of uncertainty band (WUB) are provided in this table. According to this
table, the MEE for IELM4 and ELM are positive, while the value of this index for others is
negative. Therefore, it is concluded that these two models over-estimated the SRFD, while
the other models underestimated the SRFD. Given that the positive and negative values
of the error are added together by considering their sign, the use of this model cannot be
used as an index to check the accuracy of the model. Therefore, other indices need to be
evaluated. The SDEE for all IELM models indicates that this index’s lowest and highest
values are associated with 21.12 and 105.47, related to the IELM9 and IELM3, respectively.
The widths of uncertainty bands of the IELM are in the ranges of [±17.56, ±3.64] so that
the lowest and highest ones are related to the IELM3 and IELM9, respectively. The widths
of uncertainty bands for ELM is ±6.9, which is 52% higher than the best of the IELM model
(WUB (IELM9) = ±3.64).
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Table 3. Uncertainty analysis of IELM versus ELM.

Model MEE SDEE 95% EEI WUB

IELM1 −2.40 57.56 (−11.91· · · 7.11) ±9.51
IELM2 −3.55 91.00 (−18.65· · · 11.54) ±15.10
IELM3 −4.86 105.47 (−22.42· · · 12.7) ±17.56
IELM4 0.07 23.24 (−3.93· · · 4.07) ±4
IELM5 −4.71 37.48 (−10.93· · · 1.51) ±6.22
IELM6 −4.58 28.57 (−9.34· · · 0.17) ±4.76
IELM7 −5.83 40.91 (−12.64· · · 0.99) ±6.81
IELM8 −2.73 22.81 (−6.66· · · 1.19) ±3.93
IELM9 −1.73 21.12 (−5.36· · · 1.91) ±3.64
IELM10 −3.01 22.43 (−6.87· · · 0.84) ±3.86
IELM11 −4.70 34.05 (−10.37· · · 0.97) ±5.67
IELM12 −1.63 28.37 (−6.52· · · 3.25) ±4.89
IELM13 −3.57 24.68 (−7.82· · · 0.68) ±4.25
IELM14 −4.36 23.97 (−8.49· · · −0.23) ±4.13
IELM15 −4.27 24.75 (−8.53· · · −0.01) ±4.26

ELM 0.093 40.07 (−6.81· · · 6.99) ±6.9
MEE = mean prediction error, SDEE = standard deviation of estimation error, 95% EEI = 95% estimation error
interval, WUB = width of uncertainty band.

The universal form of the IELM is as follows:

SRFD(t) =
[

1
(1 + exp(InW× InV + BHN))

]T
×OuTW (24)

where the InW, InV, BHN, and OutW are the input weights, input variables, bias of hidden
neurons, and output weights, respectively. The InW, InV, BHN, and OutW are defined as
follows:

InV =

[
SRFD(t− 2)

SRFD(t− 12)

]

BHN =



0.0028
0.0798
0.0282
−0.2781
0.0971
0.0618
−0.2191
−0.298
−0.0738
0.2939
−0.1102

0.061
0.1924
−0.1088
−0.1521
−0.3477
−0.2962
−0.3353
−0.2547
−0.0322
−0.2454
−0.0749
−0.1349
−0.1087
−0.2937
−0.1236
0.0312



InW =



−0.3155 0.0897
0.1958 −0.0233
−0.0134 0.006
0.0698 0.183
0.1113 0.2568
−0.1232 −0.3535
0.0043 0.1263
0.2896 0.0352
−0.2924 −0.1488
0.2656 −0.1874
−0.2286 0.2698
−0.113 −0.2295
0.1747 −0.0049
0.1458 −0.1498
0.0484 −0.202
0.3529 −0.0543
−0.3473 −0.0036
0.1246 −0.0774
−0.2028 −0.3509
−0.0016 0.0059
−0.019 −0.1279
0.0384 0.313
−0.0116 −0.1706
−0.2961 0.1584
0.0461 −0.1289
−0.1318 −0.3874
0.2436 −0.1908



