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Abstract: Lockdowns implemented during the COVID-19 pandemic were utilized to evaluate the
associations between “social distancing policies” (SDPs), traffic congestion, mobility, and NO2 air
pollution. Spatiotemporal linear mixed models were used on city-day data from 22 US cities to
estimate the associations between SDPs, traffic congestion and mobility. Autoregressive integrated
moving average models with Fourier terms were then used on historical data to forecast expected
2020 NO2. Time series models were subsequently employed to measure how much reductions in local
traffic congestion were associated with lower-than-forecasted 2020 NO2. Finally, the equity of NO2

pollution was assessed with community-level sociodemographics. When cities’ most stringent SDPs
were implemented, they observed a 23.47 (95% CI: 18.82–28.12) percent reduction in average daily
congestion and a 13.48 (95% CI: 10.36–16.59) percent decrease in average daily mobility compared to
unrestricted days. For each standard deviation (8.38%) reduction in local daily congestion, average
daily NO2 decreased by 1.37 (95% CI: 1.24–1.51) parts per billion relative to its forecasted value.
Citizenship, education, and race were associated with elevated absolute NO2 pollution levels but
were not detectibly associated with reductions in 2020 NO2 relative to its forecasted value. This
illustrates the immediate behavioral and environmental impacts of local SDPs during the COVID-19
pandemic.

Keywords: COVID-19; air pollution; NO2; traffic congestion; environmental equity; time series;
forecasting

1. Introduction

Amidst the devastation of the COVID-19 pandemic, we harnessed the implementation
of lockdowns and “social distancing policies” (SDPs) to study their impact on traffic conges-
tion, mobility, nitrogen dioxide (NO2) air pollution, and community-level demographics.
Vehicle emissions are a primary source of exposure to NO2, which is associated with ad-
verse health and environmental impacts [1]. With traffic congestion concentrated in cities,
near-road NO2 is elevated [2] which puts urban residents at increased risk of developing
asthma and reduced lung function and increases subsequent hospital admissions and
mortality levels [3,4]. The implementation of SDPs related to the COVID-19 pandemic
has decreased the number of workers who regularly commute. One survey estimates that
over a third of workers transitioned from in-person to remote work in April 2020, while
another 10 percent of workers were laid-off or furloughed [5]. Examining the extent to
which SDPs impact mobility is important for evaluating the spread of COVID-19. This
idea drove our interest in developing models to measure differential lockdown policy
effects on mobility. In addition, given the ongoing climate crisis, we were motivated to
track and estimate the effects of pandemic-related behavior change on air quality using
novel statistical methods. Thus, our primary aims were to determine whether there is a
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connection between city-level SDPs and local traffic congestion and identify the extent to
which reductions in traffic congestion are associated with reductions in ambient NO2 air
pollution in US cities. Specifically, we sought to test the following primary hypotheses:

1. SDPs are associated with a reduction in average daily traffic congestion and mobility
relative to pre-lockdown levels, after adjusting for snow, day of the week, federal
holidays, seasonality, and autocorrelation within cities. Further, the reduction in
congestion becomes more pronounced as SDPs become stricter. Note: We define
9 March 2020 as the start of the COVID-19 pandemic in the United States. “Pre-
lockdown” refers to observations that occurred from 1 January 2019 to 8 March 2020.
“Post-lockdown” refers to observations that occurred from 9 March 2020 to 31 August
2020.

2. There is a strong positive association between average daily traffic congestion and
average daily NO2 after adjusting for temperature, wind, and autocorrelation within
cities.

3. Changes in average daily NO2 levels observed post-lockdown are partially mediated
by changes in daily average traffic congestion.

We also aimed to address the following secondary hypothesis concerning environ-
mental equity:

4. Community-level sociodemographic factors including race, educational attainment,
citizenship, and population density are associated with NO2 air pollution. Further-
more, community demographics are associated with differences in the reduction in
NO2 air pollution during the COVID-19 pandemic relative to its forecasted value.

This work is organized as follows. First, we review gaps in recent and relevant
literature that we aimed to address in this work. In Section 3, we describe our data
sources, our decisions for categorizing lockdown policies across cities, and the statistical
analysis methods we used to address our questions of interest. We then describe the results
in Section 4, discuss their implications in Section 5, and summarize our conclusions in
Section 6, and we end with our suggestions for future research in Section 7.

2. Literature Review

Existing works have investigated the local effects of pandemic-related changes in air
pollution in singular locations. Zangari et al. (2020) found that in New York, lockdowns
were associated with large decreases in PM2.5 and NO2, but these decreases became less
pronounced or vanished when time series methods were used to account for temporal
trends and variability [6]. However, their primary models measured the effect of the
lockdown indirectly using a linear slope on time from 1 January of each year (2015–2020),
which did not account for the timing or specificity of policies. In a California-specific study,
Bashir et al. (2020) found a strong negative correlation between the number of cases and
deaths due to COVID-19 and environmental pollution determinants; however, this work
did not mention any correction for spatial or temporal dependence in their analysis [7].
Liu et al. (2021) did correct for temporal trends and accounted for lockdown timing in the
Californian context, finding that sharp decreases in air pollutants occurred shortly after
the lockdown policies were implemented [8]. This illustrates the important influence of
lockdown timing. Another focused study in Seattle, WA, found through sophisticated
time series analyses that local traffic decreased considerably while air quality improved
during lockdown. They emphasized the importance of adjusting these analyses to take into
account meteorological conditions [9]. On a broader scale, Chen et al. (2020) revealed that
reductions in NO2 and CO were common but heterogeneous across the US, after adjusting
for temporal trends [10]. However, this analysis treated lockdown as a fixed period of
time for each locale (starting and ending on the same date), and did not assess differential
lockdown severity nor differences in mobility or traffic. Another US-based study by Berman
& Ebisu (2020) found similar results on the county level; using two-sample aggregated
comparisons, they found that urban counties saw especially large reductions in NO2 after
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13 March 2020 compared to historical data [11]. At the global level, Venter et al. (2020)
connected mobility data with environmental indicators to argue that a strong link exists
between global vehicle transportation declines and the reduction in ambient NO2 exposure,
though they did not assess how differences in lockdown policy measures differentially
affected NO2 [12].

