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Abstract: Rainfall and evaporation, which are known as two complex and unclear processes in
hydrology, are among the key processes in the design and management of water resource projects.
The application of artificial intelligence, in comparison with physical and empirical models, can be
effective in the face of the complexity of hydrological processes. The present study was prepared
with the aim of increasing the accuracy in monthly prediction of rainfall (R) and pan evaporation
(EP) by providing a simple solution to determining new inputs for forecasting scenarios. Initially, the
prediction of two parameters, R and EP, for the current and one–three lead times, by determining the
different input modes, was developed with the SVM model. Then, in order to increase the accuracy
of the predictions, the month number (τ) was added to all scenarios in predicting both the R and
EP parameters. The results of the intelligent model using several statistical indices (i.e., root mean
square error (RMSE), Kling–Gupta (KGE) and correlation coefficient (CC)), with the help of case
visual indicators, were compared. The month number (τ) was able to greatly improve the prediction
accuracy of both the R and EP parameters under the SVM model and overcome the complexities
within these two hydrological processes that the scenarios were not initially able to solve with high
accuracy. This is proven in all time steps. According to the RMSE, KGE and CC indices, the highest
increase in the forecast accuracy for the upcoming two months of rainfall (Rt+2) for Ardabil station in
scenario 2 (SVM-2) was 19.1, 858 and 125%, and for the current month of pan evaporation (EPt) for
Urmia station in scenario 6 (SVM-6), this occurred at the rates of 40.2, 11.1 and 7.6%, respectively.
Finally, in order to investigate the characteristic of the month number in the SVM model under
special conditions such as considering the highest values of the R and EP time series, it was proved
that by using the month number of the SVM model, again, the accuracy could be improved (on
average, 17% improvement for rainfall, and 13% for pan evaporation) in almost all time steps. Due to
the wide range of effects of the two variables studied in the hydrological discussion, the results of
the present study can be useful in agricultural sciences and in water management in general and
will help owners.

Keywords: rainfall; prediction; pan evaporation; hydrology; artificial intelligence; month number

1. Introduction

Hydrology is the scientific field that deals with water occurrence, its properties, its
distribution and the effect of the atmosphere [1]. It is also related to the design and man-
agement of water resource projects. Almost all hydrological activities are unclear because
these activities are mainly affected by different interrelated elements [2]. Additionally,
hydrological processes are affected by spatial and temporal variability [3]. Therefore, the
main challenge that confronts hydrologists is the uncertainty that is considered as the main
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feature of hydrological studies. Decision makers and researchers are usually faced with
this uncertainty when they try to solve problems related to hydrological events such as
floods, evaporation, precipitation, contaminant transport and drought phenomena [2].

There are different approaches that are used in hydrological modeling around the
world which include physical models and empirical models. For almost all hydrolog-
ical studies, physical models were the conventional modeling tools that were used in
recent decades [4]. Physically based models are a representation of the ‘physics’ behind
a hydrological system and try to solve partial differential equations in order to represent
the best understanding of hydrological processes. Physically based models often use
two-dimensionally, but sometimes three-dimensionally, distributed data. Due to this data
distribution approach, the data required for these models are typically very large. However,
the accuracy of these models highly depends on the availability of detailed and accurate
data about complex hydrological system properties, which are not usually available due
to cost and time limitations, especially in developing countries, resulting in model uncer-
tainties and unsatisfactory performance, which in turn result in insufficient water resource
management decisions [5,6]. Empirical models are often used when relations become
extremely complicated and difficult to describe. Empirical models are most often utilized
in areas with little available information about hydrologic systems. On the downside,
empirical models have certain drawbacks concerning their applicability. Based on the
above, and due to the aforementioned limitation of using physical and empirical models,
it became necessary to find another alternative approach to hydrological modeling [7,8].
Therefore, in recent years, artificial intelligence has attracted considerable attention and has
been widely used in modeling different hydrological processes such as rainfall, evaporation,
floods and the rainfall–runoff relationship [9–14].

The authors of [15] used an ANFIS (adaptive neuro-fuzzy inference system) in order
to predict rainfall in the South Tangerang region, Indonesia. They adopted different input
combinations and different membership functions during the training and testing of the
model. The authors of [16] presented a comparison study to predict rainfall in Malaysia
using different AI techniques that included Bayesian linear regression (BLR), boosted
decision tree regression (BDTR), decision forest regression (DFR) and neural network
regression (NNR). The authors of [17] adopted an echo state network (ESN), deep echo
state network (DeepESN), back-propagation network (BPN) and support vector regression
(SVR) to estimate rainfall. The meteorological hourly data from 2002 to 2014 at the Tainan
Observatory in southern Taiwan were used to develop the models. The results showed
that the correlation coefficient of DeepESN was better than that of ESN, BPN and SVR. On
the other hand, the authors of [18] studied the efficiency of some data-driven techniques
including support vector regression (SVR) and artificial neural networks (ANN), and
combinations of them with wavelet transforms (WSVR and WANN) were investigated for
predicting evaporation rates at Tabriz (Iran) and Antalya (Turkey) stations. They used four
statistical indices, namely, the root mean square error (RMSE), the mean absolute error
(MAE), the correlation coefficient (R) and Nash–Sutcliffe efficiency (NSE), for evaluating the
results of modeling. The results indicated that the ANN model performed better than the
WANN, SVM and WSVM models for both stations. The authors of [19] built three different
AI models based on artificial neural networks (ANNs) (multilayer perceptron (MLP) and
radial basis function network (RBFN)) and support vector regression (SVR) in order to
estimate the evaporation in Turkey. For the purpose of evaluation, they compared the
results of modeling with observed class A pan evaporation data. The outcome showed that
the performance of ANN and SVM was similar. The authors of [20] compared radial basis
neural network (RBFNN), self-organizing map neural network (SOMNN) and multiple
linear regression (MLR) models for prediction of the daily EP in Pantnagar in India. They
used the gamma test to choose the input combination. They concluded that the RBFNN
model with six input meteorological parameters performed with the highest accuracy
compared to the other models. The author of [21] studied the capabilities of a neuro-fuzzy
(NF) technique to estimate daily pan evaporation. The results of the NF model were
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compared with the results of an ANN model. The results revealed that the proposed
NF and ANN models have good abilities to estimate the value of evaporation using
different meteorological data. The authors of [22] investigated the accuracy of two heuristic
regression approaches, multivariate adaptive regression splines (MARS) and M5 model
tree (M5Tree), in estimating pan evaporation using only temperature data as input. The
results revealed that the MARS model performed better than the other models.

