
sustainability

Article

A Farm Management Information System for Semi-Supervised
Path Planning and Autonomous Vehicle Control

Hao Wang 1,2,*, Yaxin Ren 3 and Zhijun Meng 1

����������
�������

Citation: Wang, H.; Ren, Y.; Meng, Z.

A Farm Management Information

System for Semi-Supervised Path

Planning and Autonomous Vehicle

Control. Sustainability 2021, 13, 7497.

https://doi.org/10.3390/su13137497

Academic Editors: Dionysis Bochtis,

Dimitrios Aidonis and

Charisios Achillas

Received: 7 June 2021

Accepted: 30 June 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and
Forestry Sciences, Beijing 100097, China; mengzj@nercita.org.cn

2 Research Faculty of Agriculture, Hokkaido University, Sapporo 065-8589, Japan
3 Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and

Forestry Sciences, Beijing 100097, China; renyx@nercita.org.cn
* Correspondence: wangh@nercita.org.cn; Tel.: +86-10-51503748

Abstract: This paper presents a farm management information system targeting improvements in
the ease of use and sustainability of robot farming systems. The system integrates the functionalities
of field survey, path planning, monitoring, and controlling agricultural vehicles in real time. Firstly,
a Grabcut-based semi-supervised field registration method is proposed for arable field detection
from the orthoimage taken by the drone with an RGB camera. It partitions a complex field into
simple geometric entities with simple user interaction. The average Mean Intersection over Union
is about 0.95 when the field size ranges from 2.74 ha to 5.06 ha. In addition, a desktop software
and a web application are developed as the entity of an FMIS. Compared to existing FMISs, this
system provides more advanced features in robot farming, while providing simpler user interaction
and better results. It allows clients to invoke web services and receive responses independent of
programming language and platforms. Moreover, the system is compatible with other services, users,
and devices following the open-source access protocol. We have evaluated the system by controlling
5 robot tractors with a 2 Hz communication frequency. The communication protocols will be publicly
available to protentional users.

Keywords: smart agriculture; image segmentation; agricultural robot; field registration

1. Introduction

Farming activities are related to a wide range of skills, methods, and processes which
can be effectively supported by automated systems [1]. The precision agriculture (PA)
system and its successor, the smart agriculture (SA) system, are considered to play an
important role in boosting agricultural productivity, sustainability, and quality. Devel-
oping strategies of SA practice, variegating sustainable agricultural systems require the
implementation of elaborate management rules. During the past years, sophisticated
farm management systems (FMSs) have been developed to plan, monitor, and control
agricultural processes over the Internet and wireless sensor network [2,3]. Specifically,
FMSs with advanced Information and Communication Technologies (ICT) that collect and
process the data from different sources (such as temperature, humidity, soil moisture, etc.)
are called farm management information systems (FMISs) [4,5]. The advent of ICT and
artificial intelligence (AI) technologies, as well as the unmanned ground vehicle (UGV)
and unmanned aerial vehicle (UAV) at reasonable costs, have enabled farmers to access
high-quality and large amounts of georeferenced data. Therefore, it is necessary to develop
a dedicated FMIS that can cope with big data, which is not exclusively related to big
volume, but also the variety and velocity of the collected data [1].