Generally, these papers found that reductions in air pollution during the pandemic
were most prominent for NO2, which is notably influenced by car traffic [2]. While many
other environmental indicators of air pollution (e.g., PM2.5, O3, CO) have been tied to
adverse health outcomes (see Manisalidis et al. (2020) for a review [13]), a growing amount
of evidence has specifically found adverse health effects from NO2 pollution. NO2 exposure
has been associated with pediatric asthma [14], decreased lung capacity [15,16], and lung
cancer [17]. The connection between NO2 pollution and asthma is especially relevant
during the COVID-19 pandemic. Evidence for asthma as a risk factor for severe COVID-
19 has been surprisingly absent [18], while pediatric asthma health care utilization and
prescribing has decreased throughout the pandemic [19].

Meanwhile, the pandemic has brought renewed efforts to design and implement tech-
nologies that have the potential to improve urban sustainability. These new and developing
technologies include 6G, digital twins, and artificial intelligence, each of which can (or
will soon) facilitate the use of large-scale data streams to simulate, measure, forecast, and
streamline various city operations, ideally steering cities towards improved urban sustain-
ability [20–22]. Unhealthy levels of air pollution caused by automobiles are incompatible
with urban sustainability and therefore reducing automobile traffic is a concrete target for
improving the health of our cities. Traffic congestion itself has been studied extensively,
and several novel methods have recently been developed for describing and modeling
such data, including dynamic route flow estimation, space-time autoregressive integrated
moving average methods, and stochastic Markov models [23–25]. Finally, Benmarhnia
(2020) discussed the implications of the pandemic on environmental equity, in particular
citing a need for additional work in investigating the effects of different lockdown policies
on historically disadvantaged communities [26].

Our study addresses several gaps in the current body of literature: we utilized so-
phisticated statistical methods to correct for spatial and temporal variability, accounted for
local meteorological conditions, incorporated socioeconomic factors, sampled from a broad
set of US cities, and formulated specific definitions to delineate the spectrum of lockdown
policies which allowed us to measure the differential impact of specific lockdown policies.
Further, our work is the first to our knowledge that explicitly measures the effects of these
policies on environmental equity.

3. Research Methodology
3.1. Data Description

Daily data were collected from 1 January 2019 to 31 August 2020 from 22 major cities
across all geographic regions of the United States. We assessed mobility with county-
level Unacast electronic device GPS data [27] and congestion with TomTom metro-area
traffic congestion data [28]. Local COVID-19 social distancing policies were obtained from
the Washington Post (Johnson et al., 2020). NO2 air quality data were collected by Core
Based Statistical Area (CBSA) from the EPA [29,30] and weather data from each city’s
primary international airport were obtained from the NOAA [31]. Potential confounders,
including wind and temperature, were identified based on previous literature [2,32,33].
Sociodemographic data were collected by ZIP Code Tabulation Area (ZCTA) [34].

3.2. Data Cleaning
3.2.1. TomTom Traffic Congestion

TomTom traffic congestion data were reported as the percent change in average
daily congestion from baseline. Baseline was defined as the average daily congestion by
weekday and city, averaged over all days in 2019. This metric was used to model the
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association between SDPs and congestion. TomTom data for 2020 were also reported as the
average daily percent increase in the time that it took to drive with congestion compared
to “free flow” travel without traffic. For interpretability, this metric was used to assess
the association between congestion and average daily NO2 levels. All TomTom data were
missing on one day, so we imputed 22 (0.41%) daily observations by city for each TomTom
metric using the Kalman smoothing method for time series models [35].

3.2.2. Unacast Mobility

Unacast mobility data were reported as the percent change in the average daily
distance traveled from baseline. Baseline was defined as the average daily distance traveled
by weekday and county during the four weeks prior to the start of the COVID-19 pandemic
in the United States (10 February 2020 to 8 March 2020). The county that encompassed each
city center was selected as a proxy for city-level mobility. (Note: Kansas City’s mobility
was averaged over the four counties that form its city center.)

3.2.3. Ambient NO2

The latitude and longitude ranges of each city’s CBSA [29,30] were identified to extract
hourly NO2 data by monitoring site from the EPA’s AirNow API [36]. (Note: at the time
of data collection, the validated data were not available. Thus, according to the EPA’s
documentation, these data should be considered preliminary as they have not yet been
fully validated.) We first excluded four cities that did not have any NO2 monitoring sites.
Thirty-five additional monitoring sites that were missing more than 168 h (7 days) of
contiguous data were eliminated. The eliminated sites had a median percent missingness
of 28.75 (range: 2.98 to 88.14) percent. Missing hourly observations from the remaining
70 sites were imputed using the Kalman smoothing method for time series models [35].
We imputed 42,191 (4.07%) total hourly observations, with no more than 1597 (10.93%)
imputed hours for any site. The hourly observations were then aggregated into mean daily
concentrations by site. Ten NO2 daily averages were negative due to zero drift [37], so
we set these observations to zero. (Note: zero drift is a bias that occurs when the zero
reading of a monitoring instrument is modified due to changing ambient conditions over
time.) City-wide averages were then computed for 22 cities by averaging the mean daily
concentration across monitoring sites (Figure 1).

