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Abstract: This paper presents a novel high-efficiency three-port bidirectional DC–DC converter for
photovoltaic (PV) systems. A PV system’s output is stepped up to supply a DC bus or DC load
while charging the battery. When the PV output is insufficient, the battery voltage is stepped up to
the DC bus; when the DC bus has excess energy, it is stepped down to charge the battery. Thus, a
high-efficiency three-port bidirectional step-up/step-down converter is achieved. A common-core
coupled inductor was designed and adopted in the proposed converter. Power switches and diodes in
the circuit are shared to achieve bidirectional operation. In step-up mode, the clamp capacitor is used
to reduce the voltage spike on the main switches. Moreover, the voltage-doubling capacitor recovers
energy from the secondary-side leakage inductance. Furthermore, the input capacitors recover the
primary-side leakage inductance energy in step-down mode. Thus, the converter can improve its
conversion efficiency. Finally, this paper details the implementation of a 500 W three-port bidirectional
converter to verify the feasibility and the practicability of the proposed topology. According to the
measurement results, the highest efficiency levels of the PV and the battery in step-up mode were
94.3% and 94.1%, respectively; the highest efficiency in step-down mode was 95.2%.

Keywords: three-port bidirectional converter; coupled inductor; photovoltaic system

1. Introduction

In recent years, greenhouse gas emissions increased with advances in technology,
leading to global warming and climate change. The energy technology industry continues
to be heavily dependent on fossil fuels and is unable to handle this stringent environment.
Therefore, the use of green energy became the core of major economic strategies and is
a key focus in world politics, especially because reducing greenhouse gas emissions and
conserving energy are the main global concerns at present [1].

Green energy is extremely affected by environmental factors; for example, solar power
generation systems are often affected by duration, intensity, and angle of sunshine, which
affect the quantity and the stability of power supply. Thus, green energy is inconvenient
and unstable to use. Therefore, a converter is needed to convert the voltage before it can
be effectively used [2–8]. Traditional isolated converters are more widely used, such as
flyback converter, forward converter, and push-pull converter, which improve safety, pro-
vide galvanic isolation, improve anti-noise ability, etc., and can be used in more windings
added to the transformer to output a variety of voltage values [9–11]. In order to reduce
cost and volume, in recent years, many bidirectional converters with step-up/step-down
function were presented [12–16]. A traditional non-isolated bidirectional converter such
as a buck/boost bidirectional converter is also widely used [12]. Such a converter has
the advantages of relatively low component count and cost but the disadvantage of a
poor voltage conversion ratio. In high-efficiency bidirectional conversion executed using a
coupled inductor converter [13], a clamp capacitor can be applied to reduce the voltage
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stress and recover stray energy; however, such converters do not have an electrical isolation
function, making circuit and switch control signals susceptible to interference. In addition,
many isolated bidirectional converters were proposed recently [14,16]. For example, [14]
proposed a high-efficiency single-input multiple-output bidirectional isolated converter
in which the leakage inductance energy of the coupled inductor is recovered through the
clamp capacitor to the power supply terminal, and zero-voltage switching (ZVS) is imple-
mented in the converter switch to reduce the switching loss; however, the auxiliary power
supply terminal cannot be stepped down/stepped up to other power supply terminals in
this topology.