The overall purpose of the presented study is to increase the accuracy of the developed
SVM model for monthly prediction of rainfall (R) and pan evaporation (EP) in different
time steps, using a simple and new method, along with input scenarios for the model. In
this way, the results of the model in the shadow of this new simple method can be used
to predict the monthly rainfall (R) at Ardabil station and pan evaporation (EP) at Urmia
station, with high accuracy and for different time steps. The SVM model, unlike other
artificial intelligence methods, has a certain mathematical structure, meaning that it does
not over-fit during modeling. Due to the lack of long-term data required by SVM, this
algorithm contains specific objective and kernel functions and can provide ideal results
using optimized mathematical methods [23].

2. Methods and Material
2.1. Study Region and Datasets

This study was conducted to investigate the capability of the developed support vector
machine (SVM) model to predict monthly rainfall (R) at Ardabil station and monthly pan
evaporation (EP) at Urmia station, with the effect of the month number (τ) characteristic
within the scenarios. For this purpose, these two stations will be introduced first. In order
to predict the monthly R and EP, in this study, the monthly rainfall information from
Ardabil meteorological station and the EP information from Urmia meteorological station
were used. Ardabil and Urmia, as the provincial capitals of Ardabil and West Azerbaijan,
are located in Iran, in the mountainous region, and have a semi-arid and cold climate.
Additionally, in these areas, rainfall has a disproportionate seasonal distribution. Thus,
most of the rainfall, whether in the form of rain or snow, occurs in the autumn–winter and
spring seasons. Ardabil meteorological station is located at an altitude of 1335 m above sea
level, with a longitude of 47◦ and 2′ and latitude of 38◦ and 13′, and Urmia meteorological
station has a latitude of 37◦ and 32′ and a longitude of 45◦ and 5′, and an elevation of 1316
m. They are both located above sea level. Figure 1 shows a visual view of the geographical
location of the meteorological stations under study.
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In this study, rainfall (R) data of Ardabil meteorological station, on a monthly basis in
the statistical period 1976–2019, and pan evaporation (EP) data of Urmia meteorological
station, on a monthly basis in the statistical period 1993–2019, were obtained from the
Meteorological Organization. Data were divided so that 80% of the data were isolated for
training, and 20% for the testing phase. To be more precise, out of the total 522 months
of R data of Ardabil station, 417 months were considered for training (1976–2010), and
105 months for testing (2019–2011). For modeling the EP of Urmia station, out of the total
number of 318 months of EP data, 249 months (2013–1993) were considered for training,
and 69 months for testing (2019–2014). Figure 2 shows the data segmentation diagram for
predicting R and EP at Ardabil and Urmia stations in two sections: training and testing.
Table 1 shows the statistical characteristics (minimum, maximum, mean, standard deviation
and skewness) at Ardabil and Urmia stations for the training and testing datasets. In order
to investigate the different input and output modes of the smart model, cross-correlation
analysis was performed between the types of modes. The visual view obtained from the
study of the interrelationship of inputs and outputs for the monthly rainfall of Ardabil
station and monthly EP of Urmia station is shown in Figure 3.
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Figure 2. Variation in the monthly rainfall (R) (1976–2019) and pan evaporation (EP) (1993–2019)
time series depicting the training and testing datasets at Ardabil and Urmia meteorological stations.

Table 1. The monthly statistical parameters of rainfall data at Ardabil station and EP data at Urmia station.

Station Datasets Data No.
* Statistics

Min Max Ave SD Skewness

Ardabil
Total 519 1.02 62.25 23.19 12.92 0.63

Training 414 1.02 62.25 23.48 13.47 0.62
Testing 105 4.85 50.07 22.05 10.47 0.44

Urmia
Total 318 0 10.17 3.91 3.36 0.17

Training 249 0 10.16 3.86 3.36 0.19
Testing 69 0 10.17 4.11 3.41 0.11

* Min, minimum; Max, maximum; Ave, average; SD, standard deviation.
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(b) Urmia stations.

2.2. Support Vector Machine (SVM)

Support vector machines (SVMs) were developed in 1992 by the Russian mathemati-
cian Vapnik, based on statistical learning theory. SVM is one of the learning methods with
supervised learning which is used to analyze data that are implemented for regression
analysis and classification. This learning system is used to both classify and predict the
data fitness function to minimize errors in the data classification or fitness function. In
linear data classification, an attempt is made to select a line that has a more reliable margin.
Support vectors are the closest training points at the edge of the cloud and are used to
define the boundary between classes [24]. If the data are linear and separate, the SVM
uses linear machines to separate and train an optimal level with the least error and the
maximum distance between the page and the nearest training points (support vectors) [24].
The structure of a support vector machine is shown in Figure 4 [25].
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If the training points are in the form of [xi, yi], and the input vector is in the form of
x ∈ Rn, then the value of each class is defined as yi ∈ [−1, 1] i = 1, . . . , i. The decision rules
that can then be expressed by an optimal page that separates binary decision classes can be
expressed as Equation (1):

Y = sgn(∑N
i=1 yiai(X× Xi) + b) (1)

In the above relation, Y is the output of the relation, yi is the value of the sample class
and Xi, ai and b are the parameters that determine the hyperplane. If linear separation is
not possible, then Equation (1) is changed as follows:

Y = sgn(∑N
i=1 yiaiK(X× Xi) + b) (2)

In Equation (2), K (X × Xi) is a kernel function that generates internal multiplications
to create SVM models with different modes of nonlinear decision levels in the data space,
and for this purpose, it is necessary to define the line equation. The line equation in the 2D
space is calculated by Equation (3), the plane equation is calculated by Equation (4) and
the screen equation is calculated by Equation (5) [26].

w1x1+w2x2+b = 0 (3)

w1x1+w2x2+w3x3+b = 0 (4)

∑n
i=1 wixi + b = 0→ wTx + b = 0, w =

 w1
...

wi

, x =

 x1
...

xi

 (5)

According to Figure 5, the continuous bold line with the equation wT x + b = 0 is
known as the line separating the data on the plane and divides them into two categories,
A and B. This line leads to the formation of a space in which the data belonging to category
A take a positive number and the data belonging to category B take a negative number.
However, in SVM models, in addition to using the delimiter line, a confidence margin is
also used for classification (Figure 5). In this case, none of the data are allowed to be in
the middle area. Assuming that the line with the equation wT x + b = 0 is a boundary zero
point, then for the data, depending on the position in classes A and B, respectively, the
equations wT x + b > 1 and wT x + b < −1 are established. The thickness of the separator in
the SVM includes an area and makes the classification process more resistant to the risk of
misalignment [27].

