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Abstract: Demolition activity plays an important role in the total energy consumption of the con-
struction industry in the European Union. The indiscriminate use of non-renewable raw materials,
energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure
environmental protection. This article introduces an experimental plan that determines the viability
of a new type of construction material, obtained from crushed brick waste, to be introduced into
the construction market. The potential of crushed brick waste as a raw material in the production
of building precast products, obtained by curing a geopolymeric blend at 60 ◦C for 3 days, has
been exploited. Geopolymers represent an important alternative in reducing emissions and energy
consumption, whilst, at the same time, achieving a considerable mechanical performance. The results
obtained from this study show that the geopolymers produced from crushed brick were characterized
by good properties in terms of open porosity, water absorption, mechanical strength, and surface
resistance values when compared to building materials produced using traditional technologies.

Keywords: eco-sustainable materials; construction and demolition waste; crushed brick waste;
geopolymers; waste reuse

1. Introduction

The construction industry occupies an important position in the production of waste
materials from construction and demolition activities, with around one-third of the Euro-
pean Union’s total waste represented by this so-called Construction and Demolition Waste
(CDW). Known materials range from plastics to wood and metals, but it is the inert mate-
rials category that has the highest percentage weight, reaching 75–80% of the total CDW
weight [1,2]. For this reason, the EU has considered the flow of CDW as a priority stream
for action. In fact, over the last decade, intense activity in the construction field in Europe
has generated around 827 million tonnes of CDW on average per year, and yet only 50% of
this CDW was recycled [3,4]. Moreover, climate change and environmental issues are a
wake-up call to the impoverishment of resources due, above all, to the exploitation of raw
materials. In this sense, the quantity of second-hand materials coming from construction
and demolition operations represents a source of great value. The possibility of including
CDW in building materials is, therefore, an interesting alternative.

Recently, the recycling of CDW was extensively studied and reviewed [5–8]. The data
reported indicate that CDW can be successfully used in construction material production
to obtain products comparable with those produced using natural raw materials.
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Approximately 45% of CDW is attributed to ceramic products such as bricks, tiles, and
porcelain. It is crucial to evaluate alternative applications of this waste considering the large
amounts produced per year (yearly production from the EU is estimated at 855 million
tonnes) [9].

Clay brick wastes (CBW) represent a valuable secondary resource for concrete manu-
facturing, either as a coarse or fine aggregate in concrete production, or as a supplementary
cementitious material [10,11]. Recently, an interesting alternative has been reported: the
development of alternative low-carbon binders (alkali-activated materials, geopolymers,
and calcium sulfoaluminate cement) [12,13]. Geopolymers are obtained through a chemical
reaction, starting with an alumino-silicate powder with a highly concentrated aqueous
alkali hydroxide and/or silicate solution, to the production of a synthetic amorphous-to-
semicrystalline alkali alumino-silicate new phase [14,15]. Alkali-activated materials (AAM)
exhibit excellent properties in terms of mechanical performance [16], thermal stability [17],
and durability [18].

Furthermore, geopolymers are of great interest because of their high sustainabil-
ity, and reduced energy requirement in their production. In addition, the production of
geopolymers allows for an 80% reduction in emissions compared to Portland cement man-
ufacturing [14]. It has been demonstrated that any natural or synthetic material containing
proper amounts of silica and alumina can be used as a precursor for the geopolymerization
process [15].

Chemically bonded ceramics (CBC), belonging to the AAM class, are a group of inor-
ganic materials that share properties with both cements and ceramics [19]. The formation
of CBCs occurs via the chemical route, much like with conventional cement, while the
chemical bonds and mechanical properties resemble those of ceramics. These materials
allow for an alternative avenue in ceramic processing, where high temperatures are not
required, and solid structures are formed in ambient temperatures in the presence of
mineral impurities.

The present research aims to determine the feasibility and potential of crushed brick
wastes in the production of building precast components from alkali-activation with sodium
hydroxide and silicate solutions. Firstly, a complete characterization of the crushed brick
waste was carried out to verify its intrinsic reactivity as a raw material for geopolymer-
ization. Then, a ceramic product was obtained from alkali-activation of the crushed brick
waste, and finally, its physical and mechanical properties were evaluated.

