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Abstract: Wine tourism is one of the best opportunities for rural development, but because it is
partially exposed to climatic conditions, it is a climate-vulnerable tourism activity. However, an
understanding of the potential impacts of global climate change on this popular activity remains
limited. This study proposes a new methodology that combines current daily gridded climate
data from the E-OBS project with big spatiotemporal data from the Flickr photo-sharing platform
through a generalized additive model This methodology was implemented to study the potential
impacts on tourism flows due to climate change and to make predictions about the future using
data from the CMIP5 project. We applied the methodology to 5 European wine tourism regions:
Alsace (FR), Chianti (IT), La Rioja (SP), Langhe-Monferrato (IT), and Moselle (DE). Results show an
increased probability of presence and increased deseasonalization of tourism in all study areas and an
anticipation of peak presence from summer to spring in three of the five regions. We believe that these
results can be useful for public and private stakeholders to adapt the offer of wine tourism services
to changes in demand and to direct the organization of events such as festivals and thematic tours.

Keywords: wine tourism; climate change; Copernicus Climate Change Service; Flickr; generalized
addictive model

1. Introduction
1.1. General Problem

Wine tourism is a journey aimed at discovering the wine offer of a territory and
through which tourists can experience the local culture and acquire a sense of the place.
Hall [1] (p. 50) defined it as the “visitation to vineyards, wineries, wine festivals and wine
shows for which grape wine tasting and/or experiencing the attributes of a grape wine
region are the prime motivating factors for visitors”.

Wine tourism is one of the best opportunities for sustainable rural development in
many regions around the world. Direct sales in the cellar allows for greater employment
and is therefore an important factor for economic development, preventing the abandon-
ment of the countryside. Thanks to wine tourism, cultural ecosystem services are also
achieved through the relationship between consumer, wine producer, and landscape [2,3].

However, wine tourism does not only include visits to cellars, parties, and the purchase
of wine; the climate of the wine region is an integral part of the wine tourism experience.
Many authors highlighted that the pleasantness of the climate is an important factor for
tourist satisfaction. Through a sample of 161 wine consumers in Calgary (Canada), Getz
and Brown [4] found that a pleasant climate all year round is one of the factors included
in the “core destination appeal”. Through a principal component analysis, Galloway
et al. [5] confirmed that a good climate is one of the most important dimensions of the
“aesthetic characteristic” of a wine region. Applying a non-probabilistic procedure through
unstructured questionnaires to potential wine tourists in Aragona, March-Navarro, and
Pedraja-Iglesias [6] found that the climate of the area is one of the aspects to which the
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interviewees attributed the highest average values of importance among the various items
concerning the intention to participate in wine tourism.

Wine tourism takes place partly outdoors (visiting the vineyard) and partly indoors
(visiting the winery and wine tasting); therefore, being partially exposed to climatic condi-
tions, wine tourism is vulnerable to climate. However, an understanding of the potential
impacts of global climate change on this popular activity remains limited. The overall
purpose of this work is to identify the climatic comfort of the wine tourist through a human
ecology approach and examine how this comfort might vary due to climate change.

1.2. Literature Review

Climate change will have a direct impact on the tourism sector in Europe. Temperature
increases and changes in rainfall patterns will alter the length and quality of tourism
seasons in the region, affecting both the temporal and spatial distribution of flows to
different destinations. The latest assessment report of the Intergovernmental Panel on
Climate Change (IPCC) concluded that, “after 2050, tourism activity is expected to decrease
in southern Europe (low confidence) and increase in northern and continental Europe
(medium confidence).”

From a theoretical perspective, the study of the relationship between climate change
and tourism can be referred to using the vulnerability-adaptation-mitigation-response
framework. The difference between climate change mitigation and climate change adap-
tation strategies is that mitigation aims to address the causes and minimize the possible
impacts of climate change, while adaptation looks at how to reduce the negative effects.
Finally, response focuses on defining how society governs the impacts of climate change
through specific policies. The present research is connected to the dimensions of impact
and adaptation, and the literature review is oriented in this direction.

The study of the impact of climate change on tourism activities has been addressed by
adopting many approaches. In this review, after screening the sparse existing literature on
the specific topic of wine tourism, we attempted to categorize the extensive literature related
to the impact of climate and climate change on other tourism activities. Finally, we reviewed
the existing literature on modeling human ecology in relation to landscape characteristics.

