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Abstract: Rapid advances that improve flood management have facilitated the disaster response by
providing first aid services, finding safe routes, maintaining communication and developing flood
maps. Different technologies such as image processing, satellite imagery, synthetic imagery and
integrated approaches have been extensively analysed in the literature for disaster operations. There
is a need to review cutting-edge technologies for flood management. This paper presents a review
of the latest advancements in the flood management domain based on image processing, artificial
intelligence and integrated approaches with a focus on post-disaster. It answers the following
research questions: (1) What are the latest developments in image processing for flood management
in a post-disaster scenario? (2) What are the latest techniques for flood management based on artificial
intelligence in a post-disaster scenario? (3) What are the existing gaps in the selected technologies
for post-disaster? (4) How can the authorities improve the existing post-disaster management
operation with cutting-edge technologies? A novel framework has been proposed to optimise flood
management with the application of a holistic approach.

Keywords: natural disaster; early warning system; artificial intelligence; image processing

1. Introduction

Climate change impacts have increased the events of natural disasters around the
world. The impacts of these natural events, such as floods, drought, fire, cyclones, hur-
ricanes and others, are profound on developing countries as well as on developed coun-
tries [1-3]. A lot of research has been carried out lately to build efficient early warning
systems and improve disaster management ways. Natural events cannot be stopped from
being happening; however, effective disaster management approaches can minimise the
destruction and reduce the number of casualties [4,5]. Different methods of disaster man-
agement are applicable at three stages of the event. First is the pre-disaster stage, which
emphasises monitoring or early warning system to alert the authorities about the incoming
natural event; second is damage control during the event, and third is the post-disaster
recovery phase to bring life back to normality [6-8]. To address the challenges of natural
events, the International Emergency Management System (IEMS) was established in 1993
to set up procedures and guidelines for countries to adapt during a crisis scenario. Accord-
ing to the Millenium Development Goals (MDG) 2015, the latest information technology
and communication tools can be used for improving the relief response during a natural
disaster [9-12]. The relief efforts can be accelerated to reach out to a maximum number of
people in a short time with the use of advanced technology. Emerging technologies can,
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therefore, play a vital role in developing disaster resilient infrastructure and attain effective
disaster management.

There is a knowledge gap in the field of the disaster management process. Special
focus needs to be laid on climate change and associated risks with the use of advanced
tools. Advanced early warning systems need to be developed based on the framework,
algorithms and concepts. Achieving disaster resilience is a major goal aimed by the UN to
achieve by 2030 [13-15]. Different countries around the world have prioritised to achieve
this target which can be achieved by tapping into human resources, developing cutting-
edge technologies and increasing adaptability through authorities. Resilience infrastructure
and capabilities should focus on reducing calamities and economic losses [16-18]. The
only way forward is to timely detect the hazard and minimise it with the application of
appropriate technology.

Innovative disaster management approaches that implement information technology,
artificial intelligence, ICT tools and machine learning will facilitate all stages of a disaster,
such as floods [19-21]. The innovation can take place either through different concepts,
ways, technology or community-based approaches. Interdisciplinary concepts and ideas
will develop different processes to carry out efficient pre- and post-flood management prac-
tices [22-24]. Collaborating with different stakeholders, integrating science and technology
and active participation from the community will facilitate the development of effective
tools and methodologies, their implementation and uptake at different levels. Japan, being
prone to disasters, experiences human casualties, damage to infrastructure and economic
losses each year [25]. Specialised emergency management systems have been devised to
mitigate hazards [26]. A multi-level system was established for assessing the capabilities
of emergency management from the top government level to the authorities below [27].
Similarly, in China, emergency management systems were developed after the spread of
SARS to cope with any disaster crisis through formulating different laws and applying
computational intelligence. A lot of research has been carried out in China to introduce
unconventional emergency plans and practices that involve developing new rules, taking
into consideration various constraints and contradictory issues. It involves challenging
intelligent data estimations and making supportive decisions [28,29].

The decision-making process is essential in each phase of disaster management, as
it impacts the effectiveness of the rescue mission and events [30-32]. This decision mak-
ing is reliant on big data analysis, which is challenging as compared to traditional data
analysis. This highlights the need for computational intelligence, real-time algorithms that
can make timely decisions, analyse the different structures of data, extract the data and
present it through visualisation strategies [33-36]. In most flood management systems, the
application of computational intelligence is viral for making timely decisions. There is a
lot of traction on the applicability of the computationally intelligent technique for flood
management systems. There is a need to review the latest computational technology and
identify existing gaps in flood management [37]. A recent development in computational
technologies is applying artificial intelligence and machine learning algorithms for weather
predictions, flood-affected regions, damage detection and others [38]. Researchers are also
investigating various algorithms for analysing large scale data sets that would solve the
real-time issues with minimum computational time. Robust risk-related data analysis,
enhancing computational potential and applying different sensors within drones and satel-
lites for capturing real-time data analysis are a few of the many domains that researchers
are investigating [38—41]. These include observing disaster areas by employing drones and
analysing real-time data for mapping the area and finding the safest route to reach the
victims during floods.

The information systems can be improved for meteorological purposes by applying
remote sensors and drones, enabling planning for disaster events [42]. Such information
about the oncoming flood will enable the authorities to use diversion strategies or plan
routes for evacuating the area before the region is hit by the flood [39]. These resilient
measures are only possible with the help of innovative technologies and carrying out further
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development in this field. It is estimated that weather forecasting and meteorological data
analysis will be highly reliant on artificial and computational intelligence in the future.
The authorities will utilise these technologies for communicating disaster predictions, the
extent of risks, creating awareness among the community to take safety precautions and
devising strategies [43].