Three-port bidirectional converters are appealing alternatives. Figure 1 illustrates
the general application diagram of a three-port bidirectional converter. Because photo-
voltaic (PV) systems use PV energy for energy production, lack of sunshine would lead to
inadequate energy. Therefore, an energy storage system must be developed to store more
energy during the day or to satisfy excess energy demands through a battery. When a PV
system generates insufficient or no energy owing to environmental factors or it being night,
energy is supplied by a battery, thereby considerably improving the stability of the energy
system [17–19].
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This study proposes a high-efficiency three-port bidirectional DC–DC converter for
PV systems. In the proposed converter, the PV system output is stepped up to the DC
bus, and the battery charges simultaneously. When solar energy changes rapidly due to
environmental factors, the battery ports energy to the DC bus to stabilize the overall system.
When solar energy is unavailable, the DC bus can release energy to the battery, and the
proposed converter is used for charged energy storage. The proposed PV system’s output
and battery port are stepped up and supply energy to the DC bus load. At other times, the
PV system and the battery port are each supplied with DC load (the DC load here refers to
all DC-powered equipment). When commercial power stops, the battery port is used as
the main energy supply. When power demand is lower (e.g., at night), the DC bus charges
the battery voltage. The three-port bidirectional converter proposed in this paper has the
following advantages: (1) high voltage gain, (2) high efficiency, (3) low components voltage
stress, and (4) three-port power transmission function.

2. Circuit Architecture and Operation Principle

The circuit architecture of the proposed converter (Figure 2) involves three operating
modes. At stage 1, when PV output is sufficient, energy is stepped up to the DC bus and is
used to charge the battery. At stage 2, when no PV energy is available, battery power is
separately stepped up to the DC bus. At stage 3, when no PV energy is available and the
battery power is insufficient, the battery is charged by the DC bus.
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To simplify the circuit study, the following assumptions are made:

- all of the circuit components are ideal;
- the sizes of capacitors are sufficiently large to be considered constant voltage sources;
- the sizes of inductances are sufficiently large to be considered constant current sources.

A. Stage 1: PV system output is stepped up to DC bus to charge battery.
Figure 3 shows the key waveforms of each operating mode in stage 1.
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1. Mode I (t0-t1)
At t = t0 (where t is the operating time), the switch S1 and the switch S4 body diodes

are turned on. The diodes D1 and D12 are turned on, and the diode D11 is turned off. The
equivalent circuit is shown in Figure 4a. The input voltage Vpv provides energy to the
magnetizing inductance Lm of the primary side core, and the energy is forwarded to the
secondary side. The inductor L energy is released to the battery port until the inductor iL
current decreases to zero, and the output is provided by C1 and C2.

2. Mode II (t1-t2)
At t = t1, the switch S1 is turned on, the diode D12 is turned on, and the diodes D1

and D11 are turned off. The equivalent circuit is illustrated in Figure 4b. The input voltage
Vpv provides energy to the magnetizing inductance Lm of the primary-side core, and the
energy is forwarded to the secondary side. The capacitor C1 is charged by the capacitor C2
stray energy, and the inductor L releases energy to the battery port. The output energy is
provided by Co.

3. Mode III (t2-t3)
At t = t2, the switch S1 is turned off, the diodes D1 and D11 are turned on, and the

diode D12 is turned off. The equivalent circuit is presented in Figure 4c. The leakage
inductor Llk2 stores freewheeling-current or energy in the inductor L. The capacitor C1
clamps the surge voltage of the switch S1.

4. Mode IV (t3-t4)
At t = t3, the switch S4 is turned off, and the diodes D1 and D11 are turned on, and

the diode D12 is turned off. The equivalent circuit is shown in Figure 4d. The magnetizing
inductance Lm releases energy to the output to provide the load and charge the capacitor
Co. The magnetizing inductance Lm part of the energy and the inductor L are released to
the battery port for charging.
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Figure 4. Equivalent circuit of the proposed converter operated in stage 1 (a) mode I, (b) mode II, (c)
mode III, and (d) mode IV.

B. Stage 2: Battery is stepped up to DC bus
Figure 5 shows the key waveforms of each operating mode in stage 2.
1. Mode I (t0-t1)
At t = t0, the switches S1, S2, and S4 body diodes are turned on. The diodes D1 and

D11 are turned on, and the diode D12 is turned off. The equivalent circuit is illustrated in
Figure 6a. The battery port Vb provides energy to the magnetizing inductance Lm and the
capacitor Cpv. The output load energy is supplied by the capacitors C1 and C2.