Although numerous studies on the impact of climate change on tourism have been
carried out since 1960 [7,8], the only specific study on the impacts of climate change on wine
tourism is the Sustainable Tourism Cooperative Research Centre’s (STCRC) report “The
Impacts of Climate Change on Australian Tourism Destinations: developing adaptation
and response strategies—a scoping study” [9,10]. This study assessed the impacts and
adaptation strategies for 2020, 2050, and 2070 through stakeholder interviews and social
learning workshops. The results were contradictory. Tourists were asked the question:
“What do you think will happen to tourism in the Margaret River region if the climate
changes?” and most of the respondents answered that there would be “less tourism”.
A small percentage of the respondents indicated that they believed there would be “no
change” for tourism in the Margaret River region. Other respondents who answered “more
tourism” stated that changes in weather patterns would attract more visitors to Margaret
River as other tourist destinations would become less hospitable. In contrast to tourists,
local stakeholders mainly predicted a change in consumer behavior and a transition from
beach tourism to wine tourism with consequently more visitors in the wine regions due to
climatic change.

Only slightly more extensive is the literature on the impacts of climate change on
rural tourism. Gomez-Martin et al. [11] carried out research on climate change adaptation
strategies in the tourism sector in the Costa Brava (Spain). Through a methodology
based on stakeholder questionnaires, the authors found out that most of the interviewees
believed that rural tourism is a national adaptation strategy for the tourism sector as
it is complementary to seaside tourism in the event of climate change. In an analysis
relating to rural tourism in Hungary, Zsarnoczky [12] states that “climate change are
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expected to significantly reduce the resilience of rural tourism regions and their capability
to successfully respond to other possible critical events”.

From the review of the existing literature, it is evident that there is a lack of empir-
ical quantitative studies on the risk of changing tourism flows in wine regions due to
climate change.

Data collection remains one of the biggest challenge researchers face in measuring the
impact of climate change on specific types of tourism activities. The methodologies for
assessing the vulnerability of tourism to climate change differ in the collection of data for
tourism presence and climate variables. The studies differ both in the origins of the data
used to detect the behavior of the tourist and in the format of the climatic data adopted.

Some studies [13,14] showed the possibility of using data from national statistics to
examine the relationship between tourism and climate change. Despite these successful
examples, these statistics are not sufficiently detailed. Most of the statistical data uses
relatively coarse classifications (beach tourism, ski tourism, art tourism, and other tourist
activities); for example, in Tuscany it is impossible to disaggregate wine tourism from
tourism in cities of art; in European and Alpine areas it is not possible to distinguish wine
tourism from nature tourism presences. Questionnaire surveys are aimed at detecting the
ideal climatic conditions of the tourist [15,16]. The main drawback of this approach are the
reliability of respondents’ statements, who are generally not experts in biometeorology [17];
furthermore, these data are generally derived from small samples within short time inter-
vals and refer to single locations. Techniques based on the so-called big data from social
media platforms provide a new approach that can be usefully applied. Although these
data have been used extensively in the last decade to study tourist behavior (see [18] for a
review), there are few studies (mostly written in Chinese) aimed at climate comfort [19–22].
Ground-based weather station observations are the most widely used method for studying
the climatic comfort of tourists, both through monthly average data [23] and daily data [24].
However, these data have a limited spatial extent. Recently, with the increased availability
of gridded spatial data, there has been an increase in the number of studies implementing
them. Monthly gridded data have been applied to the analysis of the effect of temperature
on visitors to National Parks. Fisichelli et al. [25] and Coldrey and Turpie [26] employed
Climatic Research Unit (CRU) data available globally to 0.5 decimal degrees (approxi-
mately 3000 km2 at the Equator and 2000 km2 at 70◦ latitude) in a regression analysis
with the number of visitors surveyed monthly. Although this dataset is spatially coarse,
it can be considered adequate at the scale of national parks. Thematic gridded data were
employed by Scott et al. [27] to formulate the Holiday Climate Index (HCI). The authors
employed the dataset for current climate (1961–1990) and future climate change scenarios
from the EU-funded ENSEMBLES project [28] at 25 km resolution. Köber [29] used E-OBS
gridded dataset version 5.0 on a 0.22◦ rotated pole grid in order to construct the weather
and climate indices used to calibrate tourism demand models in two regions in Italy and
Tunisia. Finally, Perch-Nielsen [30] calculated the Touristic Climate Index (TCI) for tourism
in Europe and projected changes under future climate change using daily data from five
regional climate models and comparing the 1961–1990 baseline period with the A2 scenario
in 2071–2100.