Systematic background research will be carried out to identify the latest technologies
that have been used in this domain for accurately determining a natural disaster: floods.
The paper will classify technologies based on image processing techniques, artificial intelli-
gence and integrative approaches for capturing the data and analysing it. Techniques will
be evaluated based on their importance, performance, application and limitations and their
potential acceptance by the authorities as management systems and decision-making based
on real-time data. This review will improve the understanding of the latest technology and
select a suitable model for flood management in a specific area. The following research
questions are formulated and will be answered based on this review:

RQ-1. What are the latest developments in image processing for flood management in a
post-disaster scenario?

RQ-2. What are the latest techniques for flood management based on artificial intelligence
in a post-disaster scenario?

RQ-3. What are the existing gaps in the selected technologies for post-disaster?

RQ-4. How can the authorities improve the existing post-disaster management operation
with cutting-edge technologies?

The rest of the paper is organised as follows: Section 2 defines the methods and
materials carried out during this study, while Section 3 presents the results of the study
by providing a comprehensive analysis of the selected cutting-edge flood management
techniques. Section 4 discusses the results of this research, identifies the research gaps and
presents a solution to overcome them. Section 5 outlines the conclusion of the study.

2. Materials and Methods

The aim was to assess the development in this field and how these advanced tools are
facilitating post-disaster scenarios. To achieve the desired goals, top journals were searched
for recent and significant work carried out in the domain. The review process was carried
out in two phases, i.e., retrieving articles and screening them.

To retrieve the research articles for this study, the chosen search engines were Scopus,
Google Scholar, Science Direct, Elsevier and Springer for finding the latest developments
and interdisciplinary research in the field. The next step was to formulate a set of queries
to be used in each of these search engines to retrieve the articles. The major aim was to
fully exhaust the search database and retrieve a maximum number of articles matching
our domain of interest. We used three categories of terms representing the subdomains to
extract a variety of research articles. After entering the search queries, a set of articles ranked
based on their relevance were retrieved. The first category of phrases was formulated to
retrieve articles that proposed flood prediction models using image processing technologies
that utilised multispectral sensors. The phrases were formed by using keywords related to
flood prediction, which includes “flood prediction”, “flood risk analysis” and “flood hazard
mapping”, along with phrases such as “image processing” and “artificial intelligence”. The
second category of terms was formulated to retrieve articles that proposed flood prediction
methods using these technologies. For this purpose, we used flood prediction keywords
along with the keywords “edge detection”, “mining patterns from images”, “Synthetic
Aperture Radar” and “Image-based flood Alarm model”. The number of articles retrieved
from each category of search keywords is shown in Figure 1.
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Figure 1. The detailed screening process of the latest articles for flood management.

After the first phase based on article retrieval, the articles were passed through a
screening phase to further narrow down the selection criteria. Four assessment criteria
were defined to evaluate the articles:

1. No Duplicates

2. Time Interval: 2010-2021

3. Document Type: research article, abstract, book chapter
4. English language only

Thus, by filtering the articles based on these metrics, the most recent, applicable and
unique research articles written in the English language were extracted. From the 1250
articles retrieved in the first phase, 94 articles passed all four selection criteria. Hence,
this review is based on these screened articles. The number of articles from each term
category, i.e., image processing, artificial intelligence and integrated approach that passed
the screening phase, is shown in Figure 1. The articles were screened for duplicates, non-
English articles and review papers. Around 520 papers were removed for duplicates, 240
for non-English articles and 396 for review papers. Hence, overall, 94 papers were finally
collected as an output of the screening phase.

Figure 2 shows the year-wise distribution of articles retrieved from each category.
It shows a significant increase in the use of image processing and artificial intelligence-
based techniques for flood management as compared to integrated approaches in the past
decade. On the other hand, a comparatively smaller number of articles focused on the
use of image processing and artificial intelligence for flood management in a post-disaster
scenario. An even smaller number of papers focused on holistic approaches for disaster
management. The search was extended to include reports, magazine articles and web
pages from authentic websites, thus increasing the scope and collecting a wide range of
articles based on the subject matter. All the articles published before 1 January 2010 were
discarded. This was to include the most recent technologies in the review. One exception
to this rule was keeping some earlier papers that introduced basic concepts and definitions
related to the technologies discussed in this study.
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Figure 2. Yearly distribution of the papers published in the selected domains.

3. Results

RQ-1. What are the latest developments in image processing for flood management in the

post-disaster scenario?

3.1. Image Processing
3.1.1. Edge Detection

Edge detection techniques have been applied to measuring water levels. The major

steps involve selecting a Region of Interest (ROI), applying pre-processing methods and
then performing edge detection to finally compute an approximate value of the water
surface levels of a water body [44—46]. These steps are discussed below:

A.

Region of Interest: the Region of Interest (ROI) technique is used for extracting a seg-
ment of an image where several operations need to be performed. In simple words, it
is similar to cropping an image to a reduced form. ROI helps in removing noise (the
unwanted image) so that the process runs smoothly and effectively. Figure 3a shows
an input image, Figure 3b shows the highlighted ROI and Figure 3c demonstrates
the extraction of ROI from the image [47].

Brightness and Contrast: it is a basic method affecting the quality of images. This
method makes the image bright. Brightness is directly proportional to the number
of pixels in x and y coordinates and the constant 4 of the image. A positive value
makes the image brighter and vice versa. Figure 3d shows the noise-filtered image
and Figure 3e shows the output image with increased brightness.