2. Materials and Methods

This research was divided into two experimental phases. The first phase consisted of
evaluating the effective geopolymerization of the selected mixture, based on the type of
waste material chosen and its percentage, through to the production of small cylindrical
specimens. The second phase consisted of a scale-up of the specimens that had effectively
passed the first phase, followed by the production of samples on which physical, chemical,
and mineralogical analyses and mechanical tests were carried out, in order to determine
the characteristics of the new material and hypothesize possible future applications.

2.1. Preparation of the Clay Brick Waste-Based Geopolymer

CBW was used as the raw material to carry out the experimental development of the
research. The CBW came from the demolition site of an old building situated near the city
of Naples, Italy. The original waste material (Figure 1a) was grounded to a fineness of
0.125–0.150 mm (Figure 1b). A sodium silicate solution (SS) (Na2O, 8.15%; SiO2, 27.40%),
provided by Prochin Italia S.r.L. (Caserta, Italy), and a 10 M sodium hydroxide solution,
prepared by dissolving NaOH in pellets (NaOH 98%, J.T. Baker) in bi-distilled water, were
used as the alkali activators.
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Firstly, a weighted sample was calcined at 950 °C for 2 h, then a weighted amount of the 
obtained sample was subjected to digestion, under microwave-induced heating (Perkin–
Elmer Multiwave 3000 oven) in a standard solution obtained by mixing hydrochloric acid 
(37%, w/w), nitric acid (65%, w/w) and hydrofluoric acid (39.5%, wt/wt). Next, a boric acid 
solution was used to achieve fluoride complexation and the resulting solution was 
analyzed by an ICP-OES (Optima 2100 DV ICP-OES Inductively Coupled Plasma 
Spectrometer, Perkin–Elmer). 

Figure 1. Clay brick waste before (a) and after grounding (b).

Based on the clayey nature of the waste [15], the preparation of the geopolymer was
carried out following the prescription reported in our previous studies [20,21]. Accordingly,
powdered materials were previously dry-mixed and homogenized, and then the activator
solution was added.

The alkaline activator solution was prepared by mixing sodium silicate solution
(SS) with 10M sodium hydroxide solution. The weight ratio SS/N/binder was 1:1:3,
and the activator/binder ratio was 0.66. Finally, the mixture was cast into cylindrical
polyethylene molds (diameter 30 mm; height 70 mm) and the samples were sealed and
cured for 3 days at 60 ◦C in an oven. At the end of the curing, all the specimens (Geo_CBW)
were removed from their molds and stored at room temperature until reaching a 28-day
aging period before being run for experimental analysis. A qualitative evaluation of
the degree of geopolymerization was carried out by the immersion of the samples in
bi-distilled water for 24 h at room temperature. Importantly, if the geo-composites were
intact after the immersion period, then the geopolymer gel formation can be considered
successful (Figure 2) because water absorption can be used as an indicator of the extent of
the geopolymeric reaction [22].
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Figure 2. The geopolymeric sample (Geo_CBW) before (a), during (b), (c) and after immersion (d) in
bi-distilled water for 24 h.

2.2. Mineralogical and Chemical Characterization

The chemical composition was obtained according to the following procedure. Firstly,
a weighted sample was calcined at 950 ◦C for 2 h, then a weighted amount of the obtained
sample was subjected to digestion, under microwave-induced heating (Perkin–Elmer
Multiwave 3000 oven) in a standard solution obtained by mixing hydrochloric acid (37%,
w/w), nitric acid (65%, w/w) and hydrofluoric acid (39.5%, wt/wt). Next, a boric acid
solution was used to achieve fluoride complexation and the resulting solution was analyzed
by an ICP-OES (Optima 2100 DV ICP-OES Inductively Coupled Plasma Spectrometer,
Perkin–Elmer).

The mineralogical composition of the CBW was evaluated by XRD analysis of the
powdered samples using a Panalytical X’Pert Pro diffractometer equipped with a PixCel
1D detector (operative conditions: CuKα1/Kα2 radiation, 40 kV, 40 mA, 2Q ranging from
5 to 80 ◦C, step size 0.0131◦ 2Φ, counting time 40 s per step).
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In order to further investigate the degree of geopolymerization, FTIR and thermal
analysis were carried out. FTIR tests were performed using a Nexus-Nicolet apparatus and
selecting a wavenumber resolution of 4 cm−1 for 32 scans ranging from 4000 to 400 cm−1.
The FTIR spectra were collected in absorbance mode from the transparent pellet obtained
by dispersing the sample powders in KBr (2% wt/wt) both with the CBW and with the
geopolymeric samples produced. Thermal characterization was performed by TGA/DTGA
analysis (Netzsch, STA 409 PC Luxx) in temperatures ranging from 20 to 1200 ◦C, with a
heating rate of 10 ◦C/min, in a nitrogen atmosphere.