In recent years, the targets of academic and commercial FMIS has evolved from record-
ing keeping, machinery management, and documentation for farms to budget, finance,
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quality assurance, sales, and decision support system (DSS) for agribusiness manage-
ment [6]. Fonseca et. al. [7] developed agroecosystem management, termed “Agro 4.0”.
It provides tools for the collection, storage, analysis, visualization, and scenario simula-
tions of sustainability-related information of rural properties. Rupnik et al. developed a
cloud-based management system, implementing several data analysis methods, which
helps farmers better understand their data [8]. Singh et al. developed an FMIS, termed
“Agri-Info”, which gathers information from various users through pre-configured devices
and provides the required information to users automatically [9]. Academic FMISs have
been made great progress in field operational planning, which involves field partitioning
and coverage path planning on 2D/3D terrain [10,11]. Optimizing field operations leads to
a reduction of total non-working travel distance and soil compaction for increasing work
efficiency and sustainable land management. Based on various optimization algorithms,
the FMIS with field operational planning function determines the optimal predominant
working direction, divides a field into working and non-working subareas, and generates
complete or partial coverage path planning for each area [12,13]. Some of these algorithms
have been integrated into commercial FMISs to optimize the input resources such as seeds,
fuel, and time. With the successful implementation of autosteering systems in agricul-
tural vehicles, agricultural machinery makers, such as John Deere, Fendt, New Holland
and CLASS, all fit their FMISs with telematics. However, these are all closed systems
with limited interoperability. One systematic review identifies 81 different features and
53 obstacles of FMISs developed during the last decade [14]. It reveals that there is still
no standardized system to enable cohesive interoperability among functionalities related
to autonomous farming. Moreover, understandability and insufficient farmer skills are
frequent obstacles to current FMISs. Some systems are difficult to understand and use for
farmers, due to complex user interfaces and operational processes. Therefore, beyond the
automated data acquisition and various connectivity, new requirements that autonomous
farming introduces to FMISs are those of ease of use (EoU) and sustainability.

First of all, accurate and informative field information is a prerequisite of farm man-
agement. However, human experience and an extensive labor force are still necessary
for the field mapping and registration process. For example, manually driving a tractor
with an accurate real-time kinematic (RTK) GPS around the field is a common and reliable
way to obtain the field boundary. On the contrary, a UAV is more efficient than a UGV
in field information acquisition. Moreover, a UAV equipped with an RGB camera has
been exploited in various applications related to crop monitoring and spraying [15]. How-
ever, UAV-based field detection and field partitioning is an open area of research and few
methods have been developed. This research aims to simplify data acquisition using UAV
and analyze the data by integrating human experience with artificial intelligence (AI). AI
methods, such as Convolutional Neural Network (CNN), have had great success in disease
detection, species classification, and plant phenotyping applications [16–18]. However,
it needs a large amount of data for training the CNN models. Moreover, a well-tuned
CNN model cannot work well in all scenarios. Once the model fails to detect the arable
area, it is difficult for a user to tune the model or correct the result. Therefore, human
interaction is important for the field registration process of an FMIS. In this research, a
semi-supervised image segmentation method, Grabcut, is adopted to the field registration
process by extracting the field with simple user interaction [19]. Grabcut and its extension
methods have been successfully applied to many applications, like ship detection from the
sea [20] and specified road region extraction [21]. Applying Grabcut to the agricultural
environment for field detection has not been researched yet.

In addition, the sustainability of a robot farming system is always an important
criterion while conducting agricultural practices. Optimizing field operations can improve
the working efficiency of agricultural machinery and reduce time and energy consumption.
The operational planning of the FMIS is focused on generating complete coverage or partial
coverage navigation map, both in terms of minimizing the non-working travel distance
and improving yields [22,23]. Planning methods take into account vehicle capacity and
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kinematics constraints, calculate the optimal way to generate paths for in-field navigation
as well as headland turns [24,25]. However, field complexity and environment uncertainties
are still hurdles for existing DSS and FMISs. Since agriculture is in a semi-constructed
environment, a deterministic model cannot fully describe the nature inherent in agricultural
production systems [6]. Instead of designing a complex path tracking controller like
other researchers [26–28], we propose a self-tuning mechanism to operational planning,
by which the FMIS, as well as the automatic vehicles, can cope with the uncertainty of
farming operations.

The aim of this research is not to construct a comprehensive FMIS, but rather to
collaborate agricultural robotics with advanced FMISs. The objectives of this research are
to improve both the EoU and sustainability of an FMIS from two aspects: field registration
and operational planning. First, a semi-supervised field registration method is proposed
to extract accurate field information from the UAV sensing data. Since operations at the
headland are more complex than tracking parallel straight paths, a self-tuning mechanism
is adopted in the operational planning process to cope with the uncertainties during the
headland turns. Lastly, an FMIS is delivered as a platform with web application and
desktop software. The entity of an FMIS is developed to evaluate proposed algorithms and
to demonstrate the workflow of the developed management system.