3.2.4. NOAA Weather

The averages of daily high and low temperatures by city airport were used to create
a daily temperature variable. Note: one daily low temperature was missing for one city
(0.02% of daily low temperature observations across all cities), so it was imputed using the
Kalman smoothing method [38]. Total daily snowfall was collapsed into “Heavy Snow”
(≥10 cm), “Light Snow” (<10 cm), and “No Snow”. Due to data availability, wind was
recorded as the fastest daily 2 min wind speed.
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Figure 1. Available data. Cities used in the analysis are depicted on a map of the United States. The
legend shows the number of NO2 sites with sufficient data by city, where sufficient data were defined
as having ≤168 consecutive hours (7 days) of missing observations. EPA NO2, NOAA weather, and
SDP data were collected from 1 January 2019 to 31 August 2020. TomTom traffic congestion data
were available starting on 30 December 2019, and Unacast mobility data were available starting on
24 February 2020. Congestion and mobility data were collected through 31 August 2020.

3.2.5. COVID-19 Social Distancing Polices

Local COVID-19 social distancing policies (SDPs) were categorized into five restriction
levels: “Closed”, “Major Restrictions”, “Moderate Restrictions”, “Minor Restrictions”, and
“No Restrictions”. These levels were based on policy news compiled by the Washington Post
at the state level [39]. We modified the definitions to be more detailed and independently
assigned restriction levels over time and by city (Figure 2). Additional news articles were
used when the Washington Post indicated that policies varied within a state (Table S1).

3.2.6. Community Demographics

Information about educational attainment, race, citizenship, and population density
were collected by ZCTA from the 2019 five-year Annual Community Survey (ACS) through
the “tidycensus” API [40,41]. The educational attainment variables were “less than high
school”, “high school”, “some college or an associate degree”, and “at least a bachelor’s de-
gree” and race was categorized by whether people identified as “Asian”, “Black”, “White”,
“two or more races”, or an “other race”. Spatial data files were used to identify the latitude
and longitude boundaries of each ZCTA. The coordinates of each NO2 monitoring site were
then used to determine its ZCTA [34]. Counts from overlapping ZCTAs were combined
to estimate the demographic proportions of the communities near the monitoring sites.
Counts were then converted into percentages of the total population of the surrounding
community.
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Figure 2. SDP definitions. If any criteria were violated, the city moved to the next less restrictive
classification. For example, a city would be categorized as having “Major” SDPs if it met all “Closed”
criteria except that places of worship were permitted to remain open. SDPs are presented from 1
March 2020 to 31 August 2020 by city. More stringent SDPs are presented in darker blue.

3.3. Regression Analyses
3.3.1. Impact of SDPs on Congestion and Mobility

The association between SDPs and daily average congestion was first examined by
performing a linear mixed model of the impact of SDPs on the percent change in TomTom
average daily congestion from a 2019 baseline. We controlled for snow, day of the week
and federal holidays. The SDP reference level was set to “No Restrictions” to assess the
overall change in congestion following the implementation of COVID-19 lockdowns. An
autoregressive moving average (ARMA(1,1)) structure was used to account for correlation
within a city over time.
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The same model structure was then used to assess the relationship between SDPs
and the percent change in average daily distance traveled from the four weeks prior to
COVID-19, as measured by Unacast mobility data.

Finally, to assess the relative differences in average daily congestion and mobility
between minor and more stringent SDP restrictions, we reparametrized both models with
minor restrictions as the SDP reference level.

3.3.2. Impact of Congestion on NO2

The relationship between average daily congestion and NO2 levels was assessed
after controlling for wind and temperature. To address right-skewness, NO2 was log
transformed. We used a linear mixed model with a random intercept and an ARMA(1,1)
covariance structure.

3.3.3. Impact of Congestion on Seasonally Adjusted NO2

To determine whether the association between congestion and NO2 held after account-
ing for seasonality, city-level average daily NO2 from 1 January 2019 to 2 January 2020 was
used to forecast expected average daily NO2 from 3 January 2020 through 31 August 2020.
Forecasting was completed using the “auto.arima” function from the R “forecast” pack-
age, which used stepwise selection to determine the best-fitting autoregressive integrated
moving average (ARIMA) model according to the AICc [42]. This process utilized the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test to automatically assess and perform the
minimum number of differences required for the series to be made stationary [43]. Two sine
and cosine Fourier terms were included to account for seasonal trends. We then calculated
the difference between the observed and forecasted NO2 (seasonally adjusted NO2). This
was repeated for wind (seasonally adjusted wind) and temperature (seasonally adjusted
temperature). Finally, we performed a linear mixed model of seasonally adjusted NO2
regressed on congestion, seasonally adjusted wind, and seasonally adjusted temperature
with a random intercept and ARMA(1,1) covariance structure.