Finally, morphological analyses were carried out by SEM (SEM, Cambridge S440).

2.3. Physical Characterization of the Geopolymers

Capillary rise can be considered as one of the most significant mechanisms of water
penetration into building materials, and is one of the main mechanisms responsible for
building decay. For this reason, capillarity tests were performed according to the European
Standard UNI EN 15801 [23], with an evaluation of the amount of water absorbed (Q) per
surface unit as a function of time. Tests were performed in triplicate on cubic samples
(5 cm-side). At the end of these tests, the mean value of the capillary absorption coefficient
(CA, mg/cm2 s−1/2) was determined. Since there is a quite linear relationship between the
water adsorbed (Q) and the square root of time during shorter times, the CA value can be
evaluated as the slope of the straight line in the first step (30 min) of the capillarity test [23].

The open porosity and water absorption were evaluated according to the European
Standard [24]. Firstly, the specimens, after being dried at 60 ± 5 ◦C until a constant mass
was reached, were immersed in water under vacuum at room temperature and left for two
hours. Then, each sample was weighted (bulk and hydrostatic weight). The pycnometer
method was used after grinding the sample to a dimension of 0.063 mm in order to evaluate
the closed porosity. Each test was performed in triplicate and the results were calculated as
the average values. Moreover, the water uptake from immersion, without placing samples
under a vacuum, was evaluated by immersing the prismatic samples (4 × 4 × 16 cm3)
in a water tank for 48 h. Samples were first dried at 60 ± 5 ◦C until a constant mass was
reached, then weighted before and after the immersion, and, finally, the amount of water
absorbed was deduced from the weight difference.

2.4. Mechanical Characterization

The surface hardness was determined according to the standard EN 13279-2 [25]. The
Shore D hardness test was carried out by establishing the indent left by an exerted force
on each test specimen, measured in Shore D units varying in range from 0 (softest) to
100 (hardest).

In particular, the experimental tests were performed on the two longitudinal sides of
the prismatic samples (160 × 40 mm2) (see Figure 3).
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Figure 3. Measurement of surface hardness using the Shore D test on Geo_CBW samples.

Flexural strength tests were performed in accordance with the standard EN 13279-
2:2004 on the prismatic samples with the dimensions 160 mm × 40 mm × 40 mm (Figure 4a).
The test machine used was the Ibertest. Test specimens were placed centrally on the sup-
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porting rollers, 100 mm apart from each other. A load was applied until the specimens
broke apart, while the test machine recorded the maximum load supported by the samples.
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samples.

Compressive strength tests were performed following the same standard used for the
flexural tests, EN 13279-2:2004 (Figure 4b). A load was then applied to the broken parts of
the samples derived from the previous flexural strength tests.

The test pieces were then placed between two steel plates in a cubic geometry, with
the dimensions 40 mm × 40 mm. The test specimens were loaded until rupture occurred.
The compressive strength Rc was calculated using the formula:

Rc = Fc/1600 (1)

where Rc is the compressive strength, Fc is the maximum load at fracture (N); and 1600 is
the load-bearing surface (mm2) of the tested sample. All tests were carried out in triplicate.

3. Results and Discussion
3.1. Preliminary Characterization of Clay Brick Waste

The chemical and mineralogical composition of the waste, reported in Table 1, con-
firmed the clayey nature of the sample with a SiO2/Al2O3 ratio of 1:5 and a significant
amount of alkaline and alkaline earth oxides.

Table 1. Chemical and mineralogical composition of the clay brick waste.

Major Elements (wt%)

SiO2 Al2O3 Fe2O3 MgO Na2O K2O CaO
47.90 31.82 2.99 4.14 3.75 3.59 4.52

XRD mineralogical phases

Quartz Calcium Carbonate Sanidine Albite

It is worth recalling that, when clay minerals are heated at a constant rate, two principal
heat effects occur: a broad endothermic effect near 550 ◦C, caused by the dissociation of
the clay structure, and an intense exothermic peak (between 800 and 900 ◦C) due to the
crystallization of new crystalline phases such as aluminosilicates (diopside and leucite) [26].
In addition, the XRD data from the CBW (Table 1 and Figure 5) confirmed the presence of
a major crystalline phase of sodium and potassium aluminium silicates. Quartz mineral
(SiO2) and calcium carbonate (CaCO3) were also detected. The amorphous aluminosilicate
materials formed upon the decomposition and destuction of the clay minerals during the
firing could not be observed by the XRD technique due to their amorphous nature.



