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Abstract: (1) Background: The purpose of this study was to investigate zinc contents in leaves
and soils of the Valdepeñas Protected Designation of Origin (PDO), situated in central Spain. Zn
distribution maps of leaves and soils were obtained. (2) Methods: Ninety soil profiles were described,
sampled and analyzed. Furthermore, vineyard leaves were collected randomly in each of the analyzed
soil vineyard profiles. Soil and leaf samples were analyzed by X-ray fluorescence. (3) Results: The
mean total Zn concentrations in vineyard soils were in the range of 16.2–153.7 mg·kg−1, with a mean
of 47.5 mg·kg−1. The obtained values above the 95th percentile (between 81.3 and 153.7 mg·kg−1)
could be affected by different parent materials or Zn agricultural treatments in vineyards. Contents
in different soils follow the order Entisol > Alfisol > Inceptisol. The average Zn content value in
leaves was 23.8 mg·kg−1 and oscillated between 11.5 and 93.3 mg·kg−1; minor differences were
detected between soil types, with the highest value in plants grown on soils without carbonates.
(4) Conclusions: The obtained values are optimal for vine cultivation. The bioaccumulation factors
in leaves were lower than unity (0.24–0.53 range). This means that the Zn bioaccumulation process is
relatively low in the soil–grapevine system. This study serves as a reference to identify areas that
present Zn deficiencies or risk of contamination.

Keywords: vineyard soils and leaves; Zn content; Zn distribution; plant growth; fertilizers; La Mancha

1. Introduction

Soil is a key factor of the natural environment that contributes to vine crops in a com-
plex way [1]. Accordingly, soil influences vine development through mineral supply [2]. To
complete its life cycle, vine needs 15 nutritional elements, of which nine are macroelements
(C, O, H, Ca, N, K, P, Mg and S), while the other six (Fe, Zn, B, Mn, Cu and Mo) are trace
elements [3]. Other elements such as Si, Al, Cl and Na are also present in vine organs, but
do not seem to be essential, as Wild [4] reports.

Agronomically speaking, zinc (Zn) is a fundamental and relevant micronutrient for
plants because it plays a key role in several biological processes. It is involved in chlorophyll
formation and is an essential component of certain plant enzymes, e.g., in auxin formation.
Presently, Zn is recognized as a vital component in several dehydrogenases, proteinases, Zn-
containing enzymes, Zn-activated enzymes, protein synthesis, carbohydrate metabolism,
tryptophan and indoleacetic acid synthesis, membrane integrity and lipid peroxidation [3].

Zinc is a metallic element whose natural concentration in soil depends on its concen-
tration in parent materials. Zn occurs in the Earth’s crust at low concentrations. In England,
Zn lies between 1.5 and 264.0 mg·kg−1 according to Holmgren et al. [5], and its average
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value is 53 mg·kg−1. Alloway [6] shows Zn contents for various parent materials (in
mg·kg−1): crust 51, granite 50, basalt 100, sandstone 20, shale 100, limestone 40. Sparks [7]
indicates a mean value of 60 mg·kg−1.

The average Zn concentration in soils recorded worldwide ranges from 10 to 100 mg·kg−1.
Guideline values are defined on the basis of either ecological risks (e) or health risks (t),
according to Tóth et al. [8]. The MEF [9] states that the threshold and guideline values
for Zn in soil are as follows (in mg·kg−1): threshold value 200, lower guideline value 250,
higher guideline value 400. Micó et al. [10] propose a value of 83 mg·kg−1 as the baseline
Zn value in a Mediterranean region.

Normally, Zn deficiencies appear in very acidic or very calcareous soils, in which case
smaller bunches form and internodes shorten. Large amounts of Zn, which derive mostly
from human activities, can be toxic to flora, fauna and humans. In plants, excess Zn causes
morphological, biochemical and physiological disorders.

Zinc can derive from natural sources, such as rock weathering, desert and sea mist, gas
emissions and volcanic particles [11,12]. In agroecosystems, some phytosanitary products
are widely used to control fungi, bacteria, invertebrates and algae. In this way, a source of
Zn in grapevine is phytosanitary products applied to control diseases, which can lead to
Zn accumulation and changes in the distribution of the fractions of these elements in soil.