One of the common methods for solving nonlinear problems is to use kernel functions.
In fact, with a nonlinear transformation of the input space into a larger space, usury
issues can be separated linearly. The choice of the kernel function is very important
in SVM models, and different issues can be considered depending on the nature of the
problem. Therefore, a function cannot be definitively introduced as the most suitable
function for SVM. The types of important kernel functions that are common in engineering
applications [28–30] and were used in the present study are shown in Table 2.
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Table 2. The kernel functions used in the present study.

Function Type Kernel Function

Polynomial kernel function k(xi, xj) = (xT
i xj + 1)p

Radial-based kernel function (RBF) k(xi, xj) = e−y|xi−xj |2

Pearson kernel function (PUK) k(xi, xj) =
1

[1+(2
√
|xi−xj|2×

√
2

1
ω )

2
]
ω

2.3. Model Performance Evaluation Indicators

To evaluate the accuracy of SVM model scenarios according to Equations (6)–(8), the
performance evaluation criteria of root mean square error (RMSE), coefficient of determi-
nation (CC) and Kling–Gupta (KGE) were used. The RMSE measures the best fit with the
priority of high values of monthly rainfall and EP [31,32]. The KGE criterion in Equation (8)
is one of the new criteria in the evaluation of hydrological models proposed by [33] and is
in fact a modified version of the Nash–Sutcliffe efficiency (NSE) index.

RMSE =

√
1
n∑n

i=1 (xi − yi)
2 (6)

CC =
(∑n

i=1 xiyi − 1
n ∑n

i=1 xi∑n
i=1 yi)

(∑n
i=1 x2

i −
1
n (∑

n
i=1 xi)

2)(∑n
i=1 y2

i −
1
n (∑

n
i=1 yi)

2 (7)

KGE = 1−
√
(cc− 1)2 + (α− 1)2 + (β− 1)2 (8)

In Equations (6)–(8), xi and yi are real and estimated values, n is the number of data
evaluated, CC is the linear correlation coefficient between xi and yi, α is equal to the ratio of
standard deviation yi to standard deviation xi and β is equal to the ratio of average yi to
average xi.
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3. Results and Discussion
3.1. Determining the Most Effective Input Compounds to Model Output Aims

In order to determine the input of the SVM model, with the aim of predicting the
current and lead times of one–three monthly rainfall (R) and pan evaporation (EP) events,
the cross-correlations of lag times (Rt−1, Rt−2, Rt−3 or EPt−1, EPt−2, EPt−3) against the
target months (Rt, Rt+1, Rt+2, Rt+3 or EPt, EPt+1, EPt+2, EPt+3) were examined, and the
results are shown in Figure 3. Therefore, for rainfall, various combinations of lag times to
predict the current and lead times of one–three monthly rainfall (R) events were considered
as the input of the SVM model and are listed in Tables 3 and 4. For each of the predicted
time steps, we have a total of six scenarios. Of these six scenarios, three scenarios are
shown in Table 3, and three scenarios are shown in Table 4. The scenarios in Table 3 show
the different combinations of rainfall (R) lag times as input to the SVM model. According
to the scenarios in Table 4, in addition to lag times, the month number (τ) was placed as an
input next to other inputs to check the results of the scenarios without and with the month
number. This is also true for the prediction of pan evaporation (EP), which can be seen in
Tables 5 and 6.

Table 3. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of monthly rainfall
prediction in scenarios without the month number (τ) during training and testing periods at Ardabil station.

Input Scenario Output Model
Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)
(1) Rt−1, Rt−2, Rt−3 Rt SVM-1 0.863 0.820 6.832 0.804 0.799 6.464

* (3) Rt−1, Rt−2 Rt SVM-3 0.839 0.779 7.391 0.815 0.807 6.230
(5) Rt−1 Rt SVM-5 0.717 0.609 9.459 0.666 0.615 7.912

(1) Rt−1, Rt−2, Rt−3 Rt+1 SVM-1 0.580 0.417 11.061 0.454 0.377 9.694
* (3) Rt−1, Rt−2 Rt+1 SVM-3 0.502 0.309 11.806 0.438 0.306 9.560

(5) Rt−1 Rt+1 SVM-5 0.240 −0.098 13.177 0.083 −0.203 10.538

* (1) Rt−1, Rt−2, Rt−3 Rt+2 SVM-1 0.373 0.120 12.552 0.291 0.065 10.067
(3) Rt−1, Rt−2 Rt+2 SVM-3 0.277 0.025 13.190 0.274 0.057 10.120

(5) Rt−1 Rt+2 SVM-5 0.152 −0.171 13.417 0.185 −0.151 10.255

* (1) Rt−1, Rt−2, Rt−3 Rt+3 SVM-1 0.411 0.154 12.430 0.401 0.142 9.603
(3) Rt−1, Rt−2 Rt+3 SVM-3 0.315 0.035 12.893 0.345 0.066 9.847

(5) Rt−1 Rt+3 SVM-5 0.265 0.007 13.252 0.345 0.093 9.840

* The results in bold show the selected model.

Table 4. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of monthly rainfall
prediction in scenarios with the month number (τ) during training and testing periods at Ardabil station.