In ecology, the behavior of wild populations in relation to climate and climate change
is studied by means of niche models or envelope models [31,32]. Niche models relate to
the geographical points where an animal of a given species has been sighted to the climatic
characteristics of that point. The model allows us to estimate the probability that a spatial
location is the ecological niche of the studied species. The aim of our work is to apply this
methodology to the wine tourist using as sighting points the coordinates of the shooting
points downloaded from the social photographic platform Flickr. Flickr has recently been
used by many authors to study the behavior of different types of tourists in relation to
landscape variables using Niche Models.

Levin et al. [33] (p.122) have “found strong and significant correlations between all
crowdsourced data and visitation statistics, demonstrating the potential to use crowd-
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sourced data to characterize the social and perceived importance of protected areas and as
a proxy for visitation statistics”. The authors demonstrated the advantages of combining
remote sensing data and geotagged photos on Flickr to identify tourist frequency and
monitor the impact of overload. Yoshimura and Hiura [34] and Walden-Schreiner et al. [35]
analyzed the relationships between shooting locations of geo-referenced photos on Flickr
with the environmental characteristics of the territory and the presence of infrastructure to
provide management strategies for the conservation of natural resources, while providing
opportunities for tourism and recreation. Urban green spaces have also been investigated
with an ensemble of human niche models [36]. Recently, Alampi Sottini et al. [3,37] and
Barbierato et al. [38] applied Flickr data to the landscape preferences of wine tourists in
Tuscany (Italy).

1.3. Purpose of the Research

Our research aims to apply human niche models by correlating Flickr platform data
with current and future climate variables. One of the main advantages of Flickr is that data
are available worldwide, thus allowing us to implement the methodology in five European
wine tourism regions: Alsace (FR), Chianti (IT), La Rioja (SP), Langhe-Monferrato (IT), and
Moselle (DE).

Our study aims to contribute to the current literature in two ways. The first research
question (RQ1) concerns the possibility of combining Flickr platform data with climate
data to identify the probability of tourist presence with a specific focus on wine tourism,
thus filling the gap of research on this sector. The second research question (RQ2) aims to
quantitatively test the opinion expressed by wine tourists and farmers on the fact that wine
tourism may represent an opportunity for the tourism sector to adapt to climate change [9].

2. Materials and Methods
2.1. Study Areas

We have chosen five wine regions in Europe based on two criteria: the development
of wine tourism [39] and the diversification of climatic characteristics (Figure 1).
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2.1.1. Alsace

Alsace is a distinctly different French wine region, lying on the west bank of the
river Rhine. It is protected by the Vosges Mountains and thus it benefits from a unique
continental climate, characterized by little precipitation. Although located in the north-east
of the country, Alsace is the driest and one of the sunniest regions of France with an annual
average temperature around 1.5 ◦C higher than would be expected at its latitude. The
climate is the ideal one for the full maturation of the different grape varieties cultivated
here, favoring the full developing of their aroma and character. Moreover, the region is
rich in history, picturesque architecture, and stunning landscape, which makes it a popular
tourist destination all year round. As a matter of fact, the Alsace Wine Route is one of
the oldest in France. It stretches 170 km across medieval villages, and is characterized by
half-timbered houses decorated with flowers, castles, and Roman and Gothic churches [40].

2.1.2. Chianti

The Chianti region lays in the heart of Tuscany, delimited by the cities of Florence,
Siena, and Pisa. Generally, the climate is continental, with cold winters and hot summers.
However, most vineyards are located at the foot of the Apennine Mountains, which lower
the heat of the summer. In addition, some areas are warmed by air currents funneled from
coastal areas, making the winters less harsh than elsewhere.

Chianti stretches for 160 km from north to south, and it is thus characterized by
different soils, temperatures, and altitudes. Thus, it is difficult to pinpoint common
characteristics for the entire area. However, the region is mainly characterized by a rolling
hilly landscape in which grapes and olive trees are cultivated extensively. The landscape is
also dotted with farmhouses, castles, and ancient roads lined by cypress trees. The region
is a tourist destination known worldwide for its rich history, cultural heritage, landscape,
and refined gastronomy [41].