2. Methodology

The overall workflow of the FMIS is depicted in Figure 1. The FMIS consists of UAV
for the field survey, a PC software with full accessibility to the server, a web application for
users with portable devices, and a radio for nearby monitoring and emergency stop. The
PC software is modified from the “Geomation”, originally developed by Hitachi Solutions,
Ltd. It executes in a Windows laptop with an Intel Core i5-7200U 2.50 GHz CPU and
8 GB RAM. The software platform was built using PostgreSQL database communicating
through the REST framework. The web application development is based on HTML5 and
JavaScript under the Node.js environment.

Figure 1. The workflow of an FMIS for robot farming.

The field information acquisition is performed by a hexarotor UAV (EnRoute Co., Ltd.,
Fujimino, Japan) with a RedEdge camera (MicaSense Inc., Seattle, USA), shown in Figure 2.
We use the RGB channels of the image for field registration. The device specifications and
settings are similar to the methods presented by Meinen [29] and Kattenborn [30], but
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with an average height of 50.0 m above ground for better ground sampling distance. PC
software at the server-side manages the sensing data required by the UAV and provides a
user interface for field registration and operational planning. It is possible to export the
working plan, such that it can be imported into agricultural robots, autonomous tractors in
this research. The user can monitor and control robot tractors through both the PC software
and the web application. Commands, working status, and working plan are formatted
into Extensible Markup Language (XML) information set and are transmitted relying on
HyperText Transfer Protocol (HTTP). Since the HTTP protocol is installed and runs on
all operating systems, the farm management system at the server-side allows clients to
invoke web services and to receive responses independent of programming language and
platforms, such as a tablet, smartphone, and so on. In addition, users nearby the farm
can monitor and control the robots through a radio with a 150 MHz width waveband.
Furthermore, the functionality are same as the PC software and web application in robot
control, while the radio enables the user to stop the engine in an emergency. Some other
functionalities, such as account management and machinery and equipment management,
are not listed here.

Figure 2. UAV-imagery system used in this study.

The robot tractor uploads working status and requests commands from the server
following the simple object access protocol (SOAP) [10]. The dataflow between the server
and each robot tractor is shown in Figure 3. It then downloads the working plan from the
FMIS after initialization. The working plan includes the navigation map, path order, vehicle
capacity, and agricultural implement size. The system enables users to modify machinery
statuses, such as the velocity, engine speed, the status of power take-off (PTO), and the
position of the hitch. In addition, other machinery statuses (e.g., steer angle, position, and
attitude) and working status of the implement should be uploaded to the server and the
monitor simultaneously. The communication frequency in this research is set to 2 Hz for
real-time control and monitoring.

Figure 3. Parameters for remote monitor and control.
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2.1. Field Registration with Simple User Interaction

Based on the accurate sensing information, field registration procedure based on Grab-
cut and path planning for headland turns will be introduced in the following section. The
field image I is formed by a set of pixels with precise georeferencing I =

{
vxy, PXY

}
. (x, y)

denotes the position of a pixel in the image domain Ω ⊂ R2, and (X, Y) is the position in
the world coordinate, represented by latitude and longitude. The elevation information
is not used in this research. Let L =

{
lxy ∈ {0, 1} : (x, y) ∈ Ω

}
be a set of labels for all the

pixels in the image. The field registration algorithm modified from Grabcut is treated as a
pixel labeling problem by assigning the pixel at position (x, y) to be ‘0′ for non-working
area or ‘1′ for working area [14]. Color pixel is modeled by two full-covariance Gaussian
Mixture Models (GMMs), one for the working area and one for the non-working area. The
GMM with K components is defined as

D(v, l) =
K
∑

i=1
πigi(v; µi, ∑i), s.t.