OutW =



10.6
34962.01
−228.72
31039.42
32876.78
0.0013

30746.25
32791.86
0.0427
8.6694
−12.476
8.1247

−133843.68
−35.032
573.72
−61940.9
−38.53

36.8
1.68× 10−5

944.98
417363.84
32980.31
−399887.66

63.81
−2.006

2.87× 10−5

−13.614


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4. Conclusions

Shortwave radiation flux density (SRFD) modeling can be a key factor in the better
control of environmental parameters such as evaporation, transpiration, use in solar struc-
tures, etc. In the current study, an improved version of the ELM (IELM) is proposed to
overcome the limitation of this method due to random generation of the two matrices,
including input weights and bias of hidden neurons. Additionally, the Google Earth Engine
environment is employed to extract the monthly satellite-based data of the SRFD from the
gridded Daymet product. The datasets were from January 1981 to December 2019. Because
the time series concept was used in the SRFD modeling, using the SRFD historical data, the
most important lags were found to determine the input combinations. The auto-correlation
function was applied to find the most effective lags. This function indicated that Lags
1, 2, 3, and 12 are the most effective ones. Using these lags, fifteen different input com-
binations were obtained. The best input combination was found through the modeling
phase, with Lags 2 and 12 as input variables. It should be noted that the sigmoid was
found as the best activation function, and the optimum number of hidden neurons was
27. By considering different iteration numbers from 1000 to 100,000, the best results were
obtained at 10,000. Comparison of the developed IELM (R = 0.986, RMSE = 21.11, MAPE =
8.68%, NSE = 0.97) with original ELM (R = 0.949, RMSE = 39.91, MAPE = 26.36%, NSE =
0.89) proved the higher performance of the developed ones. Additionally, the uncertainty
analysis results indicated that the widths of uncertainty bands for IELM (WUB = ±3.64)
are almost half of this index’s calculated value for the original ELM (WUB = ±6.9). A
matrix-based equation for the optimum IELM-based model is provided to calculate SRFD
for one month ahead using Lags 2 and 12. Using this model in predicting the amount
of SRFD can be a practical solution in energy and water resources management. In the
current situation, where environmental factors and climate change are occurring, using this
type of model can be an effective way to advance the management of goals and achieve
a roadmap in the future with a sustainable development approach. In the current study,
the developed model was checked for only one station. The developed IELM could be
applied to other stations and other real-world problems. The developed IELM applied
an iterative process to overcome the limitation of the classical ELM in random generation
of the two main matrices (i.e., input weights and bias of hidden neurons). However, an
implementation of the developed ELM to overcome the mentioned drawback could also be
made in a follow-up study by using the new developed evolutionary algorithms such as
sperm swarm optimization (SSO), conscious neighborhood-based crow search algorithm
(CCSA), and other evolutionary-based algorithms to optimize the randomly generated
parameters for the input weights and bias of hidden neurons matrices. Moreover, the ACF
was applied to track the most effective lags dependence structure of the SRFD. As the
ACF has a large statistical bias that tends to underestimate the second-order dependence
structure, it is recommended to apply alternative methods.

Author Contributions: Conceptualization, I.E., K.S., and H.B.; methodology, I.E., A.A., and H.B.;
software, I.E. and A.A.; validation, I.E., K.S., and H.B.; formal analysis, I.E., K.S., A.A., and H.B.;
resources, K.S., A.A., and H.B.; data curation, K.S. and A.A.; writing—original draft preparation, I.E.,
M.F., C.A.M., and H.B.; writing—review and editing, I.E., M.F., C.A.M., and H.B.; visualization, I.E.
and K.S.; supervision, H.B.; project administration, H.B.; funding acquisition, H.B. All authors have
read and agreed to the published version of the manuscript. Please turn to the CRediT taxonomy for
the term explanation. Authorship must be limited to those who have contributed substantially to the
work reported.

Funding: This research was funded by the Natural Science and Engineering Research Council of
Canada (NSERC) Discovery Grant (#RGPIN-2020-04583).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sustainability 2021, 13, 8009 21 of 23

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, B.; Li, Z.L.; Zhang, R. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sens.

Environ. 2006, 103, 115–126. [CrossRef]
2. Wu, H.; Ying, W. Benchmarking machine learning algorithms for instantaneous net surface shortwave radiation retrieval using

remote sensing data. Remote Sens. 2019, 11, 2520. [CrossRef]
3. Klassen, S.; Bugbee, B. Shortwave radiation. Micrometeorol. AES Syst. 2005, 47, 43–57.
4. Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Pavlakis, K.G.; Drakakis, E.; Hatzidimitriou, D.; Vardavas, I. Global distribution

of Earth’s surface shortwave radiation budget. Atmos. Chem. Phys. 2005, 5, 2847–2867. [CrossRef]
5. Ceppi, P.; Zelinka, M.D.; Hartmann, D.L. The response of the Southern Hemispheric eddy-driven jet to future changes in

shortwave radiation in CMIP5. Geophys. Res. Lett. 2014, 41, 3244–3250. [CrossRef]
6. Wang, B.; Zheng, L.; Liu, D.L.; Ji, F.; Clark, A.; Yu, Q. Using multi-model ensembles of CMIP5 global climate models to reproduce

observed monthly rainfall and temperature with machine learning methods in Australia. Int. J. Climatol. 2018, 38, 4891–4902.
[CrossRef]