Grayscale and Threshold: the greyscale image only holds the intensity information.
The image is black and white textured, with black being the weakest intensity and
white colour depicting a strong intensity range. Threshold, on the other hand, is
a point that converts a grayscale image into a binary image. Figure 3f illustrates a
grayscale image, while Figure 3g shows a binary (black and white) image.

Edge Detection: this algorithm helps to find out the edge points on the water surface
and the point of the dam’s height. The algorithm was found helpful in determining
the edge of the water. The output consists of a segmented image separating the water
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area from the rest of the image. The system calculates the existing water surface
level by comparing the edge pixel coordinate. If the water level increases, the pixel
coordinates drops resulting in altered segmentation. The system should be calibrated
properly for accurate estimation of results [48]. A warning system can be established
by using this method. The water surface level of any region can be calculated by
processing the captured image. Moreover, the image can be spread on social media
as a piece of evidence for alerting people of the upcoming disaster. Figure 3a-h
shows the edge detection results on the test image.

Figure 3. (a) Input image (b) ROI (c) extracted ROI (d) filtered image (e) enhanced brightness
(f) grayscale image (g) binary image (h) edge detection results.

Detection of significant landmarks from images is another method being used to
analyse various features from the images to determine whether a region is flooded or not.
Researchers are focusing on extracting landmarks present on the ground, such as bridges,
roads, houses and buildings [48-51]. These features can be further processed using image
processing techniques to aid in disaster response. For example, houses and buildings
can be identified to locate stranded people. Roads and bridges can be used to identify
the routes available in a certain area, which can assist in reaching and evacuating people.
These features can also be processed separately for damage assessment due to a disaster
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and to verify the occurrence of disaster in the region. Munawar et al. [51] used isotropic
surround suppression and Hough transforms for target recognition from aerial images and
performed rule-based verification of strategic targets detected from these images. Recently,
edge detection techniques on multispectral aerial images to mine strategic bridge locations
to provide aid in disaster relief missions have been applied [51-53]. Table 1 summarises
the methodologies using edge detection for various flood management processes.

Table 1. Edge-detection-based techniques for flood management.

Method Features Imag.l & Resources Results Limitations Authors
Device
Image Target recognition -
. . Unmanned . Application to
segmentation of linear-shaped . - N Computational .
. : Aerial Vehicle  Optical imagery . objects of a [54]
using canny landmarks: bridges (UAV) time = 0.8913 s sinele cateor
edge detection and runways & sOtY
Mining patterns Bridge and road UAV Multispectral Accuracy = 95%, [29]
from images Detection aerial images comp time =0.8 s

3.1.2. Image-Based Flood Alarm Model (IFAM)

IFAM is a flood alert system. The system utilises images for monitoring rising water
levels in real-time. The IFAM receives videos through digital camera sensors. The sensors
are installed around rivers. The videos are processed in JPEG images. Image enhancement
is completed. The flood risks are then calculated by devising modules that estimate the
water level [28]. Figure 4 shows the schematic diagram of an IFAM.

Flood Warnings

Video Images

Video Streaming

Water Level Detection

Flooded Area Detection

' Flooded Region

Image Server

: I I I

‘Image Based | .

Flood Alarm | Multi-Users
Data Base Module

Figure 4. Schematic diagram of a flood-alert monitoring system.

IFAM utilises the image segmentation technique to remove noise and unwanted
objects. The image segmentation follows several algorithms, such as point-based segmen-
tation, edge-based segmentation, region-based segmentation and hybrid segmentation.
The outside sources are likely to affect the image segmentation techniques [55,56]. These
include reflection, humidity, bad environment, smoke, storm and other sources. If the
outdoor environment changes, the technique would be unable to detect the flooded area
and the correct boundaries of the area will not be identified [57]. Therefore, image segmen-
tation should be coupled with flood-risk classifiers for lowering the risk level. After the
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image processing module, a risk detection module is generated, which informs the relevant
organisation of upcoming risks [28].

During the first module of image processing, the images received from sensors are
processed by converting the colour space from the Red-Green—Blue (RGB) domain to the
Hue-Saturation-Value (HSV) domain [58]. The HSV colours are relevant to the Cartesian
coordinate system. Histogram equalisation is applied to equalise the image colours of
water and surrounded areas such as forests or land by increasing the contrast level [59].
Different parts of an image are classified into components such as buildings, rivers and
other surrounding things [55]. A Region Growing (RegGro) algorithm is then applied,
which is used for segmentation and creating a binary mask. A binary mask outlines the
areas of water. The second module consisted of an alarm system that generates an alarm
when a flood is detected. Thus, the system performs real-time flood water monitoring
based on IFAM sensors installed near water bodies.

After the acquisition of images from satellite sources, the information is collected in
different data sets. Data processing tools then help in processing the information, followed
by database development [60]. A comparative analysis of information is carried out, which
produces a draft of damage estimation accompanied by flood monitoring.