2.1.3. La Rioja

La Rioja is a province of Spain located in the north of the Iberian Peninsula. The
well-known wine region also offers a great amount of religious and cultural variety. La
Rioja is linked to the famous pilgrimage route of Saint James and boasts the San Millan Yuso
and Suso monasteries, which are designated UNESCO World Heritage sites. Moreover,
La Rioja offers a beautiful hilly landscape, dotted with fortresses from medieval times.
Culture, natural attractions, and wine make this region a very popular tourist destination.
In addition, the presence of the Cantabrian Mountains, which flank La Rioja to the north
and west, protect the region from the cold and the wet influences of the Atlantic Ocean.
This is a significant factor in the local climate, which is warmer and drier than that typical
of northern climates [39].

2.1.4. Langhe-Monferrato

Monferrato and Langhe occupy an area of Piedmont that lies south of the river Po.
Piedmont is located in the northwest corner of Italy, and this area between the foothills
of the Alps and the Apennines is undoubtedly one of the most important winegrowing
regions not only in Italy but also in the world. The name of the region, Piedmont, has
medieval Latin origins: “ad pedem montium”, which means “at the foot of the mountains”.

The Monferrato, and Langhe to the south of it, occupy foothills branching off the
Ligurian Appennines across the Casale area to the Po valley in a variety of geographical
contours and landscapes. The area is surrounded by gently rolling hills, tiny hilltop villages,
and broad landscapes of vineyards and fruit orchards. A network of mostly small roads
connects these old villages and towns with each other, and many tourists visit this region
throughout the year. The climate is continental with a strong Mediterranean influence, due
to the Ligurian Riviera only 50 km away. The winters are short, and night temperatures in
January and February only occasionally fall below zero. Spring and autumn are long and
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warm. The summers are hot and dry, although the hilltops are ventilated by a pleasant sea
breeze [42].

2.1.5. Moselle

The Moselle wine region has a northerly continental climate characterized by cool
temperatures. The region takes its name from the Moselle River, where we can find the
best vineyard sites as the heat of the sun can be maximized by the reflection on the water
flowing in the river. Together with the two small tributaries of the Moselle, the Saar and
the Ruwer, Moselle is considered the oldest wine growing region in Germany. The soil
of the area is dominated by porous slate which allows for ideal drainage and good heat
retaining properties. During summer, the weather is warm but rarely hot with average
temperatures around 18 ◦C. Most of the vineyards are grown on steep and terraced sites
with a slope of over 30 degrees, some planted at an astounding 70-degree gradient. The
region is a highly attractive travel destination not only for its stunning outlooks into the
valley, but also for the spectacular beauty of the hilly vineyards, which gives the region its
quite unique character [43].

2.2. Data
2.2.1. Flickr Social Media and Wine Tourist Data

The voluntary sharing of personal information and content uploaded to various online
social networks has created several opportunities for the analysis of tourist behavior. For
the present research, several sources of information were initially considered: Twitter,
Instagram, Facebook, Twitter, Panoramio, and Flickr. We decided to choose Flickr because
it is widely used as a data source in the literature for the analysis of tourist behavior and
destination choice [28]. Sessions et al. [44] recently reported positive results in predicting
monthly visitor patterns in U.S. national parks using Flickr data. Similar results were
obtained by Levin et al. [33]. Cox [45], in a questionnaire-based study, states that Flickr is
the social platform for serious amateur photography enthusiasts on vacation. Liu et al. [46]
showed that Flickr is the preferred social platform for sharing food and wine photos and
that users search for food photos on Flickr to choose new destinations. A key feature for our
research is that the data downloaded from Flickr allows us to know the exact date and time
of the tourist’s presence at the location through the EXIF photo metadata associated with
the photo [47]. It also makes available an accessible and flexible application programming
interface (API). Using the boundaries of each wine region, through an algorithm based
on Flickr’s application programming interface, shooting point data from photos shared
from 1 January 2010 to 12 December 2019 were downloaded. For each shooting point,
the following data were downloaded: longitude, latitude, date of photo shooting, owner,
title, and description tags. The photo-points containing “wine”, “vineyard”, and related
words in English, Italian, Spanish, French, and German in the title, tag, or description
were filtered. Then, specific filters were applied to avoid distortions due to observations
repeated several times on the same date by a single photographer.