Input Scenario Output Model
Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)
* (2) τ, Rt−1, Rt−2, Rt−3 Rt SVM-2 0.911 0.841 5.661 0.846 0.845 5.815

(4) τ, Rt−1, Rt−2 Rt SVM-4 0.902 0.850 5.864 0.832 0.826 6.199
(6) τ, Rt−1 Rt SVM-6 0.860 0.775 6.948 0.812 0.811 6.428

* (2) τ, Rt−1, Rt−2, Rt−3 Rt+1 SVM-2 0.771 0.665 8.602 0.704 0.703 7.974
(4) τ, Rt−1, Rt−2 Rt+1 SVM-4 0.744 0.639 9.045 0.709 0.709 8.013

(6) τ, Rt−1 Rt+1 SVM-6 0.697 0.557 9.790 0.650 0.633 8.403

* (2) τ, Rt−1, Rt−2, Rt−3 Rt+2 SVM-2 0.706 0.551 9.602 0.656 0.623 8.148
(4) τ, Rt−1, Rt−2 Rt+2 SVM-4 0.668 0.511 10.111 0.653 0.628 8.244

(6) τ, Rt−1 Rt+2 SVM-6 0.641 0.483 10.455 0.632 0.604 8.467

(2) τ, Rt−1, Rt−2, Rt−3 Rt+3 SVM-2 0.723 0.579 9.356 0.616 0.601 8.739
(4) τ, Rt−1, Rt−2 Rt+3 SVM-4 0.684 0.532 9.860 0.616 0.586 8.597

* (6) τ, Rt−1 Rt+3 SVM-6 0.651 0.489 10.288 0.628 0.587 8.411

* The results in bold show the selected model.
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Table 5. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of monthly EP prediction
in scenarios without τ during training and testing periods at Urmia station.

Input Scenario Output Model

Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)

* (1) EPt−1, EPt−2, EPt−3 EPt SVM-1 0.937 0.902 1.230 0.889 0.844 1.666
(3) EPt−1, EPt−2 EPt SVM-3 0.901 0.864 1.543 0.868 0.831 1.804

(5) EPt−1 EPt SVM-5 0.828 0.818 1.969 0.796 0.781 2.175

* (1) EPt−1, EPt−2, EPt−3 EPt+1 SVM-1 0.969 0.955 0.833 0.866 0.845 1.751
(3) EPt−1, EPt−2 EPt+1 SVM-3 0.876 0.802 1.629 0.807 0.761 1.990

(5) EPt−1 EPt+1 SVM-5 0.564 0.494 2.842 0.532 0.459 2.921

* (1) EPt−1, EPt−2, EPt−3 EPt+2 SVM-1 0.965 0.946 0.883 0.888 0.850 1.603
(3) EPt−1, EPt−2 EPt+2 SVM-3 0.911 0.861 1.394 0.797 0.764 2.072

(5) EPt−1 EPt+2 SVM-5 0.421 0.266 3.106 0.400 0.250 3.093

* (1) EPt−1, EPt−2, EPt−3 EPt+3 SVM-1 0.978 0.956 0.701 0.930 0.846 1.339
(3) EPt−1, EPt−2 EPt+3 SVM-3 0.945 0.926 1.102 0.869 0.834 1.712

(5) EPt−1 EPt+3 SVM-5 0.689 0.536 2.439 0.617 0.478 2.672

* The results in bold show the selected model.

Table 6. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of monthly EP prediction
in scenarios with τ during training and testing periods at Urmia station.

Input Scenario Output Model

Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)

(2) τ, EPt−1, EPt−2, EPt−3 EPt SVM-2 0.984 0.969 0.602 0.940 0.913 1.205
(4) τ, EPt−1, EPt−2 EPt SVM-4 0.979 0.970 0.678 0.951 0.946 1.065

* (6) τ, EPt−1 EPt SVM-6 0.976 0.955 0.731 0.957 0.938 0.996

(2) τ, EPt−1, EPt−2, EPt−3 EPt+1 SVM-2 0.982 0.976 0.641 0.920 0.899 1.370
(4) τ, EPt−1, EPt−2 EPt+1 SVM-4 0.980 0.968 0.666 0.938 0.924 1.197

* (6) τ, EPt−1 EPt+1 SVM-6 0.977 0.966 0.723 0.942 0.936 1.144

(2) τ, Rt−1, Rt−2, Rt−3 EPt+2 SVM-2 0.982 0.975 0.649 0.934 0.893 1.244
* (4) τ, EPt−1, EPt−2 EPt+2 SVM-4 0.980 0.974 0.676 0.944 0.919 1.144

(6) τ, EPt−1 EPt+2 SVM-6 0.977 0.959 0.722 0.942 0.912 1.173

(2) τ, EPt−1, EPt−2, EPt−3 EPt+3 SVM-2 0.982 0.978 0.644 0.945 0.881 1.167
(4) τ, EPt−1, EPt−2 EPt+3 SVM-4 0.980 0.972 0.675 0.949 0.902 1.102

* (6) τ, EPt−1 EPt+3 SVM-6 0.979 0.968 0.684 0.951 0.918 1.076

* The results in bold show the selected model.

3.2. Simulation of Monthly Rainfall (R) at Ardabil Station

In order to evaluate the strength of the developed support vector machine (SVM)
model in predicting the monthly rainfall (R) of Ardabil station for the current and lead
times of one–three monthly rainfall events, and in case the month number (τ) is not
among the input scenarios, statistical indicators RMSE (mm. Month−1), KGE and CC
were calculated for the test phase. The results of these indicators are listed in Table 3.
According to Table 3, and in the absence of the month number (τ) as input in the scenarios,
scenario 3 (SVM-3), with the input of two monthly rainfall lag times (Rt−1, Rt−2), was able
to produce the least errors compared to other scenarios in predicting the current month’s
rainfall (Rt), with RMSE = 6.23 mm. month−1, KGE = 0.807 and CC = 0.815. In predicting
1 month of upcoming rainfall (Rt+1), again, scenario 3 (SVM-3) managed the lowest value
of RMSE = 9.56 mm. month−1 and had the highest values of KGE = 0.306 and CC = 0.438,
compared to other scenarios in this time step.
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In predicting the rainfall of the upcoming two months (Rt+2), better results from
scenario 1 (SVM-1) compared to the other scenarios, with RMSE = 10.067 mm. month−1

KGE = 0.065 and CC = 0.291, were observed. The last goal in Table 3 is to forecast the
upcoming three months of rainfall (Rt+3). According to the results of Table 3, it can be
said that by targeting the upcoming one, two and three months of rainfall, the accuracy of
the forecast with the same fixed scenarios was less than the target of the current month’s
rainfall (Rt), from CC = 0.815 in the current step (Rt) to CC = 0.438, 0.291 and 0.401 in
the time steps, respectively, reached for Rt+1, Rt+2 and Rt+3. Another point related to the
results of Table 3 is that the selected scenario is the same in the current time steps and
upcoming month of rainfall (Rt, Rt+1), and scenario 3 (SVM-3) in both steps is selected as
the best scenario. This happened in the time steps of the upcoming two and three months
(Rt+2, Rt+3) for scenario 1 (SVM-1).