K
∑

i=1
πi = 1 and 0 ≤ πi ≤ 1

g(v; µ, ∑) = 1√
(2π)3|∑|

e[−
1
2 (v−µ)T ∑−1 (v−µ)],

(1)

• where D(·) is a full-covariance Gaussian mixture with K components;
• v is the pixel value in RGB color space;
• l ∈ {0, 1} is the label of the pixel;
• πi is the mixture weighting coefficient;
• g(·) is the Gaussian probability distribution of the pixel in a component i;
• µ, ∑ are the mean and covariance of the Gaussian component.

The task for working and non-working area classification is to minimize the following
Gibbs energy function:

E(L) = Er(L) + γEb(L), (2)

• where L is a set of labels for all the pixels in the image;
• γ is an experimental based tradeoff factor.

The energy function consists of a regional term Er and a boundary term Eb balanced
by a positive tradeoff factor γ. The regional term Er, taking account of the GMM models,
evaluates the fit of segmentation to the pixel as

Er(L) = ∑(xy)∈Ω− log D
(
vxy, lxy

)
, (3)

• where (xy) ∈ Ω denotes the position of a pixel in the image domain.

The boundary term penalizes color discontinuity between neighboring pixels as follows:

Eb(L) = ∑(xy,ij )∈C

[
lxy 6= lij

]
e−β||vxy−vij ||2 , (4)

• where C is the set of pairs of 8-neighboring pixels;
•

∣∣∣∣vxy − vij
∣∣∣∣ denotes the Euclidean distance of two pixels;

Eliminating the effects of extremely high or low contrast, the parameter β is chosen
to be:

β =
(

2〈
∣∣∣∣vxy − vij

∣∣∣∣2〉)−1
, (5)

where 〈·〉 denotes the expectation over an image. The hard segmentation based on the
defined Gibbs energy function is solved by the minimum cut algorithm, exactly as the
Grabcut and Graph cut [19,31].

2.2. Headland Turning Methods with Self-Tuning Mechanism

Headland turning methods can be roughly classified as non-stop turning and turning
with backward movement [32]. As a typical non-stop turning method, U-turn is suitable for
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heavy load vehicles. It is an optimal option for vehicles with a wide implement or skip-path
working scenarios. Circle-back turning is suitable for small vehicles working on the limited
headland. The humanoid turning maneuvers of Circle-back turning provide high after-turn
accuracy without the sacrifice of speed. We implement U-turn and Circle-back headland
turning methods to minimize non-working path lengths at headlands. Two examples of
headland turn using U-turn and Circle-back turning are shown in Figure 4. Reference
paths for headland turn are composed of elementary primitives, such as continuous-curve
and a line segment. Applying a U-turn, the agricultural vehicle steers to full left, follows a
short straight path, and then steers to the full left till entering the next path. The reference
path using the default value of the minimum turning radius is depicted as a dashed line in
Figure 4a. The robot vehicle deviates from the reference path due to some uncertainties,
such as the lock-to-lock time delay, changing vehicle speed, and unknown tire-soil friction.
Instead of designing a complex controller, our solution is to correct the reference path based
on the measured minimum turning radius and recalculate the forward movement distance
d following

d = w− 2R f + ε s.t. w ≥ 2R f , (6)

• where w is the distance between two adjacent paths;
• R f is the turning radius with forward movement;
• ε is a relaxation factor to deal with the unknown disturbance.

In this research, the relaxation factor is set to after-turn lateral deviation. The updated
reference path of the U-turn is shown as a solid line in Figure 4a. When the path space is
less than two times a minimum turning radius, Circle-back turning is used for generating a
reference path. The central angle of forward turning, θ, is determined by

θ = − cos−1 w− R f + Rb

R f + Rb
+ ε s.t. w < 2R f , (7)

• where Rb is the turning radius with backward movement.

