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Abstract: The Muskingum method is one of the widely used methods for lumped flood routing in
natural rivers. Calibration of its parameters remains an active challenge for the researchers. The
task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to
account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the
assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but
with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle
of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of
the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO)
method is used to enable the use of a simulation process for each possible solution that composes the
swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The
function accounts for the inclusive constraints (the property that the data must be included within
the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may
render the model non-functional. Four case studies from the references are used to benchmark the
proposed method, including smooth, double, and non-smooth data and a complex, real case study
that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain
nature of the problem. The new methodology increases the reliability of the prediction. Furthermore,
the produced fuzzy band can include, to a significant degree, the observed data and the output of the
existent crisp methodologies even if they include more complex assumptions.

Keywords: flood routing; Muskingum method; extension principle; calibration; fuzzy sets and
systems; particle swarm optimization

1. Introduction

Flood risk management is a key component in sustainable water resources manage-
ment. Floods impact both individuals and communities, producing harmful consequences
of social, economic, and environmental implications. Negative impacts of flooding include
loss of human life, destruction of crops, damage to essential infrastructure, and disruption
of the value chain. Many flood risk management strategies are based on operational early
waring schemes that predict the arrival of the flood wave and enable civil protection actions
to safeguard life and property. The prediction of the outflow hydrograph for a river’s reach
given a specific inflow hydrograph is, therefore, an important issue in water resources
management. Hydrological forecasting requires a sound understanding of the physical
mechanisms that control the propagation of flood waves along rivers. Mathematical mod-
els for flood routing are based on the unsteady flow Saint-Venant equations. Numerical
solutions of the flow equations are complex, and thus, simplified versions are preferred
in operational flood forecasting schemes. Various methods have been developed for this
purpose, which may be categorized into three distinct groups [1,2]: (1) the distributed (or
hydraulic) methods (e.g., dynamic wave, diffusion wave, and kinematic wave models),
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which are based on the mass conservation and momentum transport equations; (2) the
lumped (or hydrologic) methods (in which the linear and nonlinear Muskingum models [3]
are widely used); and (3) the semi-distributed or hybrid methods (e.g., Muskingum–Cunge
family models [4–6]). This work is focused on enhancing models of the third category
using fuzzy sets and logic.

Lumped models estimate the flood hydrograph at a downstream section of the river
from the flood hydrograph at the upstream section without considering explicitly the river
characteristics between the upstream and the downstream sections. These models use the
one-dimensional continuity equation along with a storage equation in the calibration and
verification steps.

The Muskingum method for natural streamflow routing, first proposed by McCarthy
(1938) [3] in the Muskingum River basin in Ohio, is a widely applied hydrologic method [7].
It is a lumped method which cannot provide the outflow at the intermediate sections.
However, these models are very popular since, in most cases, the scarcity of field data
prevents the use of the Saint-Venant equations to route floods in rivers, as occurs in the
second category of river-reach routing [8].

The widely-used linear Muskingum method depends on two parameters: K and
x [9]. Originally, the graphical method was developed to determine the parameters of the
widely-used Muskingum linear equation. As is widely known, the graphical solution is
based on the graphical representation of the storage versus the weighted discharge as a
function of x. The preferred value of x is the one that produces the narrowest loop (e.g.,
Wilson, 1974 [10]). Next, some techniques based either on linear programming or on linear
regression were developed [11]. However, the use of the regression-based techniques can
lead to unreasonable values for K, x (e.g., [12]), due to an overtraining behavior.

The use of the nonlinear storage equation within the Muskingum method increases the
number of model parameters, but it is closer to reality. However, the nonlinear storage equa-
tion increases the difficulty of the calibration process. Various mathematical-hydrological
methodologies are developed to calibrate the river-routing models by using a nonlinear ap-
proach regarding the relation of the reach storage. For instance, according to the segmented
least-squares method (S-LSM) (Gill 1978) [13], the whole available data are subdivided
into several groups based on the storage values. It is then assumed that K and x remain
constant in each subgroup, and hence, for each subgroup, the least square analysis is used.
Therefore, the optimization procedure is based on the minimization between the estimated
storage and the existent storage.