2. Mode II (t1-t2)
At t = t1, the switches S1 and S2 are turned on, and the diodes D1 and D11 are turned

off; the diode D12 is turned on. The equivalent circuit is displayed in Figure 6b. The
battery port Vb continues to provide energy for the magnetizing inductance Lm. The output
capacitance Co releases energy to the load Ro.

3. Mode III (t2-t3)
At t = t2, the switches S1 and S2 are turned off, and the diodes D1 and D11 are turned

on; the diodes D2 and D12 are turned off. The equivalent circuit is shown in Figure 6c.
The leakage inductance Llk2 releases freewheeling current or energy to the inductor L. The
capacitor C1 clamps the surge voltage of the switch S1, and the output energy is provided
by the capacitor C2.

4. Mode IV (t3-t4)
At t = t3, the switch S4 is turned on, the diodes D1 and D11 are turned on, and

the diodes D2 and D12 are turned off. The equivalent circuit is presented in Figure 6d.
The magnetizing inductance Lm releases energy to provide the load and recovers energy
through the capacitor Co. The magnetizing inductance Lm and the inductance L release
energy to charge the battery.
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C. Stage 3: DC bus is stepped down to charge the battery
Figure 7 illustrates the key waveforms of each operating mode in stage 3.
1. Mode I (t0-t1)
At t = t0, the switch S4 and the switch S1 body diode are turned on, and the diode D12

is turned on; the diode D11 is turned off. The equivalent circuit is illustrated in Figure 8a.
The DC bus provides energy to the magnetizing inductance Lm. The transformer leakage
inductance LlK1 energy is recovered by the capacitor Cpv. At this time, the inductor L can
release energy to the battery.

2. Mode II (t1-t2)
At t = t1, the switch S4 and the switch S1 body diode are turned on, and the diode D12

is also turned on; the diode D11 is turned off. The equivalent circuit is shown in Figure 8b.
The leakage inductance LlK1 energy is recovered by the capacitor Cpv, and the leakage
inductance Llk2 continues to charge the inductor L.

3. Mode III (t2-t3)
At t = t2, the switch S3 and the diode D11 are turned on, and the equivalent circuit is

illustrated in Figure 8c. The magnetizing inductance Lm discharges energy to the inductor
L and charges the battery.

4. Mode IV(t3-t4)
At t = t3, the switch S3 and the diode D12 are turned on, and the equivalent circuit is

displayed in Figure 8c. The magnetizing inductance Lm discharges energy to the inductor
L and charges the battery.
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3. Steady State Analysis

To simplify the circuit analysis, in addition to the assumptions in the second section,
the following assumptions are also added:

The magnetizing inductance of each winding is much larger than its leakage inductance.
A. Voltage gain ratio
In stage 1, PV energy is stepped up to the DC bus to charge the battery, and the

switches S1 and S4 are complementarily turned on. The following equations can be derived
on the basis of Kirchhoff’s voltage law.

When the switch S1 is turned on:

VPV = VLm (1)

the voltage on the capacitor C1 is:

VC1 = VPV
1

1− D
(2)

The voltage on the capacitor C2 is:

VC2 = NVLm + VC1 = VLm
1 + N − ND

1− D
(3)

Equations (1) and (3) can be substituted into Vo:

Vo = (1 +
D

1− D
+

ND
1− D

)VPV + VC2 =
2 + N
1− D

VPV (4)
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Organizing Equation (4) can yield the voltage gain as follows:

Vo

VPV
=

2 + N
1− D

(5)

At stage 3, the DC bus is stepped down to charge the battery; thus, the following
equations can be obtained on the basis of Kirchhoff’s voltage law:

Vb = VLm = Vo −VC2 −VC1 (6)

When the switch S4 is turned on:

Vb =
1
N

VLm = VN1 (7)