3.3.4. Mediation Analysis

To estimate the impact of SDPs on seasonally adjusted NO2, we performed a linear
mixed model of seasonally adjusted NO2 regressed on SDPs, seasonally adjusted wind,
and seasonally adjusted temperature. We then added congestion to the model to assess
how much the association between SDPs and seasonally adjusted NO2 was mediated by
congestion.

3.3.5. Measuring Equity in NO2 Exposure across Community Demographics

A three-level hierarchical linear mixed model was used to assess the impact of educa-
tion, race, citizenship, and population density on site-level NO2, after adjusting for wind
and temperature. To avoid multicollinearity, the percent of the population that had attained
at least a bachelor’s degree and the percent of the population that identified their race
as “White” were not included in the model. The covariance structure included a random
intercept for sites nested within cities and ARMA(1,1) repeated measures.

To determine the extent to which the change in NO2 during COVID-19 was equitably
distributed within a city, we repeated the NO2 forecasting procedure with site-level NO2
data. We then regressed seasonally adjusted NO2 on all community-level sociodemographic
variables, seasonally adjusted wind, and seasonally adjusted temperature. We used a three-
level hierarchical linear mixed model with a random intercept for sites nested within cities
and ARMA(1,1) repeated measures.

3.3.6. Model Selection

All regression models were implemented with a restricted maximum likelihood ap-
proach (REML). Model selection was not performed on the fixed effects, as confounders
were included based on existing literature. AR(1) and ARMA(1,1) covariance structures
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were considered to account for correlation within cities and a random intercept was consid-
ered to account for variability between cities. Covariance structures were selected based
on BIC.

Data cleaning, descriptive statistics, and data visualization were performed in R
version 4.0.2. Regression models were carried out in SAS 9.4.

4. Analysis and Results
4.1. Summary Statistics

Across all cities, 42.2 percent of post-lockdown city-day observations had minor
restrictions in place, 17.0 percent had moderate restrictions in place, 20.6 percent had major
restrictions in place, and 16.7 percent were closed (Table 1, Figure 2). Additionally, the
median percent decrease in congestion from 2019 during the post-lockdown timeframe
was 62.5 (IQR: 50.0 to 72.0) percent. The median percent decrease in mobility from the
four weeks prior to COVID-19 was 28.8 (IQR: 17.2 to 43.1) percent. The median post-
lockdown daily average NO2 concentration was 8.18 (IQR: 5.49 to 11.20) ppb, and the
median pre-lockdown average daily NO2 concentration was 11.30 (IQR: 7.66 to 16.10) ppb
(Table 1).

Table 1. Summary statistics averaged over 22 US cities.

Pre-Lockdown 1 Post-Lockdown 2

(N = 9526) 3 (N = 3872)

SDPs
No Restrictions 9526 (100.0%) 135 (3.5%)
Minor Restrictions 0 (0.0%) 1634 (42.2%)
Moderate Restrictions 0 (0.0%) 658 (17.0%)
Major Restrictions 0 (0.0%) 798 (20.6%)
Closed 0 (0.0%) 647 (16.7%)
TomTom: % Change in Congestion from Baseline
N 1540 3872
Mean (SD) −3.9 (25.9) −60.1 (17.6)
Median (Q1, Q3) −4.2 (−16.7, 8.3) −62.5 (−72.0, −50.0)
Unacast: % Change in Mobility from Baseline
N 308 3872
Mean (SD) 0.8 (4.2) −30.5 (17.1)
Median (Q1, Q3) 0.8 (−2.0, 3.4) −28.8 (−43.1, −17.2)
Daily Average NO2 Concentration (ppb)
N 9526 3872
Mean (SD) 12.5 (6.6) 8.6 (4.1)
Median (Q1, Q3) 11.3 (7.7, 16.1) 8.2 (5.5, 11.2)
Snow 4

Heavy Snow 39 (0.4%) 2 (0.1%)
Light Snow 393 (4.1%) 27 (0.7%)
No Snow 9094 (95.5%) 3843 (99.3%)
Daily Temperature (◦C) 5

N 9526 3872
Mean (SD) 13.8 (10.6) 20.4 (8.0)
Median (Q1, Q3) 14.2 (5.5, 22.8) 22.2 (14.7, 26.4)
Fastest Daily 2 Minute Wind Speed (m/s)
N 9526 3872
Mean (SD) 8.6 (2.9) 8.9 (2.8)
Median (Q1, Q3) 8.1 (6.3, 10.3) 8.1 (6.7, 10.3)

1 “Pre-Lockdown” refers to any observation from 1 January 2019 to 8 March 2020. The earliest TomTom congestion
observation was on 30 December 2019 and the earliest Unacast mobility observation was on 24 February 2020.
The first observations for all other variables were on 1 January 2019. 2 “Post-Lockdown” refers to any observation
that occurred between 9 March 2020 and 31 August 2020. 3 Observations (N) are reported at the city-day level,
such that one observation represents data from one day within one city. Since there are 22 cities in the dataset,
each day of data has 22 observations. 4 “Heavy Snow” is defined as any total daily snowfall greater than or
equal to 10 cm, and “Light Snow” is defined as any total daily snowfall of less than 10 cm. 5 Daily temperature is
calculated as the mean of the daily minimum temperature and the daily maximum temperature.
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4.2. Impact of SDPs on Congestion and Mobility