7. Rabehi, A.; Guermoui, M.; Lalmi, D. Hybrid models for global solar radiation prediction: A case study. Int. J. Ambient Energy
2020, 41, 31–40. [CrossRef]

8. Wallenberg, N.; Lindberg, F.; Holmer, B.; Thorsson, S. The influence of anisotropic diffuse shortwave radiation on mean radiant
temperature in outdoor urban environments. Urban Clim. 2020, 31, 100589. [CrossRef]

9. Slater, A.G. Surface solar radiation in North America: A comparison of observations, reanalyses, satellite, and derived products.
J. Hydrometeorol. 2016, 17, 401–420. [CrossRef]

10. Soares, J.; Alves, M.; Ribeiro, F.N.D.; Codato, G. Surface radiation balance and weather conditions on a non-glaciated coastal area
in the Antarctic region. Polar Sci. 2019, 20, 117–128. [CrossRef]

11. Wei, Y.; Zhang, X.; Hou, N.; Zhang, W.; Jia, K.; Yao, Y. Estimation of surface downward shortwave radiation over China from
AVHRR data based on four machine learning methods. Solar Energy 2019, 177, 32–46. [CrossRef]

12. Schwarz, M.; Folini, D.; Yang, S.; Allan, R.P.; Wild, M. Changes in atmospheric shortwave absorption as important driver of
dimming and brightening. Nat. Geosci. 2020, 13, 110–115. [CrossRef]

13. Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global Land Surface Satellite incident shortwave radiation and
photosynthetically active radiation products from multiple satellite data. Remote Sen. Environ. 2014, 152, 318–332. [CrossRef]

14. Ryu, Y.; Jiang, C.; Kobayashi, H.; Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total
photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 2018, 204, 812–825. [CrossRef]

15. Schellekens, J.; Dutra, E.; Martínez-de la Torre, A.; Balsamo, G.; Dijk, A.V.; Sperna Weiland, F.; Minvielle, M.; Calvet, J.C.;
Decharme, B.; Eisner, S.; et al. A global water resources ensemble of hydrological models: The eartH2Observe Tier-1 dataset.
Earth Syst. Sci. Data 2017, 9, 389–413. [CrossRef]

16. Zeng, L.; Xia, T.; Elsayed, S.K.; Ahmed, M.; Rezaei, M.; Jermsittiparsert, K.; Dampage, U.; Mohamed, M.A. A Novel Machine
Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs. Sustainability 2021, 13, 5777.
[CrossRef]

17. Kamolov, A.A.; Park, S. Prediction of Depth of Seawater Using Fuzzy C-Means Clustering Algorithm of Crowdsourced SONAR
Data. Sustainability 2021, 13, 5823. [CrossRef]

18. Haq, I.U.; Khan, Z.Y.; Ahmad, A.; Hayat, B.; Lee, Y.E.; Kim, K.I. Evaluating and Enhancing the Robustness of Sustainable Neural
Relationship Classifiers Using Query-Efficient Black-Box Adversarial Attacks. Sustainability 2021, 13, 5892. [CrossRef]

19. Soltani, K.; Amiri, A.; Zeynoddin, M.; Ebtehaj, I.; Gharabaghi, B.; Bonakdari, H. Forecasting monthly fluctuations of lake surface
areas using remote sensing techniques and novel machine learning methods. Theor. Appl. Climatol. 2021, 143, 713–735. [CrossRef]

20. Aissani, N.; Beldjilali, B.; Trentesaux, D. Use of machine learning for continuous improvement of the real-time heterarchical
manufacturing control system performances. Int. J. Ind. Syst. Eng. 2008, 3, 474–497. [CrossRef]

21. Guyon, I.; Chaabane, I.; Escalante, H.J.; Escalera, S.; Jajetic, D.; Lloyd, J.R.; Macià, N.; Ray, B.; Romaszko, L.; Sebag, M.; et al. A
brief review of the ChaLearn AutoML challenge: Any-time any-dataset learning without human intervention. Workshop Autom.
Mach. Learn. 2016, 64, 21–30.