When the switches S3 and S4 are complementarily turned on:

VL = Vo −VC2 −VC1 = L
diL
dt

(8)

The voltage of the inductor L is:

VL = VPV −VN1 −Vb = L
diL
dt

(9)

According to the volt-second balance principle, the amount of change in the charging
current of the inductor L can be equal:

∆i+L = ∆i−L (10)

Therefore:
Vb
Vo

=
D

2 + N
(11)

B. Voltage stress of components
The voltage stress of the component can be analyzed by turning the switch on or off.

When the switch S1 is turned on, the voltage stress can be ascertained as in Figure 4a in
mode I of stage 1.

VPV = VLm (12)

When the switch S1 is turned off, the voltage stress can be ascertained as in Figure 4c
in mode III of stage 1.

VS1 = VPV −VLm (13)

According to the volt-second balance principle:

VLmDT = −VLm(1− D)T (14)

Arranging Equations (13) and (14) can yield the voltage stress of the switch S1
as follows:

VS1 =
VPV

1− D
(15)

The voltage stress of the capacitor C1 is:

VC1 = VS1 (16)

When the diode D2 is assumed to be an ideal component and the switch S2 is turned
off, the voltage stress of the switch S2 can be known as per Figure 6c in mode III of stage 2:

VS2 = Vb −VPV (17)
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When the switch S4 is turned off, the voltage stress of the switch S4 can be calculated
as per Figure 8c in mode III of stage 3:

VS4 = Vo (18)

In stage 2, the voltage stress of the diode D2 is the same as that of the switch S2:

VD2 = Vb −VPV (19)

When the switch S1 is turned on, the voltage stress of the diode D2 can be determined
as Figure 4b in mode II of stage 1:

VD2 = Vb (20)

The voltage stress of the output capacitor Co is:

VCo = Vo (21)

The voltage stress of the capacitor C2 is:

VC2 = VC1 + VLm (22)

In stage 3, the voltage stress of the switch S3 is the same as that of the switch S4:

VS3 = VS4 (23)

4. Experimental Results

This section presents experiments conducted to verify the feasibility and the stability
of the converter proposed in this paper. First, the electrical specifications of the main
circuit and the selected components are introduced. Voltage and current waveforms of
the components were separately measured to verify the integrity of the entire research
results. The electrical specifications and the component parameters of the circuit are listed
in Tables 1 and 2.

Table 1. Electrical specifications of the proposed converter.

Parameter Specification

Input DC Voltage VPV 24~26 V

Battery Voltage Vb 24 V

Output DC Voltage Vo 200 V

Maximum output power Po 500 W

Switching frequency 50 kHz

Turns ratio N1:N2 = 1:1

Table 2. Component parameters of the proposed converter.

Component Parameter Specification

S1\S2 (Power MOSFET) IRFP4321 (150 V/78 A)

S3\S4 (Power MOSFET) IRFP4868 (300 V/70 A)

CPV (Electrolytic Capacitor) 100 µF/100 V

C1 (MPP Film Capacitor) 10 µF/200 V

C2 (Electrolytic Capacitor) 4.7 µF/300 V

Co (Electrolytic Capacitor) 470 µF/400 V
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Table 2. Cont.

Component Parameter Specification

L (MPP Ring core) 25 µH

Diode D1\D2 SBR30A45CT (45 V/30 A)

Diode D11\D12 MBR40200 (200 V/40 A)

A. Stage 1: PV system output is stepped up to DC bus to charge the battery
Figure 9a–d illustrate the measurement results obtained when the converter operated

under its full load of 500 W in stage 1. Figure 9a illustrates Vds and Vgs waveforms of the
switches S1 and S4, respectively. The voltage stress values of S1 and S4 were 70 and 170 V,
respectively. The current waveforms of the switches S1 and S4 are displayed in Figure 9b,c.
Figure 9d presents the primary-side and the secondary-side current waveforms of the
inductor L.
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stage 1: (a) Vds and Vgs waveforms of the switches S1 and S4, (b) current waveforms of switch S1,
(c) current waveforms of switch S4, and (d) primary-side and the secondary-side current waveforms
of the inductor L.