Viticulture represents one of the most important agricultural activities in La Mancha
(central Spain). Therefore, determining total zinc content in vineyard soils is an essential
step in assessing hazards for vital soil roles in the vineyard ecosystem.

For all these reasons, reliable information on Zn concentrations in vineyard soils
is critical. In short, this study focuses on the Valdepeñas PDO and poses the following
questions: are Zn contents at the same level in vineyard soils when soil types differ? Are
Zn contents different in ploughed and subsoil layers in soil profiles? What is the Zn content
in vine leaves? Are Zn contents at the same level in the Valdepeñas PDO region compared
with the rest of the world?

2. Materials and Methods
2.1. Study Area and Sampling

Research was carried out in a wine-producing zone located in the southern subplateau
of the Iberian Peninsula, La Mancha (Figure 1), specifically in the Valdepeñas PDO (Pro-
tected Designation of Origin; coordinates: 38◦45′59” N and 3◦23′59” O). The area is made
up of a large plain (predominantly a flat plateau) on which some mountain ranges and their
associated reliefs stand out (see Figure 2). Soils develop mainly on calcareous materials
consisting of limy marl, limestone and sandstone, and on other rocks such as quarcites,
shales, schists, a few granitoids and volcanic materials. The climate in this region is semi-
arid. The average annual rainfall is 450 mm, and the annual mean temperature is 12–14 ◦C,
ranging from 6 ◦C (January) to 25 ◦C (July).

Figure 1. Location area and soil/leaf sampling locations (sites).
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number of samples, and the calculations were carried out with all the points in the 
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Figure 2. Characteristic red soil and landscape vineyard of the Valdepeñas PDO.

The vineyard samples herein used were collected during a project undertaken in
the Valdepeñas PDO in 2018 and 2019. A soil sampling network was set up to cover the
majority of the Valdepeñas territory. Ninety soil profiles were described at the same time
and were sampled by considering the vineyard macromorphologic soil characteristics and
geomorphological positions, among other features. García-Navarro et al. [13] conclude
that the soil groups are Luvisols, Calcisols, Cambisols, Regosols and Leptosols according
to FAO-UNESCO-ISSS [14], while identified soil orders are mainly Alfisols, Inceptisols and
Entisols according to Soil Taxonomy [15]. Soil samples were collected from each horizon
of the 90 selected profiles. Each sampling location (longitudes, latitudes, and altitudes)
was identified in the field using a portable global positioning system (GPS). Finally, for
leaf sampling, approximately 20 mature leaves were collected randomly in each one of the
analyzed soil vineyard profiles. A schematic diagram of the research sampling locations
appears in Figure 1; a typical red soil in its landscape appears in Figure 2.

2.2. Laboratory Analysis

Soil and leaf samples collected for analysis are representative of the whole sampled
area. Soil samples were dried at room temperature and then sieved at 2 mm to analyze the
fine soil fraction. Fresh green and healthy grapevine leaves were placed on cellulose filter
paper in a well-aerated room and were air-dried at room temperature.

For Zn determinations, in a first step samples were ground in an agate mortar, and
then pearls with lithium borate formed. Finally, pearls were analyzed by X-ray fluorescence
using a Philips PW 2404 spectrophotometer. The precision and accuracy of the results were
checked by measuring standard reference materials (SRM). Quality control was achieved
by analysis of triplicate samples and certified reference materials (NIST 2710 and CRM
039). Quantitative calculations were made through the fundamental parameters method.

2.3. Statistical and Geostatistical Methods

For statistical analysis, data from different horizons were treated. Statistical descriptors
(mean, standard deviation, maximum and minimum) were calculated using the IBM
software SPSS version 24.0. Zinc spatial variability was obtained by processing data using
ArcGis v.10.3, under license for UCLM. The chosen method was processed by the IDW
(weighted inverse distance) algorithm, which gives satisfactory precision for the number
of samples, and the calculations were carried out with all the points in the database.