3.1.3. Post-Disaster Assessment Using UAV

Ezequiel et al. [61] proposed UAV-based aerial imagery for post-disaster assessment
and monitoring of infrastructure. Collaborative research was conducted for data acquisi-
tion, path planning and processing of UAV based aerial imagery. This assists in gaining
background information for making the right decisions. In the Philippines, after Typhoon
Haiyan, damage estimation was carried out using initial aerial imagery. UAV-based aerial
imagery assisted in relocation and rehabilitation efforts within the region. Besides damage
assessment of building and infrastructure, damage to the agriculture industry was also
estimated with aerial imagery and ground survey. The damage to crops was identified
using aerial imagery based on normal RGB and multispectral cameras. Vegetation indices
were calculated using the image processing technique, while ground-based knowledge
was gathered from the field experts. An accurate estimate of damage facilitated making a
decision for recovery assistance from the Government and implementing recovery plans.
Table 2 summarises the latest developments in the field of image processing for flood
management.

Table 2. Comparison of image processing methods for flood management.

Technique Method Imaging Device Outcome Limitation Authors
Application of ROI,
pre-processing and edge Imprecise results for
detection algorithm to Webcam Accuracy = 96% low contrast regions in [51]
estimate water levels on the images
surface of a water body
Edge Detection ™ 4mark detection s Results highly depend
.an mark detec 1(?n using Unmanned Aerial Detection of esults 1g y depen
image segmentation and Vehicle (UAV) bridges in 0.8913 s on image [54]
canny edge detection ’ segmentation results
Detection of bridges and
roads by mining patterns UAV Accuracy = 95% - [29]
from multispectral images
Use of sensors to capture
1mages from water bodies, Detection of Environmental factors
conversion from RGB to HSV, . .
application of histogram Digital camera changes in the flow such as reflection,
IFAM o plfalisation and finallv a sensors of water and humidity, smoke and [28]
qRe Gro aleorithm fO}lf real-time flood risk  storm affect the system
& & assessment performance

measurement of the water

levels
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One of the basic post-disaster assessments involves the estimation of the area and
volume of the flood. Several studies have applied remote sensing for computing the
volume and volumetric changes of the forest areas, as a ground-based survey of patch
forest is difficult to conduct [62-65]. For example, Esteban et al. [62] estimate the changes
in the volume and biomass of the forest cover using remote sensing data. Two regional
study areas, i.e., Spain and Norway, were selected for the study. Random Forest algorithm
was used to predict forest volume or above-ground biomass using remote sensing data.
Similarly, different methods such as UAV-based monitoring, tracer test analysis, UAS
photogrammetry, ArcGIS, etc., have been applied for estimating flood induced changes,
volumetric and topographic changes [66-69]. Akay et al. [66] conducted a two-year study
on the Buyuk Menderes river basin, Turkey, to quantify and visualise flood-induced mor-
phological changes through UAV surveys. To evaluate the change in river morphology,
multi-temporal orthomosaics and digital surface models (DSMs) were constructed using
the Structure from Motion (SfM) technique. Diachronic spatial and volumetric changes in
the meander structures were assessed by the Digital Shoreline Analysis System (DSAS)
and Digital Elevation Model (DEM) of Difference (DoD) tools. Aerial and volumetric
changes of the river bank were achieved using the SfM photogrammetry technique through
UAV-derived imagery. Hence, the processing time of the technique is important to consider
when applying for the flood monitoring system. Additionally, the accuracy of the image
processing technique for predicting the flood area needs to be evaluated. The compari-
son of the techniques and the one with the best performance need to be considered for
implementation in the system for the monitoring. Even though image processing has been
extensively used for flood detection and finding safe routes in the affected region, the
technique used independently has found to be less accurate due to various factors that
limit its higher uptake. These factors are mainly environmental pollution, clouds, contrast
and brightness that reduces the quality of the images. Besides these factors, it is difficult to
obtain consistent results with a different set of images. To overcome these issues, machine
learning algorithms can be applied to improve datasets, train the models and achieve
higher accuracy and prediction.

RQ-2. What is the latest techniques for flood management based on artificial intelligence
in a post-disaster scenario?

3.2. Artificial Intelligence (Al)

Al methods are frequently being used to deal with several flood-related problems.
These include flood prediction, flood hazard analysis, flood detection, mapping flood-prone
regions and assessing the damage of infrastructure components after the flood. Table 3
summarises the most recent techniques based on Al for flood management. Each of these
methods has been discussed in detail in this section [67].

A tool referred to as the Qatar Computing Research Institute (QCRI) was developed
in Qatar for managing disasters. It was created by the Qatar Foundation to educate and
make people more aware of responding to disasters and emergencies. QCRI aims to
facilitate volunteer workers and disaster management authorities. This tool has a built-in
Al component that detects disaster-related tweets and text from any given data. It then
formulates an instant solution to recover from the calamity [68].

1Concern is another Al-based tool for disaster management. During a flood-related
emergency, this tool forms a rich image of the scenario. Emergency management organ-
isations use this image to further examine and probe the situation [69]. Based on their
analysis, these centres immediately provide relief items to the disaster victims and initiate
rescue operations. The tool has a planning module that maps disaster-prone regions. After
identifying these regions, people can be immediately evacuated to save their lives. Hence,
this software provides pre-disaster disaster risk assessment as well as aids post-disaster
response. This tool has been implemented in up to 163,696 square miles region and has
saved 39 million people [67,68]. It has also been used to examine 11 million infrastructure
components in disaster-hit areas.
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BlueLine Grid is another disaster management tool that has been created by a police
commissioner in the USA. To provide aid in rescue operations after a disaster, this tool
works as a portable communication platform [64]. It also maintains a connection between
relief workers, police and security squads by connecting them in one network. This network
allows the communication of data in sound and text formats and provides location and
group services. The location services allow users to locate people and rescue workers in
nearby areas. Hence, this tool provides instant response to disasters and emergencies [68].