When minor SDPs were implemented, cities observed a 17.96 (95% CI: 14.56 to 21.36)
percent reduction in average daily congestion compared to unrestricted days, after ad-
justing for wind, temperature, the variability between cities, and the correlation within
cities over time (p < 0.001). Days that had moderate restrictions in place had a 20.94 (95%
CI: 17.01 to 24.87) percent reduction in average daily congestion and days that had major
restrictions in place had a 20.66 (95% CI: 16.14 to 25.17) percent reduction in average daily
congestion compared to unrestricted days (p < 0.001; p < 0.001). Days that had closed
restrictions in place experienced the largest decrease in congestion; they observed a 23.47
(95% 18.82 to 28.12) percent reduction in average daily congestion compared to unrestricted
days (p < 0.001). As expected, congestion was negatively associated with federal holidays.
Heavy snow was associated with an increase in congestion, while light snow did not
significantly impact congestion. Weekdays were also a strong predictor of mobility, despite
their inclusion in the baseline reference, which was defined as the average daily congestion
by weekday and city, averaged over all days in 2019 (Table 2).

Table 2. TomTom congestion and Unacast mobility regressed on SDPs.

Effect TomTom Congestion Unacast Mobility

Estimate (95% CI) p-Value Estimate (95% CI) p-Value

Intercept −21.95 (−28.23, −15.66) <0.001 −17.92 (−22.04, −13.8) <0.001
SDP: Minor −17.96 (−21.36, −14.56) <0.001 −5.65 (−7.9, −3.39) <0.001

SDP: Moderate −20.94 (−24.87, −17.01) <0.001 −8.17 (−10.81, −5.54) <0.001
SDP: Major −20.66 (−25.17, −16.14) <0.001 −9.68 (−12.7, −6.67) <0.001
SDP: Closed −23.47 (−28.12, −18.82) <0.001 −13.48 (−16.59, −10.36) <0.001
SDP: None Reference

Heavy Snow 38.88 (29.46, 48.3) <0.001 −12.34 (−17.94, −6.73) <0.001
Light Snow −0.54 (−3.45, 2.37) 0.715 −2.2 (−3.96, −0.44) 0.014

Sunday −4.14 (−5, −3.29) <0.001 −2.68 (−3.18, −2.17) <0.001
Monday −8.62 (−9.53, −7.72) <0.001 −0.62 (−1.17, −0.07) 0.028
Tuesday −11.96 (−12.89, −11.04) <0.001 1.74 (1.17, 2.31) <0.001

Wednesday −11.46 (−12.39, −10.53) <0.001 1.37 (0.8, 1.94) <0.001
Thursday −10.52 (−11.43, −9.62) <0.001 0.27 (−0.28, 0.82) 0.336

Friday −6.49 (−7.36, −5.63) <0.001 −1.3 (−1.8, −0.79) <0.001
Saturday Reference

Federal Holiday −13.27 (−15.76, −10.79) <0.001 −1.52 (−3, −0.04) 0.044
Findings from the linear mixed model regression analyses of the impact of SDPs on TomTom congestion and
Unacast mobility are presented. TomTom congestion estimates are interpreted in terms of the percent change in
average daily traffic congestion compared to unrestricted days, where positive estimates indicate an increase in
congestion and negative estimates indicate a reduction in congestion. Unacast mobility estimates are interpreted
in terms of the percent change in the average daily distance traveled compared to unrestricted days, where
positive estimates indicate an increase in mobility and negative estimates indicate a reduction in mobility.

There was significantly less congestion when more stringent SDPs were implemented
compared to days when minor SDPs were implemented. Days that had moderate restric-
tions in place saw a 2.98 (95% CI: 0.44 to 5.51) percent decrease in average daily congestion
compared to days when minor restrictions were implemented (p = 0.022). When closed
restrictions were implemented, cities observed a 5.51 (95% 2.03 to 8.99) percent reduction
in average daily congestion compared to minor restrictions (p = 0.002). Major restrictions
were not significantly different from minor restrictions (p = 0.108) (Table S2).

As expected, SDPs were also associated with reductions in mobility. When minor SDPs
were implemented, cities observed a 5.65 (95% CI: 3.39 to 7.90) percent reduction in average
daily mobility compared to unrestricted days, after adjusting for wind, temperature, the
variability between cities, and the correlation within cities over time (p < 0.001). Cities
observed an 8.17 (95% CI: 5.54 to 10.81) percent decline in average daily mobility when
moderate restrictions were implemented and a 9.68 (95% CI: 6.67 to 12.70) percent decline in
average daily mobility when major restrictions were implemented compared to unrestricted
days (p < 0.001; p < 0.001). Days that had closed restrictions in place observed a 13.48 (95%
CI 10.36 to 16.59) percent reduction in average daily mobility compared to unrestricted days
(p < 0.001). Federal holidays and heavy snow were associated with decreases in mobility,
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while light snow was a non-significant predictor of mobility. Weekdays were often a
significant predictor of mobility despite their inclusion in the baseline reference, which
was defined as the average daily distance traveled by weekday and county during the four
weeks prior to the start of the COVID-19 pandemic in the United States (10 February 2020
to 8 March 2020) (Table 2).

More stringent SDPs were also associated with less mobility relative to when minor
restrictions were implemented. Days that had moderate restrictions in place saw a 2.53
(95% CI: 0.85 to 4.2) percent decrease in the average daily distance traveled relative to
unrestricted days (p = 0.004). Cities observed a 4.04 (95% CI: 1.96 to 6.22) percent reduction
in average daily mobility under major restrictions and a 7.83 (95% CI: 5.52 to 10.14) percent
reduction in average daily mobility under closed restrictions (p < 0.001; p < 0.001) (Table S2).