In the next step, considering the month number (τ) as input within scenarios 1, 3 and
5 (SVM-1, SVM-3, SVM-5), new scenarios 2, 4 and 6 (SVM-2, SVM-4, SVM-6) were obtained.
New scenarios were introduced as input to the SVM model. The results of the statistical
indicators obtained from the new scenarios are shown in Table 4. According to Table 4, it
is generally observed that the results in all time steps significantly improved compared
to the case where the month number (τ) was not among the inputs. In Table 4, and the
current time step (Rt), scenario 2 (SVM-2), with inputs (τ, Rt−1, Rt−2, Rt−3) and the lowest
RMSE = 5.815 mm. month−1, showed the highest values of KGE = 0.845 and CC = 0.846
compared to scenarios 4 and 6 (SVM-4 and SVM-6); compared to the result of the superior
scenario 3 (SVM-3) related to the current time step (Rt) in Table 3, we saw an improvement
of 6.7, 4.7 and 3.8% in the RMSE, KGE and CC statistical indices, respectively, in the case
that the month number (τ) was considered as input in the scenarios. In the next time step,
i.e., rainfall for the upcoming month (Rt+1), scenario 2 (SVM-2), with RMSE = 7.974 mm.
month−1, KGE = 0.703 and CC = 0.704, was selected as the best scenario in this time
step, and the RMSE, KGE and CC indices improved by 16.6, 129 and 60.7%, respectively,
compared to the best scenario 3 (SVM-3) for the month number (τ). According to Table 4,
scenario 2 (SVM-2), as the best scenario, with the lowest RMSE = 8.148 mm. month−1 and
the highest values of KGE = 0.623 and CC = 0.656, compared to the other scenarios, was
selected to predict rainfall for the upcoming two months (Rt+2) at Ardabil station. In this
time step, we also saw a 19.1, 858 and 125% improvement in RMSE, KGE and CC values,
respectively, compared to the best scenario 1 (SVM-1) in the case without τ in the same
time step (Table 3). In the last target time step, i.e., the upcoming three months of rainfall
time step (Rt+3), scenario 6 (SVM-6), with RMSE = 8.411 mm. month−1, KGE = 0.587 and
CC = 0.628, was identified as the best scenario, and we saw an improvement of 12.4, 313
and 56.6% in RMSE, KGE and CC statistical indices, respectively, compared to the best
scenario in Table 3.

In order to carefully examine the increase in the accuracy of the SVM model in
predicting the time steps of the upcoming one, two and three months, in the presence and
absence of the month number (τ) input, time series, observational scatter plots and rainfall
forecasts for the top scenarios with the month are drawn in Table 4, and the corresponding
scenarios without the month number (τ) in Table 3 are drawn according to Figure 6 for
the test period. According to Figure 6, and to the observed time series diagrams and
rainfall forecast at the current time step (Rt), it is observed that the forecasted data in
the scenario mode with the number of the month (SVM-2) are more consistent with the
observational data. The time step scatter plot diagram also confirms this. Therefore, it is
observed that the regression line related to the scenario with the month number (SVM-2) is
closer to the bisector line than the scenario without the month number (SVM-1), and less
overestimation is observed in this scenario. The improvement in the results in the scenario
with the month (τ) in rainfall prediction with a time step of one month later (Rt+1) is very
evident in the observational and forecast time series diagram; compared to the no-month
scenario (SVM-1), there is more compliance with the observational data. In the observed
and predicted scatter diagrams of one upcoming month (Rt+1), the scenario regression line
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with the month (SVM-2) is much closer to the bisector line than the scenario without the
month (SVM-1). Additionally, it requires fewer estimation changes.
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As the rainfall forecast time steps at Ardabil station move forward, the accuracy of
scenarios with the same month as the results of the statistical indicators becomes more
visible. As it is shown in the rainfall data distribution diagram for the upcoming two
months, and as predicted by the scenario without the month number (SVM-2) and with
the month number (SVM-1), the improvement in the results by the SVM-2 model is very
obvious, and the regression line of this scenario is closer to the bisector line than SVM-1;
therefore, the accuracy of estimating rainfall for the upcoming two months (Rt+2) is higher.
In Figure 6, the very poor results of forecasting the upcoming three months of rainfall (Rt+3)
by the scenario without the month number (SVM-5) in the time series diagrams, as well as
the observed and predicted distribution, are clear, and the scenario with the month number
(SVM-6) could improve the results better than the SVM-5 scenario and increase the accuracy
of the forecast. Finally, it can be said that adding a simple characteristic such as the month
number (τ) in the delay scenarios, with the aim of predicting the rainfall of Ardabil station
in different time steps, enabled dramatically improving the results, especially in the step of
the upcoming one, two and three months.