2.2.2. Climate Data

To evaluate spatial and temporal variations, we used daily gridded climate data from
the European Union’s Copernicus Climate Change Service project (https://cds.climate.
copernicus.eu/, (accessed on 1 July 2021)). For the current climate we used the E-OBS
version 18 gridded dataset [48] with a Regular latitude-longitude grid with 0.25◦ × 0.25◦

resolution and daily data for the period from 1 January 2010 to 31 December 2019. For
future climate we used data from the Coupled Model Intercomparison Project, CMIP5, [49]
with a Regular latitude-longitude grid with 0.125◦ × 0.125◦ resolution, related to RCP6.0
and the HadGEM2-ES model (UK Met Office, UK). In the case of total cloud cover, the
Coordinated Regional Climate Downscaling Experiment (CORDEX) was model was used.
The time periods considered were the following: 1 January 2010–31 December 2019 for the
current climate, 1 January 2030–31 December 2039 and 1 January 2050–31 December 2059

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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for the future climate. The choice of the RCP6.0 scenario is due to the fact that it represents
a prudential assumption compared to the optimistic RCP2.5 and RCP4.5 scenarios, but not
as overly pessimistic as the RCP8.5 scenario. The HadGEM2-ES model is part of a new
generation of an earth system including models designed to analyze the potential impacts
of climate change [50]. Finally, we chose recent time periods to model the probability of
wine tourism presence and fairly close periods to assess future changes in order to provide
useful information to stakeholders. The choice of meteorological variables was made on
the basis of the existing literature [24,51–54]. In the model, we considered maximum,
minimum, and average daily temperature, daily total runoff, wind speed, relative humidity,
and total cloud cover.

2.2.3. Joining Climate and Wine Tourist Data in a Single Dataset

The next step was joining the gridded climatic data to the points of tourist presence
through a geographic overlay operation on the grid, corresponding to the date the photo
was taken. Our study aims to estimate the probability of a visitor’s presence in one of
the five wine regions at a given location, time, and with the resulting weather conditions.
Therefore, all probabilistic algorithms require some form of absence observation that they
use as a contrast to observations of tourist presence. When absence data are not available,
pseudo-absence data must be generated. In spatial suitability models, we usually generate
random coordinate pairs within the boundary of the study area. However, in our study
it was also necessary to generate time pseudo-absence observations. Therefore, for each
wine region we first generated a number of coordinate pairs equal to the number of points
downloaded from Flickr. Each pseudo-absence coordinate was randomly assigned a date
on which there were no photographs. The pseudo-absence points were also associated
with the gridded climate data through a geographic overlay operation.

2.3. Statistical Processing

Recently, some studies have shown that the complexity of the relationship between
people’s behavior and climate factors are difficult to model through a linear function.
As a result, non-parametric estimation approaches, such as the Generalized Additive
Model (GAM), have been applied to model complex relationships [18,55]. We statistically
estimated the relationship between climatic factors and the presence of wine tourists
(measured with a binary variable of presence/pseudo-absence) using the GAM. The GAM
is a flexible extension of the generalized linear model (GLM) in which the linear predictor
of the GLM is replaced by a nonlinear additive predictor defined by a spline. The logistic
GAM we used had the following structure:

Pr(Y = 1|X) = log
(

p(X)

1− p(X)

)
= β0 + f1(X1) + f1(X2) + · · ·+ f1p

(
X1p

)
(1)

where f 1–f p are spline functions of the explanatory variables, Xi.
We used spline functions with four degrees of freedom and thus three nodes. The use

of spline functions is used by some authors [56,57] to study the effect of climate change on
tourism-related variables and allows an easier identification of discontinuity points and an
easier comparison of results with those obtained from different studies. For the choice of
the model with the best classification performance, we calculated the model with 85% of
the observations and used the method of the area under the ROC curve (AUC) to estimate
the remaining 15% of observations. The AUC is one of the most used methods to measure
the efficiency of a binary classifier: AUC values of 0.6–0.7 suggest a fairly accurate model,
0.7–0.8 an accurate model, and greater than 0.8 a very accurate model [58]. The model that
gave the best AUC performance and parameter significance was the following:

Pr(Flickr = 1|x) = bs(tg) + bs(tr) + rr + bs(phum) + bs(wind) + bs(tcc) + wr (2)
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with bs(.) B-spline [59] with four degrees of freedom, tg mean temperature, tr daily temper-
ature range, phum percent humidity, rr precipitation, wind daily wind speed, tcc percent
cloud cover, and wr wine region dummy variable. The daily temperature range allowed us
to avoid multicollinearity with mean temperature while preserving available information.
The model was estimated with the gam and mgcv libraries of the R statistical software.

Finally, we applied the method of “univariate response curves” to the model [60].
Univariate response curves are commonly used to represent the complexity of the relation-
ships between the dependent variable and a single independent variable of a nonlinear
multivariate model. They are plotted by calculating the predicted probability of occurrence
against the predictor of interest, while keeping all other predictors at their median values.
We constructed the response curves using the R software plotmo library [61].