Figure 4. Initial reference paths and self-tuned reference paths of headland turn. (a) Depicts the
U-turn and (b) depicts the Circle-back turning. Dashed lines are reference paths generated by default
parameters, and solid lines are updated reference paths by self-tuning mechanism.

2.3. Pilot Study

Grabcut-based image segmentation method is implemented in the field registration
process. User interaction and an iterative scheme are adopted to further improve seg-
mentation accuracy. We select three field orthoimages as examples and illustrate the field
registration process in Figure 5. The first image of each panel is the orthoimage processed
from UAV sensing data. The second image of each panel is the orthoimage with user inter-
actions. The field registration includes two-step user interaction. The first is to initialize
two GMMs by roughly marking some pixels either to the working or non-working area. As
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shown in the second image of each panel in Figure 5, white strokes label the working area.
Black strokes label the non-working area. The second step is to repeat the segmentation
process until a satisfactory result is obtained. GMM parameters update in each iteration,
during which new pixels are assigned to GMM components. The third image of each panel
is the result of field segmentation after several iterations. The field edges in Figure 5a,b
are uninterrupted and smooth. However, the segmentation result degrades in Figure 5c
because of the interference from the grass on the road. The resolution of sensing data also
affects the segmentation accuracy. In this case, further user-labeling is needed to refine
ambiguous segmentation. In general, the entire segmentation process can be conducted
automatically using the initially rough labels in most cases. In these examples, we can
register two or three fields at the same time. No additional labor force is necessary for
irregular multi-fields labeling.

Figure 5. Grabcut-based field registration process.

Following the field registration, the operational planning algorithms automatically
design the reference paths for the working area and feasible turns subject to the field
shape and vehicle constraints. To express the length of the trajectory clearly, the origin of
the coordinate is shifted to (527180, 4769333) in the Universal Transverse Mercator (UTM)
coordinate system. The velocity of the robot is 1.4 m/s for working, which is the speed limit
for the rotary tillage seeding machine. For safety and soil protection concerns, the turning
speed at headland is set to 1.0 m/s. We analyzed each turn by calculating the trajectory
distance, time consumption, headland occupation, and after-turn lateral deviation.

3. Experimental Results

As the requirements of an FMIS for autonomous operations are identified, we develop
a PC software and a web application for users to access the server and manage the system
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through a web service. The graphical user interface (UI) of the web application is shown
in Figure 6. The robot accesses the server through the preassigned ID and the password.
The icon’s color indicates the working status of the tractor. Blue indicates the robot moving
in the non-working area (outside the farmland). Green indicates the robot working in the
field. The yellow icon in Figure 6 indicates the robot is manually paused or on standby. A
demonstration of applying “Geomation” for vehicle control is available in Supplementary
Materials: Video S1. The video shows that we control 5 robot tractors at the same time
through this system. The communication frequency is set to 2 Hz. The web application,
“Weilai Farm”, is accessible at http://39.104.144.154:10000/robot.ai (accessed on 24 June 2021).

Figure 6. The user interface of the web application, termed “Weilai Farm”. The color of the robot’s
icon indicates the working status of the tractor.

The data analysis for field registration is listed in Table 1. The pilot area index
is consistent with panel a–c in Figure 5. The FMIS can cope with the orthoimage of
a field as large as 5.06 ha without reliance on an external accelerator, such as a GPU.
Mean Intersection Over Union (mIoU) is employed as the accuracy metric [33]. It can be
seen that the extracted field area is consistent with the manually labeled ground truth.
Therefore, detected field boundaries can be with centimeter-level accuracy, which is also
determined by the resolution of the field orthoimage. Compared to other methods, such
as the manually drawing boundaries and GPS recording boundaries, the proposed field
registration method overwhelms these methods in the aspects of labor force consumption
and boundary accuracy. Its advantages become significant in the case of large farmland
and irregular shape of the field.

Table 1. Sensing data and field registration accuracy.