Sustainability 2021, 13, 7572 6 of 12

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 13 
 

confirmed the presence of a major crystalline phase of sodium and potassium aluminium 
silicates. Quartz mineral (SiO2) and calcium carbonate (CaCO3) were also detected. The 
amorphous aluminosilicate materials formed upon the decomposition and destuction of 
the clay minerals during the firing could not be observed by the XRD technique due to 
their amorphous nature. 

Moreover, from the TGA curve of the CBW (Figure 6), a weight loss at temperatures 
between 100 °C and 200 °C was reported, due to the evaporation of free water absorbed 
by the specimen. Additionally, a small amount of weight loss (≈2%) occurred at 
temperatures between 650 °C and 750 °C which was attributed to the decomposition of 
the carbonates either present in the raw material or due to the atmospheric carbonation 
that occurred during the preparation of the samples prior to analysis. 

 
Figure 5. XRD spectra of CBW. Q = Quartz, C = Calcite, S = Sanidine, A = Albite. 

 
Figure 6. TGA curve (continuous line) and DTG curve (dashed line) of the CBW. 

3.2. Characterization of Geopolymeric Samples 

FTIR was used to verify the degree of geopolymerization of the geocomposites [27–29]. 
Geopolymers produced from CBW were mainly amorphous aluminosilicates themselves, and 
displayed FTIR spectra (Figure 7, continuous line) characterized by the typical absorption bands of 
Si-O-Si and Si-O-Al bonds (absorption range 600–800 cm−1). The bands at 3450 cm−1 and 1647 cm−1, 
associated with the O-H stretching and bending, are connected to the bound water molecules, 

Figure 5. XRD spectra of CBW. Q = Quartz, C = Calcite, S = Sanidine, A = Albite.

Moreover, from the TGA curve of the CBW (Figure 6), a weight loss at temperatures
between 100 ◦C and 200 ◦C was reported, due to the evaporation of free water absorbed by
the specimen. Additionally, a small amount of weight loss (≈2%) occurred at temperatures
between 650 ◦C and 750 ◦C which was attributed to the decomposition of the carbonates
either present in the raw material or due to the atmospheric carbonation that occurred
during the preparation of the samples prior to analysis.
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3.2. Characterization of Geopolymeric Samples

FTIR was used to verify the degree of geopolymerization of the geocomposites [27–29].
Geopolymers produced from CBW were mainly amorphous aluminosilicates themselves,
and displayed FTIR spectra (Figure 7, continuous line) characterized by the typical ab-
sorption bands of Si-O-Si and Si-O-Al bonds (absorption range 600–800 cm−1). The bands
at 3450 cm−1 and 1647 cm−1, associated with the O-H stretching and bending, are con-
nected to the bound water molecules, which are surface-absorbed or entrapped in the
large cavities of the molecular structure [28,30]. The intensity of these bands was greater
in the FTIR spectra of geopolymers, indicating both a higher degree of water molecule
adsorption in their mass and the occurrence of a geopolymerization reaction of the raw
materials into a geopolymer paste [31]. Further confirmation of the presence of the alumi-
nosilicate species typical of geopolymeric composites in Geo_CBW samples can be found
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in the TGA curve and the XRD spectrum (Figure 8). In particular, the XRD spectrum
(Figure 8b) indicated an appearance of peaks associated with the presence of Phillipsite
((Ca,Na2,K2)3Al6Si10O32·12H2O), which was the only aluminosilicate crystalline phase,
while the presence of other amorphous geopolymeric phases was related to the gradual
weight loss detected between 250 and 600 ◦C in the TGA curve.