3. Results

The total Zn concentrations in the Valdepeñas PDO vineyard soils and leaves are
provided in Tables 1 and 2. The bioaccumulation factor (BAC calculated as the ratio be-
tween the concentration of elements in the plant and soil) also appears in Table 2. The
total Zn concentration in the vineyard soils ranged from 16.2 to 153.7 mg·kg−1, and the
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total zinc mean was 55.1 mg·kg−1. These results are lower than those obtained by Jimenez-
Ballesta et al. [16], taken as the reference value for Castilla-La Mancha (86.5 mg·kg−1),
where Valdepeñas is located. The obtained values are higher than those recorded by
Bravo et al. [17] for Castilla-La Mancha agricultural soils. The total Zn content in the
vineyard soils showed no significant differences in relation to soil depth. The calcareous
parent material characteristics, geomorphology and landscape features very much con-
tribute to Zn distribution variability. A whole range of starting materials can be combined
as “calcareous carbonate sedimentary material” according to Neuendorf et al. [18] and
Schoeneberger et al. [19].

Table 1. Statistical indicators of Zn contents (mg·kg-1) per soil type orders in vineyard soils.

Soil Type n
Percentile

Maximum Minimum Mean St
50 95

All soils

Plough layer (Ap) 80 54.4 91.9 126.3 27.3 47.6 20.3

Subsoil (B or C) 73 49.5 86.9 153.7 16.2 52.7 24.7

Alfisol

Plough layer (Ap) 35 58.3 98.6 125.8 35.8 61.2 18.8

Subsoil (B or C) 35 56.7 81.2 153.7 34.1 61.4 20.6

Inceptisol

Plough layer (Ap) 39 43.1 95.3 126.3 27.3 52.2 20.1

Subsoil (B or C) 33 36.6 79.8 89.6 16.2 38.3 19.1

Entisol

Plough layer (Ap) 6 71.5 97.9 102.3 41.9 70.9 22.6

Subsoil (B or C) 5 83.9 118.6 123.2 58.3 86.8 25.9

With CaCO3

Plough layer (Ap) 70 53.3 98.5 126.3 27.3 56.2 20.5

Subsoil (B or C) 63 46.8 81.3 153.7 16.2 49.1 23.2

Without CaCO3

Plough layer (Ap) 10 74.9 95.8 102.3 40.8 71.6 19.4

Subsoil (B or C) 10 74.1 112.9 123.2 48,0 77.4 21.4

Bravo et al., 2019 37.6 225.0 5.0 43.5

Reiman et al., 2014 61.0 129.9 413.0 3.0 84.7

(n = number of samples)

Plants’ ability to take up nutrients from soil can be measured by the bioaccumulation
factor (BAC). Table 2 provides the calculated BAC values. When comparing these data
with those contributed worldwide for different plants [20], three groups of values were
found: higher than 1, from 0.1 to 1, and from 0.01 to 1. These groups correspond to a higher
BAC value with better relative plant uptake of elements.

According to Wild [4], the normal content in rocks is 70 mg·kg−1 and in soil 60 mg·kg−1,
and values are sometimes higher than 200 mg kg−1. The values for soil contents gener-
ally range from 1 to 100 mg·kg−1 worldwide, depending on the soil parent material
nature [21]. The baseline Zn value in agricultural soils in a European Mediterranean region
is 83 mg·kg−1 [10].
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Table 2. Statistical indicators of Zn contents (mg·kg-1) in grapevine leaves. BAC values are also provided.

Leaves n
Percentile

Max. Min. Mean (a) St BAC (b)
50 95

All soils 60 20.5 40.0 93.3 11.5 23.8 Optimal 12.9 0.43 Adequate

Alfisol 32 20.3 37.8 40.0 11.6 22.8 Optimal 8.0 0.37 Adequate

Inceptisol 33 18.8 50.2 93.3 11.5 23.8 Optimal 18.8 0.53 Adequate

Entisol 4 17.8 26.4 27.4 12.0 17.8 Optimal 6.9 0.24 Low-marginal

Without CaCO3 60 20.6 40.1 93.3 11.5 23.8 Optimal 12.9 0.24 Low-marginal

With CaCO3 9 18.5 26.4 29.8 11.6 18.1 Optimal 5.5 0.45 Adequate

(a) Low <14/Optimal 14–23/High > 23 [22]. (b) < 15 deficient/15–25 low to marginal/26–150 adequate/450 high to excessive [23].