B. Stage 2: Battery is stepped up to DC bus
Figure 10a–d display the measurement results obtained when the converter operated

under its full load of 500 W in stage 2. Figure 10a shows Vds and Vgs waveforms of the
switches S1 and S4, respectively. The voltage stress values of S1 and S4 were 70 and 170 V,
respectively. The current waveforms of the switches S1 and S4 are presented in Figure 10b,c.
Figure 10d illustrates the primary-side and the secondary-side current waveforms of the
inductor L.
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Figure 10. Measured waveforms of the proposed converter operating under full load (500 W) in
stage 2: (a) Vds and Vgs waveforms of the switches S1 and S4, (b) current waveforms of switch S1,
(c) current waveforms of switch S4, and (d) primary-side and the secondary-side current waveforms
of the inductor L.

C. Stage 3: DC bus is stepped down to charge the battery
Figure 11a–c illustrate the measurement results obtained when the converter operated

under its full load of 500 W in stage 3. Figure 11a shows Vds and Vgs waveforms of the
switches S3 and S4, respectively; the voltage stress was 200 V for both S3 and S4. The
current waveforms of the switches S3 and S4 are displayed in Figure 11b. Figure 11c
presents the primary-side and the secondary-side current waveforms of the inductor L.
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D. Experimental Efficiency
Figure 12 shows the efficiency curve of the proposed circuit. In stage 1, the maximum

efficiency was 94.3% at an output power of 200 W; when the load was 500 W, the efficiency
was 90.8%. In stage 2, the maximum efficiency was 94.1% at an output power of 250 W;
when the load was 500 W, the efficiency was 90.1%. In stage 3, the maximum efficiency was
95.2% at an output power of 200 W; when the load was 500 W, the efficiency was 91.3%.

Figure 13 presents a comparison of the efficiency of the proposed bidirectional con-
verter with that of the models presented in [15,16] in step-up mode. The efficiency of
the proposed converter was notably higher than that of the converter presented in [15]
but lower than that of the converter presented in [16]. The proposed converter has three
operating modes and high output power; however, the converter presented in [16] has only
two operating modes.

Figure 14 presents a comparison of the efficiency of the proposed bidirectional con-
verter with that of the converters presented in [15,16] in step-down mode. The efficiency of
the proposed converter was higher than that of the converter presented in [15] and lower
than that of the converter presented in [16]; however, the converter presented in [16] has
only two operating modes.

Figure 15 illustrates a comparison of the efficiency of the proposed three-port bidirec-
tional converter with that of the converters presented in [17,19] in step-down mode. The
proposed converter demonstrated higher efficiency than that presented in [19] under light
and medium loads, but it exhibited lower efficiency than that presented in [17]. However,
the proposed converter requires fewer components and produces a greater power output.
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5. Conclusions

This paper presents a novel high-efficiency three-port bidirectional DC/DC converter
for PV systems. A common-core coupled inductor was designed and adopted in the
proposed converter. Power switches and diodes in the circuit were shared to achieve
bidirectional operation. In step-up mode, the clamp capacitor was used to reduce the
voltage spike on the main switches; in addition, the voltage-doubling capacitor recovered
energy from the secondary-side leakage inductance. Furthermore, the input capacitors
recovered the primary-side leakage inductance energy in step-down mode; thus, the
converter improved the conversion efficiency. Finally, this paper details the implementation
of a 500 W three-port bidirectional converter to verify the feasibility and the practicability
of the proposed topology. According to the measurement results, the highest efficiency
levels of the PV and the battery in step-up mode were 94.3% and 94.1%, respectively; the
highest efficiency in step-down mode was 95.2%.
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