SEM investigations at different magnifications (from 50× to 3000×) of the geopoly-
mers are presented in Figure 9. EDX spectra confirmed the silico-aluminatic nature of
the geopolymeric product. The Geo_CBW sample was characterized by a porous and
heterogeneous matrix with some unreacted particles (500× magnification). At higher mag-
nifications (from 1500× to 3000×) the amorphous structure of the geopolymeric structure
was evidenced.
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The capillary absorption curves are reported in Figure 10. The data from the three tests
indicated that the experimental method was performed with a high repeatability and that
all the samples reached water saturation after 5–6 h. Moreover, the water absorption rate
decreased for longer times, and this could be related to the increased water content inside
the specimen and to the slow progressive participation of the less-accessible pores [32]. The
average value of the capillary absorption coefficient is reported in Table 2, in which all the
main physical properties of the CBW geopolymer are summarized. It is worth observing
that the capillary absorption coefficient obtained from the CBW-based geopolymers was
comparable to common values of the NHL mortars and, at the same time, lower than that
of the typical solid clay brick (≈26) [33].



Sustainability 2021, 13, 7572 9 of 12Sustainability 2021, 13, x FOR PEER REVIEW 10 of 13 
 

 
Figure 10. Capillarity test (a) and experimental results of the amount of water absorbed (Q) per 
surface unit in function of time (b) by the Geo_CBW samples. 

Table 2. Physical properties of CBW geopolymer. 

Apparent Density (g/cm3) 
Real Density 

(g/cm3) 
Open Porosity 

(%) 
1.39 ± 0.02 2.56 ± 0.02 45.68 ± 0.37 

Water absorption * 
(%) 

Water absorption (%) CA 
(mg/cm2s−1/2) 

16.65 ± 0.35 32.81 ± 0.67 18.24 ± 0.25 
* values for immersion. 

The results obtained from the Shore D tests are shown in Table 3. The average value 
of the surface hardness (82.16) was reported, which is comparable to building plasters and 
gypsum composites [34,35]. 

Table 3. Shore D test results. 

Sample Point 1 Point 2 Point 3 Point 4 Point 5 

Geo_CBW 1 
85 76 85 86 90 
86 86 72 80 86 

Geo_CBW 2 
84 86 86 82 89 
76 85 73 81 80 

Geo_CBW 3 85 80 75 86 86 
73 81 74 84 87 

The flexural and compression tests provided a maximum resistance value of 2.85 ± 
0.73 MPa and 5.34 ± 0.66 MPa, respectively. In order to grasp the possible applications of 
CBW, some of the results obtained from the Geo_CBW samples were compared to those 
found in the literature for several typologies of building materials that were comparable 
in terms of their mechanical behavior (see Table 4). In particular, different traditional 
building materials, such as lightweight gypsum and natural the hydraulic lime (NHL), 
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Table 2. Physical properties of CBW geopolymer.

Apparent Density (g/cm3) Real Density (g/cm3) Open Porosity (%)

1.39 ± 0.02 2.56 ± 0.02 45.68 ± 0.37

Water absorption * (%) Water absorption (%) CA
(mg/cm2 s−1/2)

16.65 ± 0.35 32.81 ± 0.67 18.24 ± 0.25
* values for immersion.

Regarding water absorption, it is worth noting that, as expected, the water absorp-
tion for immersion was almost half when compared to the value of the water absorption
obtained by immersing the sample under a vacuum (see Table 2). The value of open
porosity reported was about 46%, which further confirmed that the CBW-based geopoly-
meric samples produced were highly porous, as is clearly visible from the microstructural
characterization (Figure 9).

The results obtained from the Shore D tests are shown in Table 3. The average value
of the surface hardness (82.16) was reported, which is comparable to building plasters and
gypsum composites [34,35].

Table 3. Shore D test results.

Sample Point 1 Point 2 Point 3 Point 4 Point 5

Geo_CBW 1
85 76 85 86 90
86 86 72 80 86

Geo_CBW 2
84 86 86 82 89
76 85 73 81 80

Geo_CBW 3
85 80 75 86 86
73 81 74 84 87
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The flexural and compression tests provided a maximum resistance value of
2.85 ± 0.73 MPa and 5.34 ± 0.66 MPa, respectively. In order to grasp the possible applica-
tions of CBW, some of the results obtained from the Geo_CBW samples were compared to
those found in the literature for several typologies of building materials that were compa-
rable in terms of their mechanical behavior (see Table 4). In particular, different traditional
building materials, such as lightweight gypsum and natural the hydraulic lime (NHL),
were selected based on comparisons to different typologies of geopolymers and sustainable
building materials produced from several kinds of waste.

Table 4. Comparison to results from other references.