4. Discussion

Compared with the data in the literature, the Zn values obtained in Valdepeñas
vineyard soils are higher in some soils than the world soil average of 50 mg·kg−1 [24].
However, they are similar to those reported by Huzum et al. [25] in Romania (between 43.1
and 103 mg·kg−1, with an average of 73.9 mg·kg−1). Our values are also similar to those
obtained by Peris et al. [26] in Castellón, Spain (76.8 mg·kg−1). The Zn values reported in
NW Romania are between 54.58 and 78.25 mg·kg−1, with an average of 69.4 mg·kg−1 [27].
In polluted vineyards in Plovdiv (Bulgaria), Angelova et al. [28] report 249 mg·kg−1 in the
0–10 cm layer in vineyard soils, and 73 mg·kg−1 in non-polluted vineyards. In La Rioja
(Spain), Iñigo et al. [29] state that vineyard soils have Zn contents of 9.05–125.67 mg kg−1.

The total Zn contents in Valdepeñas PDO soils generally depend on parent material
and pedogenic factors. The soils that develop from siliceous acid rocks, such as quarcites
and schists, are mostly rich, whereas those that develop from limestones and other calcare-
ous materials are comparatively poor in Zn (see Table 1).

Traditional vineyard land use can bring about changes in Zn soil contents because
Zn behavior in the soil–plant system is affected. This explains why Zn content is higher
in surface horizons sometimes, but in deep horizons at other times. Soil translocation by
tillage may be the key reason for soil particle redistribution, and erosion can be particularly
present at the bottom of hilly landscapes.

Indeed, some of the obtained data reveal excessive Zn content (153.1 mg kg−1;
123.2 mg kg−1; 100.3 mg kg−1; 89.6 mg kg−1). Zn generally enters the vineyard agroecosys-
tem by both natural and anthropogenic processes. Among the anthropogenic processes
cited in the literature, inputs from using agrochemicals, soil amendments (farm manure,
biosolids, composts and industrial/municipal waste), local industrial contamination and
particles from car brakes, and irrigation with contaminated water are noteworthy [30].
The world’s viticulture regions are generally located in climate areas that, however, favor
fungal diseases, including downy mildew (Plasmopara viticola). Today, the Valdepeñas PDO
is not a region seriously affected by mildew, but it was some time ago.

As there are many owners in the Valdepeñas PDO, land fragmentation occurs and
plots are subdivided into small plots. Despite owners receiving advice, some of they tend
to manage each plot following their own preferences and sometimes fertilize unevenly.
Therefore, it is not surprising that significant Zn accumulation appears in some vineyard
soil profiles in the Valdepeñas PDO. This is the case of the high Zn levels found in some
Alfisol profiles that develop on marls, with a value of 153.7 mg·kg−1, and is related to
management processes, such as prolonged fertilizer or pesticide-derived Zn uses. Therefore,
Zn accumulates in the topsoil layer. In some old vineyards, Zn surpasses the background
Zn value several times, as reported by Mirleam et al. [31].

Zinc does not markedly interact with organic substances compared with other trace
metals. Therefore, given the low organic matter content (<2% in most samples) in Valde-
peñas PDO soils [13], this effect is not feasible. A previously suggested major soil con-
stituent for Zn retention in vineyards is Fe oxyhydroxides [32]. Manceau et al. [33] state
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that Zn is often associated with pedogenic minerals, including Fe oxyhydroxides, whereas
Jacquat et al. [34] demonstrate the implications of interlayered minerals for Zn retention.

As most studied soils are red (Rhodoxeralfs in Soil Taxonomy; Rodhic or Chromic
Luvisols according to FAO-ISRIC-ISSS [14]) with abundant Fe oxyhydroxides and clay
minerals as a result of long exposure periods to the fersialitic weathering of old surfaces,
Zn accumulation and inactivation are, therefore, feasible.