4.3. Impact of Congestion on NO2

Average daily NO2 decreased by 22.71 (95% CI: 21.15 to 24.29) percent for every
standard deviation (8.36 percent) decrease in the average daily time it took to drive with
traffic compared to free flow (p < 0.001). Additionally, for every standard deviation (2.91 m
per second) increase in the fastest daily 2 min wind speed, average daily NO2 decreased by
10.29 (95% CI: 9.48 to 11.08) percent (p < 0.001). A standard deviation (10.10 ◦C) increase in
average daily temperature was associated with a 4.61 (95% CI: 3.16 to 6.03) percent decrease
in average daily NO2 (p < 0.001) (Table 3).

Table 3. NO2 regressed on TomTom congestion.

Effect Estimate (95% CI) p-Value

Intercept 11.2633 (9.7794, 12.9723) <0.001
TomTom Congestion 1.0248 (1.0232, 1.0263) <0.001
Wind (m/s) 0.9634 (0.9605, 0.9663) <0.001
Temperature (◦C) 0.9953 (0.9939, 0.9968) <0.001

Findings from the linear mixed model regression analysis of the log of NO2 regressed on TomTom congestion are
reported. TomTom congestion is reported as the average daily percent increase in the time that it took to drive
with congestion compared to “free flow” travel without traffic. Seasonally adjusted wind is reported in meters
per second, and seasonally adjusted temperature is reported in degrees Celsius. Results are interpreted in terms
of percent changes in NO2. Exponentiated estimates greater than one indicate an increase in NO2 associated with
a one unit increase in the predictor variable and exponentiated estimates less than one indicate a decrease in NO2
associated with a one unit increase in the predictor variable.

4.4. Impact of Congestion on Seasonally Adjusted NO2

After accounting for seasonality, congestion remained strongly associated with NO2.
For every standard deviation (8.38 percent) decrease in the average daily time it took to
drive with traffic compared to free flow during 2020, average daily NO2 was 1.37 (95%
CI: 1.24 to 1.51) ppb lower than forecasted, after accounting for seasonally adjusted wind
and seasonally adjusted temperature (p < 0.001). Additionally, for each standard deviation
(2.72 m per second) increase in the difference between the observed and forecasted fastest
daily two-minute wind speed, average daily NO2 was 1.22 (95% CI: 1.12 to 1.31) ppb lower
than forecasted (p < 0.001). Each standard deviation (3.76 ◦C) increase in the difference
between the observed and forecasted temperature was associated with a 0.38 (95% CI:
0.26 to 0.50) ppb increase in NO2 relative to forecasted (p < 0.001) (Table 4). (Note: past
research has shown that temperature has a negative association with NO2 in the winter
and a positive association with NO2 in the summer [43]. Since our data included more
observations that occurred in the summer than in the winter, this result was expected.) The
association between congestion, mobility, and NO2 is further illustrated in Figure 3 and
Figure S1.
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Figure 3. Seasonally adjusted average daily NO2 (ppb) by city over time. The difference in ppb between observed and
ARIMA-forecasted 2020 ambient NO2 levels is plotted by city using LOESS smoothing with a span of 0.6. The 95%
confidence interval around the LOESS curve is in gray and the rug is color-coded based on city-specific SDPs over time.
Vertical lines signify the start of the COVID-19 pandemic in the United States on 9 March 2020. Observations above the
horizontal line indicate that observed NO2 was greater than forecasted and observations below the horizontal line indicate
that observed NO2 was lower than forecasted. See Figure S1 for more detailed data and Figure S2 for similar city-level
changes in traffic congestion.
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Table 4. Seasonally adjusted NO2 regressed on congestion.

Effect Estimate (95% CI) p-Value

Intercept −3.2143 (−3.5741, −2.8544) <0.001
TomTom Congestion 0.1637 (0.1478, 0.1797) <0.001
Seasonally Adjusted Wind (m/s) −0.4485 (−0.4831, −0.4139) <0.001
Seasonally Adjusted Temp (◦C) 0.1000 (0.0679, 0.1321) <0.001

The above table presents findings from the linear mixed model regression analysis of the impact of TomTom
congestion on seasonally adjusted average daily NO2. TomTom Congestion is reported as the average daily
percent increase in the time that it took to drive with congestion compared to “free flow” travel without traffic.
Seasonally adjusted wind is the difference between the observed and forecasted wind speed in meters per second,
and seasonally adjusted temperature is reported as the difference between observed and forecasted temperature
in degrees Celsius. Estimates are interpreted in terms of ppb changes in NO2 relative to forecasted.

4.5. Mediation Analysis

There was a strong association between more stringent SDPs and lower levels of
seasonally adjusted NO2, after adjusting for seasonally adjusted wind and seasonally
adjusted temperature. We then added congestion to the model to examine its mediating
impact; the effect of SDPs on NO2 was completely mediated by changes in congestion,
such that more stringent SDPs were associated with a greater increase in NO2 relative to its
forecasted value. According to the mediation model, cities observed a 2.13 (95% CI: 1.70
to 2.55) ppb increase in average daily NO2 when minor restrictions were implemented
compared to unrestricted days, after adjusting for congestion, seasonally adjusted wind,
and seasonally adjusted temperature (p < 0.001). Similarly, cities observed a 1.52 (95%
CI: 0.98 to 2.06) ppb increase in average daily NO2 when moderate restrictions were
implemented and a 1.29 (95% CI: 0.76 to 1.82) ppb increase in average daily NO2 when
major restrictions were implemented compared to unrestricted days (p < 0.001; p < 0.001).
Days that had closed restrictions in place observed a 1.45 (95% CI: 0.88 to 2.03) ppb increase
in average daily NO2 relative to unrestricted days, after adjusting for congestion (p < 0.001).