Next, a directly (global) nonlinear formulation of the Muskingum method (regarding
the reach storage) was proposed by several authors with the use of a nonlinear form for
the storage. For instance, [14] used several mathematical techniques to minimize the sum
of the squares of deviations between observed channel storage and computed channel
storage.

Similarly, the nonlinear least squares method (NL-LSM) [15], the Lagrange multiplier
method (LMM) [7], and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) technique [16]
have been exploited for assessing the parameter values of the models. Das (2004) [7] and
Geem (2006) [15] proposed an optimization model whose objective function emphasizes
the determination of a set of parameter values that minimizes the error between model-
predicted and observed outflows. Das (2004) [7] considered the validation of the storage-
discharge relation by using the Lagrange multipliers.

However, these techniques have the drawbacks of a complex derivative requirement
and/or good initial vector consideration [17,18]. For example, the BFGS technique (Geem
2006) [16], although it reached the best solution ever found, relies heavily on the con-
sideration of the initial vector [17]. Hence, several researchers have proposed various
phenomenon-mimicking algorithms where an initial population of possible solutions is
used instead of an initial vector. For instance, the genetic algorithm (GA) [19] (Mohan
1997), harmony search (HS) (Kim et al., 2001) [20], particle swarm optimization (PSO) (Chu
and Chang 2009) [21], differential evolution (DE) (Xu et al., 2011) [22], parameter-setting
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free harmony search (PSFHS) algorithm [23], and modified honey bee mating optimiza-
tion (MHBMO) algorithm (Niazkar and Afzali 2015) [24] were developed to achieve the
calibration of the nonlinear Muskingum method (Niazkar and Afzali 2016) [25].

In order to improve the optimum solution, several authors proposed hybrid optimiza-
tion algorithms that combine the heuristic and the derivatives-based algorithms from a
mathematical point of view. Two steps are mainly considered. In the first step, one of
search-based, phenomenon-mimicking algorithms, which requires no initial guess, is ex-
ploited to assess the Muskingum parameters. Afterwards, the obtained values for nonlinear
Muskingum parameters are utilized as the first initial vector for the second step in which a
deterministic, derivatives-based method continues the routing simulation optimization
(Niazkar and Afzali 2016) [25]. For instance, in Karahan et al., 2015 [18], the HS algorithm
(global search) searched the optimum solution with multiple solution vectors, and then the
BFGS algorithm (local search) adjusted the results of the HS algorithm by getting its results
as the new initial solution [18]. A critical point is that most of the suitability measures are
based on the comparison between the observed and the predicted outflow, whilst the other
older works, such as [13,14], are focused on the storage equation (as can be seen from the
objective function used).

In addition, several authors proposed other innovations in the nonlinear Muskingum
relation. Karahan et al., 2015 [18] proposed the use of the cuckoo search algorithm (which
also uses an initial population) during the calibration of the model parameters by also
including the lateral flow. Easa (2015) [26] proposed to increase performance using con-
tinuous and discontinuous parameters expressed as a function of a dimensionless inflow
variable. In addition, Farzin et al., 2018 [27] proposed the multi-reach Muskingum method
to enhance the accuracy of the Muskingum method. The river under study was divided
into several smaller reaches, and hence, for each reach, routing was applied separately.
However, if there are no data in intermediate sections, it is not obvious that the intermediate
outcomes can be used to estimate the outflow at these sections, and therefore, the method
could be characterized as a black box model rather than a conceptual model.