22. Bustillo, A.; Reis, R.; Machado, A.R.; Pimenov, D.Y. Improving the accuracy of machine-learning models with data from machine
test repetitions. J. Intell. Manuf. 2020, 1–19. [CrossRef]

23. Koutsoyiannis, D. Time’s arrow in stochastic characterization and simulation of atmospheric and hydrological processes. Hydrol.
Sci. J. 2019, 64, 1013–1037. [CrossRef]

24. Shamshirband, S.; Mosavi, A.; Rabczuk, T.; Nabipour, N.; Chau, K.W. Prediction of significant wave height; comparison between
nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector
machines. Eng. Appl. Comput. Fluid Mech. 2020, 14, 805–817. [CrossRef]

25. Alizamir, M.; Kim, S.; Zounemat-Kermani, M.; Heddam, S.; Kim, N.W.; Singh, V.P. Kernel Extreme Learning Machine: An Efficient
Model for Estimating Daily Dew Point Temperature Using Weather Data. Water 2020, 12, 2600. [CrossRef]

http://doi.org/10.1016/j.rse.2006.04.008
http://doi.org/10.3390/rs11212520
http://doi.org/10.5194/acp-5-2847-2005
http://doi.org/10.1002/2014GL060043
http://doi.org/10.1002/joc.5705
http://doi.org/10.1080/01430750.2018.1443498
http://doi.org/10.1016/j.uclim.2020.100589
http://doi.org/10.1175/JHM-D-15-0087.1
http://doi.org/10.1016/j.polar.2019.04.001
http://doi.org/10.1016/j.solener.2018.11.008
http://doi.org/10.1038/s41561-019-0528-y
http://doi.org/10.1016/j.rse.2014.07.003
http://doi.org/10.1016/j.rse.2017.09.021
http://doi.org/10.5194/essd-9-389-2017
http://doi.org/10.3390/su13115777
http://doi.org/10.3390/su13115823
http://doi.org/10.3390/su13115892
http://doi.org/10.1007/s00704-020-03419-6
http://doi.org/10.1504/IJISE.2008.017555
http://doi.org/10.1007/s10845-020-01661-3
http://doi.org/10.1080/02626667.2019.1600700
http://doi.org/10.1080/19942060.2020.1773932
http://doi.org/10.3390/w12092600


Sustainability 2021, 13, 8009 22 of 23

26. Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.W. An enhanced extreme learning machine model for river flow forecasting:
State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2019, 569,
387–408. [CrossRef]

27. Abbaa, S.I.; Elkiranb, G.; Nouranic, V. Improving novel extreme learning machine using PCA algorithms for multi-parametric
modeling of the municipal wastewater treatment plant. Desalin. Water Treat. 2021, 215, 414–426. [CrossRef]

28. Ghazvinei, P.T.; Hassanpour Darvishi, H.; Mosavi, A.; Yusof, K.B.W.; Alizamir, M.; Shamshirband, S.; Chau, K.W. Sugarcane
growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl.
Comput. Fluid Mech. 2018, 12, 738–749. [CrossRef]

29. Bonakdari, H.; Ebtehaj, I. A comparative study of extreme learning machines and support vector machines in prediction of
sediment transport in open channels. Int. J. Eng. 2016, 29, 1499–1506.

30. Ebtehaj, I.; Bonakdari, H.; Moradi, F.; Gharabaghi, B.; Khozani, Z.S. An integrated framework of Extreme Learning Machines for
predicting scour at pile groups in clear water condition. Coast. Eng. 2018, 135, 1–15. [CrossRef]

31. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

32. Feng, Z.K.; Niu, W.J.; Tang, Z.Y.; Xu, Y.; Zhang, H.R. Evolutionary artificial intelligence model via cooperation search algorithm
and extreme learning machine for multiple scales nonstationary hydrological time series prediction. J. Hydrol. 2021, 595, 126062.
[CrossRef]

33. UN General Assembly. Resolution Adopted by the General Assembly on 25 September 2015. 2015. Available online: http:
//www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 31 March 2020).

34. Rebelatto, B.G.; Salvia, A.L.; Reginatto, G.; Daneli, R.C.; Brandli, L.L. Energy efficiency actions at a Brazilian university and their
contribution to sustainable development Goal 7. Int. J. Sustain. Higher Educ. 2019, 20, 842–855. [CrossRef]

35. Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A global-scale investigation of stochastic similarities in
marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology 2021, 8, 59. [CrossRef]
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