4.6. Measuring Equity in NO2 Exposure across Community Demographics

Sociodemographic patterning of NO2 pollution was evident; each standard deviation
(7.22 percent) increase in non-citizens was associated with a 29.97 (95% CI: 11.42 to 51.62)
percent increase in NO2, after adjusting for wind, temperature, education, race, and popula-
tion density (p = 0.001). No other social or demographic factors were significant predictors
of NO2 in the full multivariable model (Table 5). However, when each sociodemographic
variable was considered individually, we found that each standard deviation (12.12 percent)
increase in community members with less than a high school education was associated
with a 16.97 (95% CI: 4.86 to 30.48) percent increase in NO2 (p = 0.022). Additionally, each
standard deviation (3.48 percent) increase in individuals who identified with two or more
races was associated with a 11.81 (95% CI: 2.98 to 19.84) percent decrease in NO2 (p = 0.010)
and each standard deviation (11.76 percent) increase in people who identified as “other
race” was associated with a 18.89 (95% CI: 8.32 to 30.48) percent increase in NO2 (p < 0.001).

No demographic variables were significantly associated with seasonally adjusted
NO2, according to the full multivariable model (Table S3). When each demographic
variable was added to the model individually, each standard deviation (7.91 percent)
increase in community members with a high school education was associated with a 0.04
(95% CI: 0.00 to 0.08) ppb greater reduction in NO2 than forecasted (p = 0.045) and each
standard deviation (6.10 percent) increase in the population with some college education
was associated with 0.07 (95% CI: 0.02 to 0.11) ppb less of a reduction in NO2 relative to
forecasted (p = 0.003). A higher population density was also associated with a greater
reduction in NO2 than forecasted (p = 0.008); however, the effect size was too small to
be practically meaningful; a standard deviation increase in the population density (2.29
thousand people per square kilometer) was associated with a 0.0003 (95% CI: 0.0001 to
0.0005) ppb greater reduction in NO2 than forecasted (p = 0.008) (Table S3).
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Table 5. NO2 regressed on community-level demographics.

Effect Estimate (95% CI) p-Value

Intercept 8.2644 (5.0422, 13.5458) <0.001
Wind 0.9627 (0.9607, 0.9648) <0.001
Temperature 0.993 (0.9917, 0.9942) <0.001
Race: Black 1.0018 (0.9972, 1.0065) 0.442
Race: Asian 0.9966 (0.9829, 1.0104) 0.627
Race: Two or More 0.9813 (0.955, 1.0084) 0.174
Race: Other 1.0013 (0.9894, 1.0133) 0.836
Education: Less Than High School 0.9961 (0.9802, 1.0123) 0.636
Education: High School 1.0112 (0.9951, 1.0275) 0.173
Education: Some College 1.0027 (0.9847, 1.0211) 0.767
Non-Citizen 1.037 (1.0151, 1.0594) 0.001
Population Density 1.0091 (0.9659, 1.0543) 0.684

The above table presents findings from the linear mixed model regression analysis of the log of NO2 regressed
on wind, temperature, education, race, citizenship, and population density. TomTom congestion is reported
as the average daily percent increase in the time that it took to drive with congestion compared to “free flow”
travel. The population density is in terms of the number of thousands of people per square kilometer. Results are
interpreted in terms of percent changes in NO2. Exponentiated estimates greater than one indicate an increase
in NO2 associated with a one unit increase in the predictor variable and exponentiated estimates less than one
indicate a decrease in NO2 associated with a one unit increase in the predictor variable.

5. Discussion

Our analysis identified and meticulously measured important associations between
SDPs, congestion, mobility, and NO2 pollution. We found a strong association between
more stringent SDPs and reductions in both traffic congestion and mobility. There was also
a strong positive relationship between reductions in congestion and reductions in NO2
relative to its forecasted value. Furthermore, the effect of SDPs on reductions in NO2 was
largely mediated by congestion.

There was substantial heterogeneity across cities in terms of congestion, mobility,
and NO2. Cities followed markedly different trends in pre-lockdown reductions in NO2
relative to its forecasted value, although this may have been driven by greater pre-lockdown
variability in NO2 (Figure 3, Figures S1 and S2). Shortly following the start of lockdowns,
most cities then experienced a steep drop in congestion, mobility, and NO2. Overall, these
measures slowly increased toward pre-lockdown levels through August 2020, but the
effect size and timing of these trends varied across cities. This heterogeneity contributed
to considerably smaller within-city fixed effect estimates in the linear mixed model of the
impact of SDPs on congestion compared to unadjusted estimates (Tables 1 and 2).