3.3. Simulation of Monthly Pan Evaporation (EP) at Urmia Station

In order to investigate the changes in the case of a simple characteristic such as
the month number (τ) in the time delay input scenarios for the monthly estimation of
another parameter except rainfall, the SVM model was implemented for the monthly pan
evaporation (EP) of Urmia station. Initially, in order to predict the evaporation from the
EP of Urmia station for four time steps (current month, and upcoming one, two and three
months), the SVM model was implemented for scenarios that do not have the month
number (τ), and the results of the statistical indicators obtained from this work are listed
in Table 5. According to Table 5, in estimating the evaporation from the current lunar
pan (EPt), scenario 1, with inputs of one-, two- and three-month lag times of EP (EPt−1,
EPt−2, EPt−3), had the lowest RMSE = 1.666 mm. Month−1 and the highest values of
KGE = 0.844 and CC = 0.889, compared to other scenarios, and it should be selected as the
best scenario in this time step. In predicting EP with the aim of predicting the time step of
the upcoming month (EPt+1), again, scenario 1 (SVM-1), with RMSE = 1.751 mm. month−1,
KGE = 0.845 and CC = 0.866, showed better accuracy in this time step. In a step ahead of
time, i.e., predicting EP for the upcoming two months (EPt+2), scenario 1 (SVM-1), due
to having the lowest value of RMSE = 1.603 mm. month−1 and the highest values of
KGE = 0.85 and CC = 0.888, appeared more successful than the other scenarios in this time
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step. In the last step, for the prediction of EP for the upcoming three months (EPt+3), again,
scenario 1 (SVM-1), as the best scenario, with RMSE = 1.339 mm. month−1, KGE = 0.846
and CC = 0.93, was selected. As a result, based on the results of Table 5, it is observed
that unlike rainfall, in predicting EP with increasing time steps, the accuracy of the SVM
model did not decrease much, and the model has a good accuracy. Even the upcoming
three months’ time step of EP (EPt+3) was able to achieve the best result in the same
scenario 1 (SVM-1) compared to the current month’s time step (EPt), and this is interesting.
Additionally, scenario 1 (SVM-1), with inputs of one-, two- and three-month lag times
of EP (EPt−1, EPt−2, EPt−3), could be selected as the best scenario in all time steps; other
scenarios that were examined were not better than that.

The results in Table 5 show the high power of the SVM model in the monthly forecast
of the EP process at Urmia station under scenarios 1, 3 and 5. However, in order to evaluate
the possibility of increasing the accuracy in predicting this parameter, the month number (τ)
was considered as input in the mentioned scenarios, and the accuracy of the scenarios was
measured again; the obtained results of the statistical indicators are presented in Table 6.
The results of evaluating the statistical indicators in Table 6 show that the accuracy of the
SVM model increases again in all scenarios when considering the month number (τ) along
with other inputs. If the case is viewed similarly to the prediction of the monthly rainfall
process at Ardabil station in different future time steps, in the top scenarios in Table 6, there
is increased accuracy in predicting EP for three lead times. When the month number was
applied to the scenarios with the aim of increasing the accuracy in predicting EP in the
current month (EPt), the best scenario, scenario 6, with the input of the month number and
one-month delayed evaporation from the monthly pan (τ, EPt−1), with RMSE = 0.996 mm.
month−1, KGE = 0.938 and CC = 0.957, was determined.

Compared to the best result set out in Table 4 for this time step, the SVM model
(SVM-6) was able to use the month number to accurately predict the RMSE, KGE and CC
of the current month’s EP (EPt), seeing improvements of 40.2, 11.1 and 7.6%. In the time
step of the upcoming month (EPt+1), again, scenario 6, with RMSE =1.144 mm. month−1,
KGE = 0.936 and CC = 0.942, returned the best results among the scenarios in this time
step; compared to the best scenario in Table 5, the accuracy of RMSE, KGE and CC indices
increased by 34.7, 10.8 and 8.8%, respectively. In the next modeling step, which was
performed with the aim of predicting EP for the next two months (EPt+2), scenario 4
(SVM-4), with the input of the month number and lag times of one and two months (τ,
EPt−1, EPt−2), and with RMSE = 1.144 mm. month−1, KGE = 0.919 and CC = 0.944, was
selected as the best scenario. Comparing the results of these indicators with the indicators
of the best scenario for predicting the time step, we see 28.6, 8.1 and 6.3% improvements in
the results if the number of the month (τ) is used in the input of the scenarios with time
delays. In the last time step evaluated, which is the prediction of evaporation from the
pan for the upcoming three months (EPt+3), scenario 6 (SVM-6), with RMSE = 1.076 mm.
month−1, KGE = 0.918 and CC = 0.951, was selected as the best scenario; compared to the
best result in the case without using τ, increases of 19.6, 8.5 and 2.3% in the accuracy of the
evaluation indicators, respectively, were found. Finally, it can be said that in predicting the
monthly EP in the case that the month number was added to the lag time scenarios, not
only do we not see a decrease in the forecasting accuracy but the accuracy increases to the
extent that it persuades the user to use this simple and effective solution.

Evaluation of the scenarios in the test phase in the presence of the moon number is
also shown in Figure 7. Thus, the best scenarios selected from Table 6 compared to their
unnumbered scenarios of the month were examined in terms of time series diagrams and
the observational distribution and prediction in all time steps. As it is shown in Figure 7,
if the monthly prediction of the current time step EP (EPt) is examined, the observed
and predicted time series diagrams show a high correlation of the predicted data under
the scenario containing the number. The scenario with the month number (SVM-6) used
observational data and was able to detect the evaporation trend well compared to the
scenario without τ (SVM-5). The observational scatter plot and prediction of the current
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month’s EP (EPt) under the SVM-5 and SVM-6 scenarios show that the SVM-6 scenario
regression line is more in line with the bisector line than the SVM-5 scenario. Estimation
and underestimation in the scenario with τ (SVM-6) are less than those of SVM-5. The
increased accuracy in predicting EP under the scenario with τ in the time step of the next
month (EPt+1) compared to the scenario without τ, as shown in Figure 7, in both time series
diagrams and the observational distribution and forecast, is completely clear. The SVM-6
scenario was able to predict EPt+1 and establish high compliance with the observational
data. The issue in the distribution chart is also clearly defined, and the SVM-6 scenario’s
regression line is much more compatible than that of SVM-5. Visual examination of time
series diagrams and the observational distribution and prediction of the upcoming two
months of EP (EPt+2) also indicates that the forecast accuracy is increased by the SVM-4
scenario compared to the SVM-3 scenario. In terms of the observational distribution and
prediction diagrams, the scenario with τ (SVM-4) was able to overcome the weakness
of overestimation found in the SVM-3 scenario, to some extent. In the last time step in
Figure 7, i.e., the upcoming three months of EP (EPt+3), the increase in the accuracy of the
scenario with τ (SVM-6) compared to the scenario without τ (SVM-5), in both time series
and distribution diagrams, is evident. According to the observational distribution chart
and forecast for the upcoming three months (EPt+3), the SVM-6 scenario, which contains the
month number, was able to eliminate the overestimation and underestimation of scenario 5
(SVM-5) without τ, with high accuracy.
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3.4. Simulation for Months with Maximum Rainfall and Pan Evaporation