Whatever the origin, the bioaccumulation that results from these higher concentrations
is unlikely in vine. This finding falls in line which what the ATDSR [35] states for fruit
and vegetables. Thus, no Zn pollution exists and, hence, no food safety risk is posed.
Carbonates induce Zn deficiency insofar as, conversely, Zn deficiency can exist in some
Valdepeñas PDO soils, and it is attributed to high Ca and CaCO3 concentrations and a high
pH [6,17].

After receiving Zn from agrochemicals or soil amendments, Zn accumulation occurs
in topsoil and at subsoil depths of soils, specifically in Ap, Bw or Bt horizons from vineyard
soils. This means that Zn contents can lead to a shorter and thicker vine root apex [36].
However, phosphorus can induce Zn deficiency through Zn phosphate precipitation or by
Zn binding to phosphates absorbed in Fe oxides.

Some studies have analyzed grapevine leaf characteristics [37,38] because these char-
acteristics are very important and influence both grape characteristics and wine quality [39].
The mean concentration of Zn levels in aerial parts (leaves) was 23.6 mg·kg−1. The Zn con-
centrations in the leaves in different vineyard soils were practically equal (ranging between
17.8 and 23.8 mg·kg−1). Zn content in vine is taken up from soil via roots. However, many
complex factors, such as soil type and chemical composition, affect Zn bioavailability and
uptake. Thus, it is not surprising that higher Zn concentrations in soil match the higher
concentrations in leaves. All these results are similar to those obtained by Bora et al. [27]
in NW Romania, who report an average of 25.2 mg·kg−1 in leaves from vine. In France,
Chopin et al. [40] provide a value of 29.3 mg·kg−1, and Vystavna et al. [41] indicate a value
of 28 mg·kg−1 in Ukraine. However, when we compared our results with the mean values
of other vineyards in the La Mancha region (15.2 mg·kg−1) [42], the other vineyards’ results
were clearly lower than those herein indicated.

Table 2 shows the results of the studied leaf analysis. According to the criteria of
García-Escudero and Martín [22], the Zn concentration in the studied vine leaves is optimal.

The BAC represents a species’ capacity to accumulate a compound such as Zn. Ac-
cording to the criteria of White [23], the BAC is generally adequate in the Valdepeñas
vineyards even if it is low to marginal (very close to adequate) in Entisols and soils without
carbonates. Therefore, the results of the present study indicate that the Zn bioaccumulation
process that occurs in the soil–grapevine system is adequate.

Figures 3 and 4 show that the Zn concentration is better in the subsurface horizon
than in the surface horizon, respectively. Higher Zn concentrations are observed in the
subsurface horizon for the area where soils classified as Alfisols are mostly found. The
limits between classes were taken according to the data published by Reiman et al. [43].

From the results herein obtained, Zn levels are adequate. This study serves as a
reference to identify areas that present Zn deficiencies or risk of contamination. Notwith-
standing, limestone soils may display specific Zn and Fe deficiencies [17,44]. For this
reason, Zn content’s effects on vine crops should not be viewed elusively by the farmers
in the Valdepeñas PDO. To complement the findings of the present study, we suggest
investigating more Zn chemical fractionation in detail.



Sustainability 2021, 13, 7390 7 of 9

Figure 3. Spatial distribution of zinc in surface horizons in vineyard soils of Valdepeñas PDO (in
mg kg−1).

Figure 4. Spatial distribution of zinc in subsurface horizons in vineyard soils of Valdepeñas PDO (in
mg kg−1).

5. Conclusions

The objectives of this study were to evaluate the spatial distribution of soil Zn and its
suitability for vineyard cultivation in the Valdpeñas PDO of Castilla-La Mancha (central
Spain). According to the obtained results, the following conclusions were reached.

Geological materials and pedological processes play a key role in Zn soil occurrence,
except for some specific sites where the origin of marked Zn soil enrichments is natural.
The soil Zn concentration depends partially on soil type. The high Zn levels in some soil
profiles are related to management processes, such as prolonged fertilizer or pesticide-
derived Zn uses. Selective Zn accumulation was found for different soil types and, despite
large differences, some of them were not taken up by vine. Thus, differences were small
in leaves. This means that Zn bioaccumulation occurs in the soil–grapevine system at
adequate levels in our study area. In general, Zn levels are suitable despite the possibility
of calcareous soils presenting a specific Zn deficiency.
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