We also gained insight into the sociodemographic patterning of NO2 pollution. One
notable finding was a strong positive association between communities with a higher pro-
portion of non-citizens and absolute NO2 levels, after adjusting for other sociodemographic
factors, wind, and temperature. While variation in NO2 pollution was best captured by cit-
izenship, communities with lower overall educational attainment opportunities and higher
proportions of people who identified as an “other race” were also strongly associated with
elevated absolute NO2. Future research must disaggregate the “other race” category to
provide a more nuanced understanding of which communities experience elevated NO2
pollution. Our data show that disadvantaged communities were indeed exposed to greater
levels of NO2 than their counterparts. With known negative health impacts associated with
NO2 exposure, this is a fundamental violation of environmental justice [26].

Encouragingly, we did not find evidence to conclude that these existing inequities
in exposure to NO2 pollution were exacerbated post-lockdown. According to the full
multivariate model of the impact of demographic variables on seasonally adjusted NO2,
the extent to which NO2 was lower than forecasted was not significantly associated with
any of the demographic variables we were able to include. When each sociodemographic
factor was considered individually, communities disadvantaged by lower educational
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attainment had a greater reduction in NO2 than communities with higher educational
attainment. However, the effect size of this association was negligible.

Our results must be considered within the context of important limitations. Firstly,
each data source used different geographic bounds. For example, congestion was reported
from an unspecified metropolitan boundary, while NO2 monitoring sites were located in
both urban centers and the surrounding suburbs. Since there may be a greater association
between NO2 and congestion on the roads closest to the monitoring sites, using metro
area data may have reduced the association of our findings. Likewise, community-level
sociodemographic data were collected from variably sized boundaries. There may have
been greater associations between sociodemographic variables and NO2 if the sizes of
the boundaries surrounding the monitoring sites were reduced. Our analysis was also
limited by the potential for unmeasured confounders, such as construction or widespread
protests during the summer of 2020. We were also limited by the consistency of available
EPA monitoring sites. Some cities were missing NO2 monitoring sites entirely, and we
considered other sites to be non-representative because they were missing more than a
week of consecutive hourly observations. However, even with missingness, we created a
comprehensive dataset with 70 sites across 22 US cities.

Additionally, we designed an ordinal scale to categorize local social distancing policies
by their restrictiveness. There was a level of subjectivity in these definitions because risk
assessments for various activities within the context of the COVID-19 pandemic have yet
to be thoroughly established. However, by developing a consistent scale across cities, we
minimized bias in the SDP definitions. While previous research has examined the impact
of lockdowns on congestion and NO2, our SDP scale allowed us to granularly examine the
impact of policy changes over time and across cities. By using detailed time series models,
we had the sensitivity to evaluate more nuanced changes in SDPs, and their subsequent
associations with congestion, mobility, and NO2.

6. Conclusions and Recommendations

We found that lockdown policies in cities across the US led to substantial, heteroge-
neous reductions in traffic and mobility, which were followed by considerable reductions
in air pollution. The observed heterogeneity in these markers was likely reflective of policy
decisions made at the local level. When minor SDPs (e.g., restrictions less severe than
closing non-essential businesses) were implemented, cities observed nearly a 20 percent
reduction in average daily congestion and a 6 percent reduction in average daily mobility
compared to unrestricted days. Days that had the most stringent restrictions in place
(e.g., closing non-essential businesses, halting elective medical procedures, and shutting
down public schools, places of worship, and gatherings) observed a 24 percent reduction
in average daily congestion and nearly a 14 percent reduction in average daily mobility
compared to unrestricted days. Subsequently, declines in the average daily time it took to
drive with traffic corresponded to lower average daily NO2 in 2020 relative to forecasted
(Table 4). Furthermore, the effect of SDPs on reductions in NO2 was completely mediated
by changes in congestion. This finding suggests that even minor policy changes might
meaningfully reduce traffic congestion and NO2 pollution.

Additionally, we found evidence that sociodemographic inequities in NO2 exposure
have persisted (but were not necessarily worsened) during the COVID-19 pandemic; for
example, a moderate (one standard deviation) increase in the local proportion of non-
citizens was associated with almost a 30% increase in NO2. This result highlights the
importance of targeting future policies towards places and communities with higher
exposure to NO2.

7. Future Research

As more of the population begins to commute again, future research should assess
the lasting impact of congestion on NO2. With heterogeneity in the timing and restric-
tiveness of SDPs across cities, our research demonstrates that local policies are associated
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with modifications in the public’s behavior. This finding justifies policies targeting more
sustainable urban planning, such as infrastructure and incentives for green commuting.
Furthermore, our results suggest that SDPs may have a diminishing marginal return on
congestion; minor restrictions were associated with a large decrease in congestion, but
as policies became stricter, the additional reduction in congestion decreased. If this re-
lationship can be confirmed in future research, it would follow that even minor policy
changes might meaningfully reduce traffic congestion and NO2 pollution. Furthermore,
future research should collect and analyze more granular sociodemographic variables by
disassembling the heterogeneous “other” category such that less-represented groups are
included in policies targeting equitable protection from environmental hazards. Finally,
while we have shown important relationships between SDPs, traffic congestion, and NO2,
it would be pertinent to use similar analysis methods to investigate the extent to which
other air pollutants (e.g., PM2.5, CO, O3) are related to SDPs in future broad-scale studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13137275/s1, Table S1. SDP additional news sources, Table S2. Alternative parameterization
of congestion and mobility regressed on SDPs, Table S3. Seasonally adjusted NO2 and sociodemo-
graphics, Figure S1. Observed minus forecasted average daily NO2 (ppb) by city over time, Figure
S2. City-level changes in traffic congestion.
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