Sample Reference Density
(kg/m3)

RF
(MPa)

RC
(MPa)

Geo_CBW 1390 2.85 5.34
Lightweight gypsum [36] 910 1.52 2.17

Metakaolin-based foam [37] 1000 0.14 4.62
Diatomite-based foam [38] 423 0.63 1.49

NHL [39] 2.15 5.55
NHL + 2% glass fibers [39] 1590 2.41 3.62

NHL with plastic waste aggregate [40] 1670 0.60 1.25
Dredged sediments geocomposite [20] / / 1.90

Cement mortar with mixed recycled aggregate [41] 1660 2.38 5.20
Gypsum + 1% polystyrene waste [35] 970 2.89 5.64

Gypsum Plaster with ceramic waste from bricks [42] 1180 2.80 5.40
Gypsum composites with glass waste [34] 1270 2.93 6.01

Gypsum plaster with hemp fibers [43] / 2.50 /

From the data shown in Table 4, it is possible to deduce that the density and mechanical
performance of the Geo_CBW samples were very similar to the gypsum samples produced
from waste glass and ceramic waste made from brick similar to the CBW used in this paper.

4. Conclusions

Geopolymer manufacturing represents one of the most innovative ways to reuse differ-
ent types of solid waste, especially when employed with aluminosilicate and clayey waste.
In this paper, we investigated the potential of crushed brick waste as a raw material for
the production of geopolymers. Preliminary chemical and mineralogical characterization
were conducted on the CBW to evaluate if its chemical composition could be rendered
suitable to undergo a geopolymerization process and to confirm its mainly clayey nature.
Then, geopolymeric samples that were produced were widely characterized by means of
chemical-physical, morphological, and mechanical laboratory testing. In particular, FTIR,
XRD and SEM analyses confirmed that the geopolymeric reactions took place effectively.
Evaluation of the physical and mechanical properties led to the conclusion that CBW can be
successfully employed as a raw material in the production of geopolymer-based building
precast components.

This approach of using secondary raw materials, derived from construction and
demolition activities, in the production process of sustainable materials to reintroduce into
the building market represents an intelligent and environmentally friendly solution to the
significant environmental issues surrounding the disposal of this widely available waste.

Author Contributions: The paper is the result of a scientific work, carried out in collaboration by the
authors. In particular, the contributions of each author are the following: Conceptualization, G.D.,
M.F. and M.d.R.M.; methodology, G.D., M.F., M.d.R.M. and B.L.; validation, M.F., M.d.R.M., D.C.
and B.L.; formal analysis, G.D. and I.C.; investigation, G.D. and A.C.; resources, D.C., M.d.R.M., B.L.
and F.I.; data curation, G.D., F.I. and I.C.; writing—original draft preparation, G.D., I.C. and A.C.;
writing—review and editing, B.L., I.C., G.D. and M.F supervision, M.F., M.d.R.M., B.L. and D.C. All
authors have read and agreed to the published version of the manuscript.



Sustainability 2021, 13, 7572 11 of 12

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank the departments DiCMAPI and DICEA of the University
of Naples Federico II, and the TEMA laboratory of the Polytechnic University of Madrid for their
administrative and technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, H.; Shen, L. Trend of the research on construction and demolition waste management. Waste Manag. 2011, 31, 670–679.

[CrossRef]
2. Ghaffar, S.H.; Burman, M.; Braimah, N. Pathways to circular construction: An integrated management of construction and

demolition waste for resource recovery. J. Clean. Prod. 2020, 244. [CrossRef]
3. Fischer, C.; Werge, M. EU as a Recycling Society Present Recycling Levels of Municipal Waste and Construction & Demolition Waste in

the EU; European Topic Centre on Sustainable Consumption and Production: Copenhagen, Denmark, 2009.
4. Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice

in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [CrossRef]
5. Dos Reis, G.S.; Quattrone, M.; Ambrós, W.M.; Cazacliu, B.G.; Sampaio, C.H. Current applications of recycled aggregates from

construction and demolition: A review. Materials 2021, 14, 1700. [CrossRef]
6. Capasso, I.; Liguori, B.; Ferone, C.; Caputo, D.; Cioffi, R. Strategies for the valorization of soil waste by geopolymer production:

An overview. J. Clean. Prod. 2021, 288, 125646. [CrossRef]
7. Robayo-Salazar, R.A.; Valencia-Saavedra, W.; de Gutiérrez, R.M. Construction and demolition waste (Cdw) recycling—As both

binder and aggregates—In alkali-activated materials: A novel re-use concept. Sustainability 2020, 12, 5775. [CrossRef]
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