Pilot Area
Index

Resolution
[cm/pixel]

Average Field Size
[m2]

Coverage
[ha] mIoU

01 3.4 24,820 5.06 0.9761
02 3.3 13,024 2.74 0.9558
03 5.3 17,600 3.63 0.9276

Figure 7a shows the implementation of the Circle-back turning method on a ten-path
navigation map. The distance between the two adjacent paths is 2.64 m. The robot tractor
starts at the upper headland. Turns with order {1,3,5,7,9} are at the lower headland, and the
ones with order {2,4,6,8} are at the upper headland. Pink lines are the working trajectories
of the robot tractor, and the blue lines are the turning paths. The second headland turn

http://39.104.144.154:10000/robot.ai
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is enlarged in Figure 7b. The blue lines are generated reference paths for headland turns.
Red circles show the trajectory of forward turning, black dots are the backward turning
trajectory, and blue blocks illustrate the forward movement entering into the next path. It
can be seen that the robot follows the reference path precisely at the headland.

Figure 7. The navigation map with in-field paths and headland turns. The robot tractor starts at the upper headland
following a blue curved line at (a). Turns with order {1,3,5,7,9} are at the lower headland, and the ones with order {2,4,6,8}
are at the upper headland. The second headland turn is enlarged at (b). The blue lines are generated reference path for
headland turns. Red circles show the trajectory of forward turning, black dots are the backward turning trajectory, and blue
blocks illustrate the forward movement entering into the next path.

The results of 9-times headland turns are listed in Table 2. The after-turn deviations
of the first two headland turns following the initial reference paths are as large as 7.1 cm
and −6.6 cm, respectively. With the supervision of the self-tuning mechanism, deviations
converge to 1.0–3.6 cm in following headland turns (from order 3 to order 8). The de-
viation after the 9th headland turn might be caused by a disturbance. The tolerance to
disturbance can be adjusted through tuning the relaxation factor in Equation (7). In this
way, the self-tuning mechanism enables operational planning to be robust to disturbance
and uncertainties.

Table 2. Analysis of headland turns with the Circle-back turning method.

Order 1 2 3 4 5 6 7 8 9

Trajectory [m] 20.2 20.3 20.0 20.6 20.7 20.2 20.7 20.6 20.6
Time [s] 24.8 24.8 24.6 25.0 25.2 24.6 25.4 24.8 25.2

Headland [m] 6.5 6.6 6.4 6.7 6.7 6.6 6.7 6.7 6.6
Deviation [cm] 7.1 −6.6 2.3 2.4 1.0 −3.4 3.6 −2.8 6.4

4. Discussion

We adopt the semi-supervised learning based field registration method and headland
path planning method in the proposed FMIS to reduce the production costs and to im-
prove working quality. The proposed field registration method can provide reliable field
partitioning results by integrating the human experience and machine learning method.
For robot operation planning, it is unnecessary, and also impossible, to design a universal
path planning method for all the working conditions. Proposed headland turning methods
generate reference transfer paths while turning and make adjustments based on measured
turning radius. In this way, operational planning is adaptable to the uncertainties of a
semi-constructed agricultural environment.

Comparing with other primary studies, the main features of an FMIS, as well as
the configured features in this study, are presented in Table 3. Listed feature categories
come from multiple domains, including arable farming, greenhouse, livestock, orchard,
multipurpose and general FMIS that cannot be traced back to one domain [14]. The
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proposed FMIS has features such as data acquisition, operation plan generation, equipment
management, data processing, and data management, which occur frequently over multiple
domains. In addition, features related to the arable farming domain, for example, field
monitoring, and field management, are also configured in this study. On the contrary, one
of the most frequent features, financial management is not presented in this system. We
furthermore present a combination of desktop software and web application. Therefore,
the FMIS also has Internet accessibility and Multi-platform supports. It can be seen
that the proposed FMIS is specialized for fully autonomous farming according to the
configured features. Moreover, the system is compatible with other services, users and
devices following the open-source access protocol.