In India, Al-based systems are evolving. A tool using Google Maps and Google Search
has been developed by Google for flood forecasting and warning. Rainfall and past flood
data are used to train the Al model [69]. This system simulates floods based on the acquired
weather and rainfall data. It has also been used to forecast floods in urban areas. Research
conducted at the University of Dundee, United Kingdom, used this tool to determine the
urban flooding rate using crowd-sourced data collected from social media platforms [18].

Recently, more work is being directed towards applying Al and machine learning
technologies for disaster management. Chen et al. [14] applied machine learning along
with the Random Forest method for risk evaluation of floods. The main flood prediction
methods are Random Forest, Decision Trees (DT) and Lazy method. The training data
consists of Big data collected from the weather data from past flood events. A Flood Data
Aggregation Tool (FDAT) is developed using MATLAB to extract features to be used for
training. The main aim is to enable the Al models to learn from the previous flood incidents,
identify the flood behaviours and understand patterns in the data to predict future flood
incidents. This would help in preventing the destruction, reducing fatalities and building
resilience against such disasters.

Chapi et al. proposed a hybrid approach to generate flood susceptibility maps. The
model is called “Bagging LMT” as it combines bagging ensemble with a logistic model tree
(LMT) [24]. The target region was Haraz, Northern Iran. Images from this region were
used to build the image dataset. Eleven flood-conditioning factors were included in the
dataset. These factors were shortlisted by using an information gain ratio method along
with average merit (AM) calculation. Results were compared with the LMT model, logistic
regression, Random Forest and Bayesian logistic regression to prove that it outperformed
these models in performance. The system achieved an overall accuracy and precision of
95.5%, making it highly effective and reliable for flood susceptibility assessment.

In the literature, the researchers have attempted to overcome the performance limita-
tions of various existing machine learning models by incorporating statistical methods into
them. This approach is used by Tehrany, Pradhan [16], who developed an ensemble model
using frequency ratio (FR) along with SVM. A spatial model for flood prediction was built
using this method [16]. Several conditioning factors were identified, and a numerical value
was estimated using the proposed algorithm that represented the dependency between the
incidence of flood and these conditioning factors. FR is calculated for each conditioning
factor, and after that, the normalised values of weights within the range [0,1] were obtained
by applying the given formula:

Y, = Yim — Ymin (1)

Ymax — Ymin

In Equation (1), Y;, denotes the normalised values of y;,. The minimum value of y; is
represented by ¥, and the maximum value is denoted by y;,4x. The conditioning factors
are allocated the weights determined by this method. The resultant conditioning factors are
applied to an SVM-based method to determine the link between each of the conditioning
factors and the occurrence of a flood.

ANN is among the most widely used machine learning models to forecast disasters
with good performance. There are three main layers in an ANN model, which are referred
to as input, hidden and output layers. Only one or two hidden layers are present in a
typical ANN. Liu et al. [70] combined Stacked Autoencoders and Back Propagation Neural
Network (SAE-BPNN) to develop a flood prediction model. An autoencoder extracts
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non-linear features from input image data using unsupervised learning [70]. A stacked
autoencoder has many layers of thin autoencoders forming a neural network. Each layer’s
output is applied to the subsequent layer as input. The model used multiple SAE-BP
modules. The data is classified into several groups using k-means clustering. Each SAE-BP
module would simulate its corresponding data class. The results demonstrated by this
model surpassed the performance of all benchmarks chosen for the study. Let y;((") be
the activation function of the ith unit in layer m. The output [x],,’ of this unit is applied as
input to the next. The weights connecting units in various autoencoder layers are denoted
by W. The mathematical function specifying encoding for autoencoder is:

y™ = flxt) @)

Multiple conditioning factors causing floods can be used to identify flood-prone areas.
Tehrany, Pradhan [16] used a set of these factors for flood susceptibility mapping. Their
model used the weights of evidence (WoE) method to find the impact of each conditioning
factor on the flood incidents along with a bivariate statistical analysis (BSA) technique [16].
The positive and negative weights are calculated to find the WoE values using the following
formulas:

. _ . PBlA}
S =1In
] P{B|A}

®)

In Equations (2) and (3), In denotes the natural log, whereas P is the probability
function. The variables B, B~, A and A~ represent the absence and presence of the
conditioning factors. The conditioning factors are again classified using the acquired
weights. Then, an SVM model was used to find the relationship between each conditioning
factor and the occurrence of a flood. Results demonstrated improved performance over
independent usage of BSA and SVM.

Statistical methods have been employed frequently in the literature to improve the
performance of machine learning models. Shafizadeh-Moghadam et al. [30] experimented
with eight machine learning and statistical methods for flood prediction [30]. They pro-
posed seven new ensemble models by analysing the individual working of these methods.
Among the machine learning models, Boosted Regression Trees (BRT) demonstrated the
highest performance when independently used, with an Area Under Curve (AUC) equal
to 0.975. Among ensemble techniques, the Emmedian method showed the highest perfor-
mance with AUC = 0.976. This method calculated the median values of probabilities across
the predictions.

Figure 5 shows the flood mapping results on an input multispectral aerial image. The
system classifies the flooded (Red) and non-flooded (Blue) regions and highlights them
using different colours in the output so that the rescue workers can easily distinguish
between them.

N

A

E) (b)

Figure 5. Flood mapping results (a) Input RGB aerial image (b) Flooded regions (Red), Non-flooded
regions (Blue).