According to the results of the previous sections, it was observed that the month
number (τ) characteristic was able to improve the prediction accuracy of both rainfall (R)
and pan evaporation (EP) parameters under the SVM model when entering the scenarios.
In order to describe the potential physical or numerical reasons for these results, a study
was conducted on how to improve the accuracy of the SVM model, especially under specific
situations. According to the observed precipitation and evaporation time series diagrams
in Figure 2, a seasonal pattern is observed, especially for pan evaporation (EP). The reason
for the increased accuracy of the SVM model in the case of entering the month number
(τ) can be due to the strong seasonal signal in the time series. For example, according to
Figure 2, there is a clear pattern whereby certain months of the year have extremely low
monthly average values. As a result, it is doubtful that the SVM model, by adding the
month number (τ), detects this numerical pattern and produces high-precision results.
Given that the months that contain the highest values are physically one of the most
important characteristics of hydrological variables, in the following, we will examine how
the SVM model will perform in the presence or absence of the month number under these
special conditions. For this purpose, first, the highest monthly values (peak points) of the
rainfall (70 months) and pan evaporation (28 months) variables were extracted according
to the time series (Figure 2) related to each. In order to compare the results with the results
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of Sections 3.2 and 3.3, the input scenarios and target time steps are exactly the same as
those mentioned. To enter the SVM model, the data were divided under these conditions,
meaning that 60% of the data were separated for the training phase, and 40% for the
testing phase.

In this regard, the results of the statistical indicators under these specific conditions
with three target time steps, for rainfall (R) in Tables 7 and 8 (respectively, without and
with τ), and for pan evaporation (EP) in Tables 9 and 10 (respectively, without and with τ),
were collected. In general, it can be seen that the SVM model was unable to create high
accuracy under these new special conditions, one of the reasons for which could be related
to the small amount of data in the training phase. In order to evaluate the improvement or
deterioration in the results when considering the month number, first, for the precipitation
variable, according to Tables 7 and 8, it can be stated that by using the month number, the
SVM model was able to improve the results for almost all targeted time steps (except Rt+2).
For the best conditions (Rt), the accuracy was improved by 17% according to the RMSE
index. Under these special conditions, and due to the more random rainfall time series,
an acceptable score can be given to the SVM model. For the pan evaporation variable,
according to Tables 9 and 10, although the results under the conditions of using the highest
values are weaker than the application mode of all data, the results improved in the case of
considering the month number compared to the cases without the month number (except
EPt+3). For the best conditions (EPt+2), the accuracy was improved by 13% according to
the RMSE index. According to the above results, it is observed that due to the fact that the
precipitation variable is more random, using the highest values, the improvement in the
results with the month number was greater than the evaporation variable. According to
the observational pan evaporation time series in Figure 2, this time series is completely
periodic, and the SVM model could provide ideal results by relying on this; however, in
these special circumstances, the month number proved its ability to improve the results.

Table 7. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of highest monthly
rainfall values in scenarios without month number (τ) during training and testing periods at Ardabil station.

Input Scenario Output Model

Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)

(1) Rt−1, Rt−2, Rt−3 Rt SVM-1 0.759 0.626 7.873 0.135 0.133 14.853
(3) Rt−1, Rt−2 Rt SVM-3 0.614 0.540 9.663 0.002 0.0001 15.733

* (5) Rt−1 Rt SVM-5 0.540 0.309 10.280 −0.062 −0.159 13.378

(1) Rt−1, Rt−2, Rt−3 Rt+1 SVM-1 0.718 0.467 8.822 −0.290 −0.371 15.698
(3) Rt−1, Rt−2 Rt+1 SVM-3 0.371 0.052 11.503 −0.112 −0.264 13.285

* (5) Rt−1 Rt+1 SVM-5 0.179 −0.153 12.096 −0.182 −0.443 11.695

(1) Rt−1, Rt−2, Rt−3 Rt+2 SVM-1 0.814 0.606 7.577 −0.353 −0.392 17.562
(3) Rt−1, Rt−2 Rt+2 SVM-3 0.519 0.263 10.565 −0.207 −0.298 14.177

* (5) Rt−1 Rt+2 SVM-5 0.197 −0.154 11.984 −0.300 −0.527 11.241

(1) Rt−1, Rt−2, Rt−3 Rt+3 SVM-1 0.815 0.641 7.030 −0.198 −0.226 15.986
(3) Rt−1, Rt−2 Rt+3 SVM-3 0.501 0.294 10.229 −0.267 −0.347 14.576

* (5) Rt−1 Rt+3 SVM-5 0.108 −0.240 11.740 −0.378 −0.627 11.990

* The results in bold show the selected model.



Sustainability 2021, 13, 7752 17 of 19

Table 8. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of highest monthly
rainfall values in scenarios with month number (τ) during training and testing periods at Ardabil station.

Input Scenario Output Model
Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)

(2) τ, Rt−1, Rt−2, Rt−3 Rt SVM-2 0.912 0.795 5.238 0.309 0.300 12.294
(4) τ, Rt−1, Rt−2 Rt SVM-4 0.754 0.633 7.931 0.256 0.254 13.864

* (6) τ, Rt−1 Rt SVM-6 0.489 0.209 10.603 0.160 −0.082 11.394

(2) τ, Rt−1, Rt−2, Rt−3 Rt+1 SVM-2 0.827 0.695 6.999 −0.050 −0.078 15.353
(4) τ, Rt−1, Rt−2 Rt+1 SVM-4 0.380 0.157 11.441 −0.203 −0.337 13.524

* (6) τ, Rt−1 Rt+1 SVM-6 0.293 −0.013 11.783 0.026 −0.177 11.512

(2) τ, Rt−1, Rt−2, Rt−3 Rt+2 SVM-2 0.897 0.733 5.698 0.009 −0.099 13.898
(4) τ, Rt−1, Rt−2 Rt+2 SVM-4 0.649 0.500 9.506 0.045 −0.007 14.704

* (6) τ, Rt−1 Rt+2 SVM-6 0.455 0.256 10.929 −0.020 −0.084 12.816

(2) τ, Rt−1, Rt−2, Rt−3 Rt+3 SVM-2 0.950 0.827 3.939 0.055 −0.038 13.888
(4) τ, Rt−1, Rt−2 Rt+3 SVM-4 0.752 0.526 8.020 0.063 −0.003 13.175

* (6) τ, Rt−1 Rt+3 SVM-6 0.484 0.243 10.448 −0.047 −0.215 11.546

* The results in bold show the selected model.