2.4. Climate Change Simulation

To simulate the probability of presence of wine tourists, we added 20 and 40 years to
the date of shooting of the points of both presence and pseudo-absence; we then performed
a geographic overlay operation on the grid corresponding to each simulated future date of
shooting of the photo using the I data from the RCP6.0 scenario. Future climate data were
input into the GAM model using the predict function of the R library mgcv to calculate the
predicted probability values of the presence of wine tourists in the future.

3. Results
3.1. Exploratory Analysis of Model Dataset

We downloaded data for a total of 34,758 photo points. The wine region with the
highest number of photos is La Rioja (8840), followed by Alsace (7020), Chianti (6585),
Mosel (6521), and Langhe Monferrato (5792). Figure 2 shows conspicuous seasonal trends
in the presence of wine tourists in the five study areas. The tourist season is rather long
from May to October with a peak of presence in the summer, more marked for Rioja and
less for Chianti and Langhe Monferrato. Winter months have very low presences.
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We analyze the current climate and climate change in the five wine regions under study.
Figure 3 shows the density plots of the variables processed with the data downloaded from
the Copernicus Climate website. The temperature variables show a marked increase, with
higher median values of about 12 ◦C for the mean temperature, and 10 ◦C for the minimum
and maximum temperatures. Precipitation tends to increase, especially on rare events, but
most frequently there are days with little or no precipitation. The average daily wind speed
tends not to change appreciably in the three periods considered. Finally, percent humidity
and cloud cover have multimodal distributions: the former tends to have higher values
while the latter increases on days with clear skies.
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3.2. The GAM Model

The GAM model is suitable for estimating the response relationship between the
probability of presence of a wine tourist and the climatic variables. Analysis of the Variance
Inflation Factor (VIF, Table 1) shows that there is no multicollinearity among the indepen-
dent variables, since all VIFs are less than 10 [62]. Table 2 shows the coefficients, standard
errors, and significance of the GAM model parameters. All coefficients are significant with
a p-value < 0.1 and most with p-value < 0.001. Finally, the AUC of 0.78 shows that the
model is an accurate classifier (Figure 4).
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Table 1. Variance inflation factor (VIF).

Variable VIF

Percent humidity 2.75
Mean temperature 1.81

Precipitation 1.19
Wind speed 1.09
Cloud cover 1.86

Table 2. Estimated results from generalized additive model. Significance codes: *** p-value < 0.001,
** p-value < 0.01, * p-value < 0.05, p-value < 0.1.

Parametric Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) −3.28047 0.14455 −22.695 <2 × 10−16 ***
Chianti Classico −0.51845 0.02898 −17.889 <2 × 10−16 ***

Langhe Monferrato −0.19927 0.02874 −6.932 4.14 × 10−12 ***
La Rioja −0.5612 0.02724 −20.603 <2 × 10−16 ***
Mosel −0.36304 0.02967 −12.238 <2 × 10−16 ***

Percent humidity node 1 0.42655 0.07646 5.579 2.43 × 10−8 ***
Percent humidity node 2 0.19327 0.07085 2.728 0.006376 **
Percent humidity node 3 −0.18205 0.09029 −2.016 0.043773 *

Mean temperature node 1 0.77641 0.09469 8.199 2.42 × 10−16 ***
Mean temperature node 2 1.77848 0.0859 20.704 <2 × 10−16 ***
Mean temperature node 3 2.05635 0.10606 19.389 <2 × 10−16 ***

Precipitation −0.2646 0.15648 −1.691 0.090853
Wind speed node 1 1.87338 0.11682 16.037 <2 × 10−16 ***
Wind speed node 2 2.21186 0.08645 25.584 <2 × 10−16 ***
Wind speed node 3 3.58592 0.13765 26.051 <2 × 10−16 ***
Wind speed node 4 0.61104 0.27339 2.235 0.025413 *
Cloud cover node 1 −0.07541 0.03527 −2.138 0.032503 *
Cloud cover node 2 −0.11123 0.03207 −3.468 0.000523 ***
Cloud cover node 3 −0.42266 0.03421 −12.355 <2 × 10−16 ***