Table 3 shows the comparison results of the most recent, state of the art flood man-
agement and detection models that used Al The current research shows a wide range of
articles focusing on the standard Al and machine learning techniques such as Random
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Forest, Bayesian Linear Model, ANN, Decision Trees and SVM [71]. Most techniques
focused on ensemble and hybrid approaches, which are known to boost performance
outcomes. Integrating results of multiple independent classifiers form an ensemble model,
while a hybrid model uses two or more classifiers to produce an output. A rising trend
has been in the use of statistical analysis along with machine learning. Statistical methods
such as FR and BSA have been incorporated with machine learning models such as SVM,
demonstrating a noticeable improvement in results. Other statistical methods such as EM-
mean and EMmedian have been observed in the literature for solving the flood prediction
problem, demonstrating results at par or better than the standard machine learning or Al
techniques [72].

Table 3. Comparison of Al techniques for flood management.

Tool/Tech Method Study Area Outcome Limitation Reference
A tool to filter and classify Process thousands Does not reflect on
QCRI social media messages Qatar of messages per disaster mitigation [18]
related to disaster minute strategies
Predicts the way a
disaster would
Machine learning impact an area on Some reports of
prediction algorithms, _ building to inaccurate predictions
1Concern trained on data collected building basis needed to enhance (18]
from various cities Accuracy = 85% training data
Time = Upto
15 min
Locates nearby Relies on a wireless
. . Use of Promontory for New York, help sources and . .
Blueline Grid . connection which may [18]
emergency response USA aids . ) .
L fail during a disaster
communication
Successful
Flood warnin recognition of
. & . . urban flooding Not yet integrated by
systems integrated Al model trained using . .
. . . India from Google for mainstream [18]
into Google Search ~ rainfall and climate data
crowdsourced use
and Google Maps . .
images retrieved
from social media
. Highest accuracy .
Trained Random Forest, (80%) achieved Results highly
Al and machine DT J48, Lazy methods ? dependent on the
. . ; UK through the . [19]
learning models using big data for flood quality of data and
rediction Random Forest input parameters
p algorithm putp
Bégglng ensemble and The depth of water in
. logistic model tree (LMT) _ o .
Bagging LMT ) - Accuracy = 95.5% a flooded region [24]
integrated to map flood .
. cannot be estimated
risks
FR-based calculation of Needs c.a Fefql selection
weights for conditioning Kelantan, Best accuracy for of conditioning factors
FR-SVM factors; use of SVM for Malaysia kernel width = 0.1 .to F)b’Fam.the most [16]
discriminative features
flood forecasts
to map floods
SAE combined with
BPNN. K-means Imbalance in data
SAE-BPNN clustering used to ) DC=0388 distribution problem [66]
improve the results
Weights calculated using Success rate = A high prediction rate
BSA method for the o L I
e . 96.48% indicates a likelihood
BSA-SVM conditioning factors; use Malaysia . . [16]
Prediction rate = of having false
of SVM for flood .9
95.67% predictions

prediction
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Table 3. Cont.
Tool/Tech Method Study Area Outcome Limitation Reference
The highest
Machine learnin 8 machine learning performance
earming models and 7 ensembles achieved using the = Accuracy affected by a
and statistical . . Haraz, Iran .. [50]
approaches of machine learning and ensemble model change in input data
pp statistical methods Emmedian with
AUC =0.976
Several standard ANN.’ dec.1510n forest, s Bayesian Linear Incomplete data and
. . Bayesian linear model, Pattani Basin, model .
machine learning unknown variables [31]

models

boosted decision tree and
linear regression model

Thailand

demonstrated the
best performance

used in experiments

The researchers have used various metrics to assess the performance of their tech-
niques; the most frequent one is the accuracy, which is simply the percentage of correct
detections. Other measures include AUC, success rate and Deterministic coefficient (DC).
Most of the techniques have limitations arising from the data-based restrictions [73]. The
models using conditional factors needed to select these factors from a large pool of flood
data. This required careful feature selection and extraction, as the most influential factors,
which are contributing the most to the occurrence of floods, needed to be selected. Other
data-related problems include an imbalance in data distribution, the presence of unidenti-
fied variables in data and ambiguity in selecting parameters for the system. Hence, most
models are found to be highly dependent on the input parameters and data either to be
used in training, testing or just analysis and the major concerns of researchers about their
proposed system were most frequently related to the input data. One possible way to solve
this issue is to use deep learning methods, which have an inherent ability to cope with
unstructured data and perform feature extraction automatically. Additionally, the use of
deep learning to tackle the problem of flood management was found to be rare, despite
its increased usage in image classification and segmentation problems. This indicates the
need to investigate the models from this domain for flood detection and mapping tasks.

Some works have also been conducted on the generative adversarial network (GAN)
that enables to capture high-quality images and provide support in models for estimation
of water levels, analysing surface water, losses in wetlands and river winding. With the
application of GAN, the data sets can be improved, and the models could be trained well.
In the study carried out by [74], a repository was developed for the overhead river images
for training purposes. An augmentation was summarised, and Progressive Growing GAN
(PGGAN) was implemented to train small resolutions images and develop high-resolution
images. Some limitations have been observed with conventional GAN resulting in high
computational time and gradient issues that PGGAN overcomes. GAN is the primary
system for the generation of unsupervised data [68]. The network of a generator and
discriminator work in contrast to each other, where the generator creates realistic images
and fools the discriminator to not distinguish between the real and fake images. Thus, the
shortage of data was overcome with the application of GAN, and better outcomes of the
models were achieved.