Table 3. Main features of an FMIS listed in primary studies [5,14].

Feature Categories Configured

F1 Financial management
F2 Reporting Under development
F3 Data acquisition #
F4 Operation plan generation #
F5 Crop management
F6 Resource management
F7 Equipment management #
F8 Field monitoring #
F9 Data processing #

F10 Fertilization management
F11 Human resource management
F12 Weather service
F13 Data management #
F14 Field management #
F15 Accounting
F16 Inventory management
F17 Internet accessibility #
F18 Compatibility #
F19 Multi-platforms support #

One main difference between our study and the related work is that a semi-supervised
field registration method is proposed to partition the complex field into simple geometric
entities with simple user interaction. Using the semi-supervised learning method provides
the following advantages for field registration:

• It simplifies the field registration procedure. The field segmentation executes itera-
tively with few samples of working and non-working areas.

• It is a purely color-based segmentation method without the limitation of field geometry
and size.

The other main difference of this study with related path planning work is that the
self-tuning mechanism is adopted. The turning methods with the self-tuning mechanism
are simple and flexible enough to be adapted to changing environmental conditions. After-
turn deviations of a robot tractor following the default reference turning paths are as large
as 7.1 cm. Experiments reveal that the after-turn deviation converges to within 4 cm by
adjusting the reference path autonomously.

5. Conclusions

The sustainability of a robot farming system is an important criterion while conducting
agricultural practices. We proposed a semi-supervised field registration method to extract
field information from the UAV sensing data. UAV with an RGB camera enables farmers
to access high-quality field information in an efficient and non-destructive way. It is
also an economical method since the RGB image can be easily captured by a common
camera. Grabcut-based field segmentation method can be implemented without reliance
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on GPU, which is necessary for other deep learning methods [34]. At the path planning
process, proposed FMIS integrates two humanoid headland turning methods for headland
turning between different path spaces. Fewer steering operations are also beneficial to soil
protection at the headland as well as the sustainability of the autonomous system.

Compared to existing FMISs, the system presented in this research provides more
advanced features in robot farming, while providing simpler user interaction and better
results. Users without a high level of education or sufficient farming skills can obtain
the full potential of the proposed management system. We have evaluated the system by
controlling 5 robot tractors with 2 Hz communication frequency. Its capacity should be
evaluated in further tests. According to the above analysis, we can conclude that:

(1) An FMIS specialized for robot farming is developed. It allows clients to invoke web
services and receive responses independent of programming language and platforms.

(2) Ease of use and sustainability are proposed as criteria for developing an FMIS.
(3) Grabcut is adopted to process field orthoimage and to simplify field registration.
(4) Headland turn with self-tuning mechanism is adapted to environmental uncertainties.

Active use of a fully autonomous or intelligent assisting system to support farming
work will increase in the future FMIS. User interaction is still necessary at the field registra-
tion. In addition, it is challenging for Grabcut to extract an arable field from the background
with similar colors, such as the example in Figure 5c. Moreover, access points that mark
where the field can be entered should be manually assigned currently [11]. Deep learning
methods, such as CNN, have been applied to harness the UAV-based sensing data to map
vegetation patterns [30]. Their potential for identifying arable farmland as well as assess
points from high spatial resolution data should be further evaluated. In addition, the field’s
Digital Elevation Model (DEM) derived from the UAV photogrammetry shares the same
spatial resolution of orthoimage [35]. However, the inclusion of DEM did not significantly
improve the CNN models in plant species identification [18]. The merit of 3D informa-
tion for field registration should be evaluated in future research. Future FMISs in smart
agriculture should support automatic sensing, planning, controlling, and decision-making
mechanisms [5]. In this regard, the uncertainty assessment and management capability of
an FMIS can be improved by implementing these machine learning models.

Supplementary Materials: The following are available online at https://www.youtube.com/watch?
v=vjGoxsCVxFU, Video S1: A Demonstration of FMIS.
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