Temperature range node 1 0.26303 0.06526 4.031 5.56 × 10−5 ***
Temperature range node 2 0.18322 0.05775 3.173 0.001511 **
Temperature range node 3 −0.37023 0.08861 −4.178 2.94 × 10−5 ***
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Figure 5 shows the univariate response curves of the model variables. Examining the
range of variation of the ordinate axis, we notice that the variables determining the greater
variation in the probability of the presence of a tourist are the daily temperature (range
of variation from 0.3 to almost 0.7) and the average wind speed (from 0.25 to 0.72). With
regard to the trend of the curves, we can determine that the climatic comfort of tourists
in wine regions is the following: percentage humidity of 55%; average daily temperature
between I 17 and I 30 ◦C; absence of precipitation; wind speed from about 2 to 6 m/s; and
clear sky.
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3.3. Future Climate Scenarios

We performed the simulation of tourist presence in the 5 wine regions using Coperni-
cus Climate model data for the 2030–2039 and 2050–2059 decades (Figure 6). The boxplots
of the frequency distributions show that the probability of a tourist presence in the set of
all 5 regions increases by applying the data from the future climate scenarios to the GAM
model. In fact, the mean probability increases from the current 0.58 to about 0.68 in the
future with very similar values in both decades. The probability frequency distribution
narrows in the future: the 1st and 3rd quartiles are, respectively 0.43 and 0.68 in the past
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decade and about 0.63 and 0.74 in the two future decades, again with similar values for the
latter ones. The difference between the mean probabilities is significant at p < 0.001.
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Analyzing the data for the five regions separately (Figure 7), it is possible to highlight
differences. The region with the greatest increase in the probability of a tourist’s presence
is La Rioja, with the mean ranging from 0.55 for the past decade to 0.73 for future decades,
with 1st and 3rd quartiles ranging from 0.42 and 0.64 in the past to 0.70 and 0.78 in the
future. In contrast, the wine region with the smallest increase is Langhe Monferrato: the
average probability increases only from 0.60 to 0.67, while the quartiles change from 0.42
and 0.72 to 0.62 and 0.71, respectively. However, the differences between the averages are
always highly significant in all the wine regions examined.

Figure 8 shows the monthly median values of the probability of having tourist visits
in the five wine regions. Under current climatic conditions, all regions show a marked
“summer peak” in the months of June, July and August for Alsace and Mosel and in the
months of June to September for the other regions.

In all five regions, the climatic change is projected to increase the period of ideal
climatic conditions for the presence of tourists. For Alsace, Langhe Monferrato, and Mosel
the summer peak is replaced by a spring peak and the months with the highest probability
of tourist presence will be March, April, and May. In La Rioja we can observe a complete
deseasonalization of tourism, with an average probability always higher than 0.7. The
Chianti Classico wine region is the only one that keeps the summer peak, with an increase
in probability of about 100% in winter months and 15% in summer months.



Sustainability 2021, 13, 7489 13 of 18
Sustainability 2021, 13, x FOR PEER REVIEW 14 of 19 
 

 
Figure 7. Boxplot per wine region showing the probability of current or future visits of a wine tourist. 

 
Figure 8. Seasonality in current and future visits of the wine tourists. 

Figure 7. Boxplot per wine region showing the probability of current or future visits of a wine tourist.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 19 
 

 
Figure 7. Boxplot per wine region showing the probability of current or future visits of a wine tourist. 

 
Figure 8. Seasonality in current and future visits of the wine tourists. Figure 8. Seasonality in current and future visits of the wine tourists.



Sustainability 2021, 13, 7489 14 of 18

4. Discussion
4.1. Have the Research Objectives Been Achieved?

The approach we proposed combines spatiotemporal data from the social platform
Flickr with climate data gridded through a non-linear GAM model to predict the presence
of tourists. To verify if the obtained results are plausible (RQ1), we compared them with
those available in the literature. In particular, we compared the response curves of the
GAM model with the parameters used to design one of the most recent index of climate
well-being identified for the tourism sector: the Holiday Climate Index (the urban [53] and
beach [28] versions).

Regarding temperature, the response curve has the range of maximum contribution
to the probability between 16 and 30 ◦C. In comparison, HCI:urban identifies 20–26 ◦C
as the optimal range and defines unacceptable temperatures lower than 15 ◦C or higher
than 31 ◦C; HCI:beach in Europe has 27–32 ◦C for the optimal range and 22 and 37 ◦C as
unacceptable limits. For precipitation, the response curve decreases from 0 mm, according
to HCI:urban and HCI:beach, which set 0 as the ideal value. The percentage of cloud cover
causes a sharp decrease in the probability of the response curve for values greater than
90%, while HCI:urban and HCI:beach set this limit at 75%. Finally, with regard to the wind
speed, the response curve has a peak in the range of 3–6 m/s at 10 m height; the equivalent
speed for HCI:urban and HCI:brach is 0.3–3 m/s.