Data mining and social sensing with the application of Natural Language Processing
(NLP) is an emerging technology to extract and assess social media data for any disaster
event [69-71]. Social media provides current information about the event and keep the
public up to date about the oncoming hazard. This data will facilitate the prediction of the
emergency scenario and understand human behaviour by assessing underline patterns of
media users. Social sensing has advantages over field surveys and interviews, as it gathers
data from the public, not directly from the disaster responders, provides real-time data of
the disaster scenario and facilitate in making a timely decision for mitigating the disaster
and informing the public about evacuation plans [75].
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Another method of data collection and analysis is through crowdsourcing, which
is a cost-effective and time-efficient method. The performance of crowdsourcing can
be significantly enhanced with the application of Al and machine learning methods or
flood management, as it provides access to good quality structured data for training the
algorithms. Crowdsourcing relates to data collection and decision-making approach based
on the information gathered [76,77]. For disaster management, crowdsourcing aims to
collect and analyse the data. It facilitates gathering firsthand information about disaster
situations, sharing knowledge on online platforms. It processes data through image
labelling, putting coordinates, tagging and categorising, such as labelling of damaged
infrastructure on images collected through remote sensing. This results in the generation of
structured and precise data for input into machine learning models and making real-time
decisions [78-80].

4. Discussion

RQ-3. What are the existing gaps in the selected technologies for flood management?

The image processing technique has been widely applicable for flood monitoring,
identifying routes and landmarks. 3D geodetic data for flood analysis is essential for flood
management. A large number of geodetic, photogrammetric and remote sensing techniques
are available to collect 3D data as it provides more in-depth information and provides an
opportunity to extract digital terrain and surface models [78]. Advanced techniques such
as Laser scanning—LIDAR (Light Detection and Ranging) and UAV (Unmanned Aerial
Vehicle) have been investigated for conducting surveys. The gathered information can
be useful to analyse geodetic information on the exiting environment and the impacts of
potential disaster, its impacts on the area and the damage caused. These technologies help
to collect a large amount of data in a short time with high accuracy and can be used for
future analysis. These techniques allow higher data accuracy which is achieved through
high resolution of the collected data having higher data density. With the advancement in
technology, compact devices are being built with platforms that collect data. Affordable
prices make it more attractive to the end-user [78-81]. However, there is a certain limitation
of image processing that hinders the wider uptake of this technique and achievement of
the required outcomes. Often, the quality of the images is marginalised due to various
factors, and the obtained results are less accurate. These factors may include brightness,
contrast, environmental pollution, clouds and dust particles. Different correction features
such as radiometric, geometric corrections and bad line replacement are applied to obtain
desired results. It is often difficult to obtain consistent results and the required quality
of the image with each test image due to several interferences and limitations of this
technique. It is often observed that pre-defined algorithms or scripts may work fine for
a certain set of images while it may not be able to process other sets of images due to
inconsistencies that may be due to various factors [82,83]. To address these issues, various
Al and machine learning tools can be adopted. Higher accuracy and reliability could be
obtained by utilising large datasets for training a prediction model. Different sensors are
used to capture feature and mapping applications. A holistic approach could be carried
out to implement image processing along with other techniques so that the limitations are
overcome and better results could be obtained. For example, Munawar et al. [84] applied a
novel approach to image processing and machine learning for post-disaster management.
The researchers focused on identifying the floods using machine-based analysis of images.
The developed model used a holistic approach for incorporating image processing and
machine learning, which was computationally efficient and was able to speed up the
training process. The improved images were used by the classifier for training purposes
and updating core algorithms. The model was able to classify flooded and non-flooded
images with a timely response for providing the aid [84]. Furthermore, hyperspectral
imagery has been widely used instead of multispectral imagery to differentiate mixed
pixel images. Another technique of image fusion has also been used often to improve
classification instead of individual sensors, which may be inconsistent.
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RQ-4. How can the authorities improve the existing flood management operation with
cutting-edge technologies?

Based on the extensive review, it is suggested that the authorities should adopt image
processing techniques in tandem with machine learning. Machine learning will enable the
processing of large datasets, and train prediction models which can implement intelligence
as per the training models. This would give higher accuracy of the obtained results [82-84].
As per the extensive review carried out for this study, numerous technologies are currently
being used involving artificial intelligence and machine learning; however, not much work
is being carried out to integrate technologies for enhanced management of floods. To
improve the existing systems, the authorities can map the flooded region either using
aerial imagery through satellites or using UAVs allocated to the affected regions. The
UAV route can be optimised to provide maximum area coverage of the area in minimum
time and cost [83] (Figure 6). The UAV swarm will collect the images of the region and
provide the gathered data to the control centre [85-88]. Recently, Albani et al. [85] applied
a macroscopic model for monitoring an area using UAVs. Parametriasition was proposed
for efficient allocation of the UAVs; abstract multiple-agent simulations were conducted
to deploy UAVs in multiple areas, and simulation of UAV swarm was carried out for
mapping the areas. Similarly, Venturini et al. [86] proposed a Reinforcement Learning (RL)
approach to deal with large swarms allocating to non-uniform distributions of targets. It
was found in the study that training the UAVs for specific scenario assist in adapting to
any new scenario with the least amount of training. The real-time data collected from
drones during flood situations could be analysed using pre-processing methods. Also, with
the application of edge detection, it could help extract the features and label the images.
The extracted images are fed into machine learning algorithms for training the models.
Shortage of data could be an obstacle for efficiently training the models. To overcome these
issues, authorities can apply GAN [89-91]. The generative models can be successfully
applied for producing realistic images, thus assisting in generating more data. The data set
can then be processed to develop flood maps, evacuation plans and for delivering relief
goods to the victims [92-98]. A framework is proposed based on image processing and
artificial intelligence learning (Figure 7).
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Figure 6. UAV swarm capturing affected region and knowledge-sharing mechanism.