Table 9. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of highest monthly EP
values in scenarios without τ during training and testing periods at Urmia station.

Input Scenario Output Model
Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)

* (1) EPt−1, EPt−2, EPt−3 EPt SVM-1 0.939 0.716 0.369 0.188 0.030 0.876
(3) EPt−1, EPt−2 EPt SVM-3 0.928 0.790 0.337 −0.105 −0.131 1.128

(5) EPt−1 EPt SVM-5 0.538 0.213 0.717 0.007 −0.144 0.919

(1) EPt−1, EPt−2, EPt−3 EPt+1 SVM-1 0.957 0.855 0.278 −0.371 −0.464 1.070
(3) EPt−1, EPt−2 EPt+1 SVM-3 0.926 0.721 0.378 −0.181 −0.283 1.042

* (5) EPt−1 EPt+1 SVM-5 0.469 0.301 0.788 0.272 0.088 0.858

(1) EPt−1, EPt−2, EPt−3 EPt+2 SVM-1 0.894 0.697 0.459 −0.612 −0.651 1.115
(3) EPt−1, EPt−2 EPt+2 SVM-3 0.850 0.603 0.533 −0.366 −0.440 0.981

* (5) EPt−1 EPt+2 SVM-5 0.465 0.356 0.846 0.046 −0.009 0.886

(1) EPt−1, EPt−2, EPt−3 EPt+3 SVM-1 0.927 0.879 0.357 −0.299 −0.300 1.245
(3) EPt−1, EPt−2 EPt+3 SVM-3 0.827 0.595 0.547 −0.576 −0.581 1.254

* (5) EPt−1 EPt+3 SVM-5 0.495 0.296 0.788 −0.212 −0.293 0.930

* The results in bold show the selected model.

Table 10. Values of the RMSE (mm. month−1), KGE and CC criteria for the developed SVM model of highest monthly EP
values in scenarios with τ during training and testing periods at Urmia station.

Input Scenario Output Model
Training Testing

CC KGE RMSE
(mm. Month−1) CC KGE RMSE

(mm. Month−1)

(2) τ, EPt−1, EPt−2, EPt−3 EPt SVM-2 1.000 0.988 0.015 0.246 0.205 0.923
* (4) τ, EPt−1, EPt−2 EPt SVM-4 0.982 0.862 0.195 0.330 0.236 0.843

(6) τ, EPt−1 EPt SVM-6 0.726 0.550 0.574 0.148 0.099 0.986

(2) τ, EPt−1, EPt−2, EPt−3 EPt+1 SVM-2 0.981 0.879 0.199 −0.477 −0.605 1.038
(4) τ, EPt−1, EPt−2 EPt+1 SVM-4 0.956 0.789 0.321 −0.486 −0.589 1.098

* (6) τ, EPt−1 EPt+1 SVM-6 0.690 0.522 0.640 0.431 0.237 0.775

(2) τ, Rt−1, Rt−2, Rt−3 EPt+2 SVM-2 0.990 0.951 0.140 0.047 −0.050 0.864
(4) τ, EPt−1, EPt−2 EPt+2 SVM-4 0.857 0.748 0.485 −0.053 −0.217 0.895

* (6) τ, EPt−1 EPt+2 SVM-6 0.755 0.646 0.612 0.480 0.245 0.787

(2) τ, EPt−1, EPt−2, EPt−3 EPt+3 SVM-2 1.000 0.977 0.033 −0.230 −0.231 1.175
(4) τ, EPt−1, EPt−2 EPt+3 SVM-4 0.754 0.637 0.624 −0.457 −0.538 1.076

* (6) τ, EPt−1 EPt+3 SVM-6 0.636 0.517 0.735 −0.200 −0.258 1.049

* The results in bold show the selected model.
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4. Conclusions

The present study was prepared with the aim of increasing the accuracy in predicting
monthly rainfall (R) and pan evaporation (EP) as two important hydrological processes,
by providing a simple solution to determining new inputs for forecasting scenarios. For
this purpose, monthly rainfall (R) data of Ardabil station in the period 1976–2019, and pan
evaporation (EP) data of Urmia station in the period 1993–2019 were used. Initially, the
prediction of the two parameters R and EP for the current and one–three lead times, by
determining the different input modes that were a combination of lag times of one, two
and three months, was developed with the help of the developed SVM model. Then, in the
next step, in order to increase the accuracy of the predictions, application of the simplest
input to the scenarios was put on the agenda, and the month number (τ) was added to
all scenarios in predicting both the R and EP parameters. The month number was able to
greatly improve the prediction accuracy of both the R and EP parameters under the SVM
model by entering the scenarios and was able to overcome the complexities within these
two hydrological processes that the scenarios were not initially able to solve with high
accuracy. This was proven in all current time steps, and the upcoming one, two and three
months. Finally, in order to investigate the characteristic of the month number in the SVM
model under special conditions such as considering the highest values of the rainfall and
pan evaporation time series, it was proved that by using the month number of the SVM
model, again, it could improve the accuracy (on average, 17% improvement for rainfall,
and 13% for pan evaporation) in almost all time steps. Due to the different conditions
of meteorological stations relative to each other, this approach should be considered in
different areas, and this is one of the limitations of the present study. Due to the wide range
of effects of the two variables studied in the hydrological discussion, the results of the
present study can be useful in agricultural sciences and in water management in general
and will help owners.
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