In general terms, our research has empirically demonstrated that tourists visiting
wine regions accept broader climatic thresholds than those used to construct the HCI for
temperature (20–26 ◦C for HCI versus 16–30 ◦C for GAM), global cloud cover (75% versus
90%, respectively), and wind (0.3–3 m/s versus 3–6 m/s). This can be explained by the fact
that the visit takes place partly outdoors, with vineyard sightseeing, and partly indoors,
with winery visits and wine tasting.

Overall, the results of this study have important implications for the response of
tourism demand to climate change in European wine regions (RQ2). Climate change
appears to potentially favor tourism in grape growing climates by deseasonalizing flows
and shifting frequency peak to the spring period. This result is broadly in line with
what has been found by applying future climate data to HCI:urban [63] and from studies
using revealed and observed preference methods [53,64]. The main problem that causes
the effects of seasonality is the underutilization of wine tourism infrastructure (tasting
rooms, wine routes, etc.) in the low season and the almost total occupation of them in
the high season. The deseasonalization of wine tourist flows can help diversify offerings
by revitalizing the hinterland, as well as promote job creation and rural development, as
stated by several authors [65]. However, wineries have to organize themselves in order
to take advantage of the changing seasons in the presence of tourists. The organization
of the visit at the cellar door must change in winter seasons due to the shorter hours
of light, compared to spring and summer. It will also be necessary to use innovative
information technologies [66] to explain the typical seasonal phases of wine production
(grape harvesting and wine making).

4.2. Limitation of Study and Topics for Further Research

The research has some limitations that will need to be addressed in future studies.
First, it only partially addresses RQ2, as we demonstrated a potential increase in the
probable presence of tourists due to climate change, but not an actual shift in flows from
competing destinations. Further studies are needed to apply the methodology proposed
to beach, urban, and nature-based tourism to compare the impact of climate change and
predict destination shifts.

Our work only considers the direct impact of climate change on tourist comfort,
but does not consider the indirect impacts on the core resources of wine tourism: wine
quality and vineyard landscape. Both issues have already been investigated by previous
research [67,68]. A limitation of our niche model is that it is based only on meteorological



Sustainability 2021, 13, 7489 15 of 18

variables and thus does not consider climate and landscape changes simultaneously. This
might also be an interesting topic for the future development of this approach.

Other limitations concern the use of Flickr spatiotemporal data as a proxy for tourist
presence in wine regions. The use of these data can lead to distortions due to the fact that
sometimes there may be ideal weather conditions in the territory to take a good picture
even in the presence of climatic discomfort for the tourist. We believe that this condition is
quite rare as previous studies [69] have shown that sharing an image on Web 2.0 involves
two aspects: the quality of the photo and the memory of the emotional state of well-being
on the day the photo was taken. Nevertheless, specific verifications will be needed. The
use of Flickr data can also lead to underestimation as not all users include wine tourism
related words in the title or tags, and this can lead to a loss of data. To solve this limitation,
we plan to implement an artificial intelligence based on deep learning procedures to be
able to classify the tourist activities shown in the photograph.

5. Conclusions

The study proposes a new methodology that combines daily gridded climate data with
large spatiotemporal data from the photo-sharing platform Flickr to build tourism-specific
climate comfort models. We implemented the model using data from five European wine
regions and employed it to investigate the potential impact on tourism flows due to climate
change. The results show an increase in the probability of presence and a greater seasonal
adjustment of tourism in all study areas and an anticipation of peak presence from summer
to spring in three out of five regions. We believe that these results can be useful to public
and private stakeholders to adapt the offer of wine tourism services to the changes in
demand and to direct the organization of events such as festivals and thematic tours.

Our research is the first to apply human niche models by correlating Flickr platform data
with current and future climate variables. This methodology has the advantage that it can
be applied globally with very low cost and to many human outdoor recreational activities.

The main limitation of the work is that the results of the model show that with climate
change there will be an increase in the probability of tourism in the five wine regions. The
actual possible increase in tourist presence depends on the impacts of climate change on
tourist destinations competing with wine tourism. Therefore, further research aimed at
developing simultaneous equation models is needed to study the actual change in tourism
flows. However, we believe that this work is the starting point for a new line of research
that will apply the proposed methodology to different tourism activities to evaluate impacts
and destination shifts due to climate change.
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