Sustainability 2021, 13, 7925

16 of 22

Resource Allocation to
cover the flooded region

UAV Capturing
Images

Combining Swarm
Knowledge

Feature
Extraction

Data Storage

Labelled Images

<=
=
<=
S
o
S

Real Image
Training Model
ing GAN

Resulting Images

Flood Maps

v v
e - Evacuation Plans
- -

Figure 7. A proposed framework based on an integrated approach.

The authorities can use integrated technologies such as cloud computing, image
processing and artificial intelligence for gathering real-time information for finding routes
to reach the affected regions. These technologies have the potential for improving the
response in real-time. With the help of images from the disaster site, the authorities can
develop maps for the obstacles and other hurdles that are limiting the relief operation to
be carried out efficiently [99-105]. In Baldazo et al. [105], researchers monitored floods
by applying Deep Q-Networks (DQN) as the optimisation strategy for the trajectory
planning; agents were trained over simulated floods in procedurally generated terrain and
demonstrated good performance with two different reward schemes. Similarly, Hildmann
et al. [106] investigated the use of UAVs as Mobile Sensing Platforms (MSPs) for Disaster
Response, Civil Security and Public Safety. The wider application and uptake of the
technology can be enhanced by addressing the challenges for individual UAVs and a swarm
of UAVs. The increase in the application of UAVs will enhance the rise of UAV swarmes.

Furthermore, social media is a good platform to disseminate information and altering
the community. With the use of smartphones, information dissemination has been acceler-
ated. Instead of using traditional cloud computing-based disaster management methods,
various Al-based techniques can help the authorities with data offloading and real-time
detection of disasters. In an emergency, creating awareness among the community and
providing timely information is critical in saving the lives of people [107]. These tech-
nologies can help the authorities in disaster preparedness, planning and decision making.
Flood prediction can be enhanced by using infrared sensors assessing the movement of
the individuals. The information gathered by the sensors can be analysed and forwarded
to the concerned departments to take necessary actions. Optimising the route and floor
plan simulation can assist in finding the shortest route for escaping the emergency. The
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developed models and sensors must be able to work in dynamic environments and handle
different crises or be complementary to each other [107]. The inclusion of artificial intelli-
gence will capture human intelligence and behaviours in conditions that have not been
considered before. In a disaster response, Al can assist in collecting real-time data from
social media or public platforms and analyse the data based on algorithms using different
classification methods. This can classify informative and non-informative data during a
disaster event. Authorities can apply the shortest path algorithm to come up with the best
evacuation plan and guide their relief teams. Methods have been developed for working in
a static environment with no requirement to manage automatic congestion [108]. Moreover,
the use of big data can accelerate response time and save human lives. The escape route
patterns during a disaster event can be explored using spatiotemporal analytics of social
media, thus providing useful real-time information, as survey data may not be accessible
during a crisis. A deep learning approach can be used by the relief department to analyse
mobility patterns, and with the help of a simulator, human behaviours can be predicted
as per the situation. Furthermore, algorithms with GPUs can predict traffic patterns and
can effectively manage traffic using real-time data. Hence, there are different technologies,
algorithms and models which work in dynamic environments, assess the risk and help
in decision making. A better understanding and application of these technologies by the
emergency departments can fasten up the relief operations.

5. Conclusions

Advanced technologies are essential for maintaining communication, finding the
safest route and providing services to stranded people in a flood event. Comparative
analysis of different technologies is essential to understand the shortcomings of each and
how to address them using an integrative approach. Important resources are required
by the victims to survive during the disaster, and time is critical. With the application
of the latest tools, the safest routes for evacuation can be determined in advance for
regions where the probabilities of exceedance of the flood hazard are anticipated. Image
processing data can provide useful information about the extent of the damage to the
roads, bridges and locate a possible route to reach the victims. It can also help to detect
damage to buildings and infrastructure. Detection of significant landmarks from images
is another method being used to analyse various features from the images to determine
whether a region is flooded or not. Furthermore, Al methods are frequently used to deal
with several flood-related problems, including flood prediction, flood hazard analysis,
flood detection, mapping flood-prone regions and assessing the damage of infrastructure
components after the flood. Al-based algorithms can optimise various functions and
minimise computational time to obtain the desired outcome under any crisis. The images
captured from the disaster site can be feed into the Al algorithms to develop maps for
identifying any obstacles and hurdles that are limiting the relief operation to be carried
out efficiently. Al-based techniques can help the authorities with data offloading and
real-time detection of natural events. Futuristic communities can be imagined with the
use of Al-based sensors gathering information and giving early warning to minimise
the damage. The application of these technologies should be carried out at a large scale
considering any unforeseeable events. These technologies could be extended for advising
developmental initiatives, improving the existing capacity for flood management and
minimising the adverse effects of disasters. Thus, integration of emerging technologies,
networks, services and applications can enhance risk reduction and prepare the community
for any situation. Application of these technologies at different phases of disaster and
keeping dynamicity in consideration can assist in preparing for any oncoming disaster
such as bushfires, earthquakes, etc. Real-time data acquisition can help in evacuation
plans and simulating enhanced evacuation models, thus helping the authorities in disaster
preparedness, planning and decision making.
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