Regarding the application of the fuzzy sets and logic methods in these types of
problems, most of the proposed models are based on the adaptive network-based fuzzy
inference systems (ANFIS) implementation. ANFIS is a neuro-adaptive learning technique
which provides a hybrid method for the fuzzy modeling procedure to learn information
based on a data set. Therefore, it can be seen as a neuro-fuzzy approach. It is very popular
because of the corresponding toolbox made available in MATLAB. In many hydraulic
applications, the ANFIS method is widely used, providing very good results; however,
it seems that sometimes it was solely utilized as a black-box model without any specific
utilization of the produced fuzzy rules. Chu, 2009 [28] proposed the combined application
of fuzzy inference system (FIS) and Muskingum model in flood routing. The implementa-
tion is based on the ANFIS toolbox of MATLAB. Three points of this methodology must be
noted. The first one is that the Muskingum method is used indirectly in the structure of the
model (neither the evaluation of K or x takes place). The second point is that the output
(outflow) for each time step is a crisp number and not a fuzzy number. Thirdly, based on
the ANFIS method, a large amount of data is required.

Another idea is to use the fuzzy linear regression to calibrate the linear Muskingum
method instead of the crisp linear regression as O’Donnel (1985) [11] proposed. Spiliotis
and Garrote (2017) [29] proposed the calibration of the Muskingum parameters based on
fuzzy linear regression. Therefore, instead of the crisp coefficient of the O’Donnel (1985)
method [11], the coefficients are proposed to be fuzzy symmetric triangular numbers. This
implies that, in contrast with the widely used ANFIS, the output (outflow) of the proposed
model is a fuzzy number. Furthermore, based on the Tanaka (1987) [30] fuzzy regression
implementation, all the observed data (regarding the outflow) are forced to be included
in the produced fuzzy band aiming at its minimum width. Instead of the identification
of the parameters K, x, the problem is oriented to the determination of the corresponding
regression coefficient. Another point of view is that, based on the problem itself, the
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constant term of the usual regression model must be removed [29]. The relevant feature
of articles mentioned in this paragraph is that they contain methodologies that produce a
fuzzy outflow as a final output for the channel-routing problem.

However, the fuzzy linear regression of Tanaka (1987) [30] is heavily influenced by
the existence of outliers, which can extremely enlarge the spread of the model. Hence,
Spiliotis and Garrote, 2017 [29] proposed the use of a fuzzy linear regression model that
is modified by incorporating ideas from the field of goal programming. Spiliotis et al.,
2018 [12] expanded the methodology by including the lateral flow on the basis of the
O’Donnel article [11]. As it was noted by the authors, an interesting point is that sometimes
the produced fuzzy coefficients cannot correspond to the physical meaning of the storage
equation, and hence, the model leads to a rather metric or black-box method.

In this work, a hybrid, fuzzy-based methodology is proposed. The proposed method
consists of two main ideas. Firstly, the linear Muskingum model is adopted. The parameters
K, x and α (where lateral flow occurs) are selected to be fuzzy symmetrical triangular
numbers to avoid any irrational training as may occur in the case of the fuzzy linear
regression. Hence, the methods produce a fuzzy estimation of the outflow based on the
(crisp) Muskingum function to predict the outflow. Mathematically, the application of
a crisp function using fuzzy parameters can be treated based on the extension principle
of the fuzzy sets and logic. Secondly, the calibration is addressed by using a hybrid
optimization procedure. In this article, the particle swarm optimization method (PSO) is
used. Hence, there is no need to predict an initial solution. For each possible solution based
on the (considered) values of the fuzzy parameters K, x and α, the outflow is calculated.
The outflow will be a fuzzy number, whilst its determination is based on the extension
principle. Unfortunately, the implementation of the extension principle leads to some
sub-optimization problems but without difficult constraints. The solvability of these sub-
optimization problems is discussed in the methodology section.

Each possible solution is evaluated based on the degree of inclusion of the real data
within the produced fuzzy band. This criterion should be included in the formulation of the
fitness function of the heuristic optimization method. However, other criteria will be added
which will be discussed in the methodology section. For instance, a fuzzy solution with a
very large band will contain all the data, but this information is non-functional. Therefore,
the fitness function must contain not only the inclusion degree but the magnitude of the
fuzzy band, etc. In PSO, the values of the fitness function of the swarm and the use of
random numbers determine the movement of the swarm, that is, the positions of the
new possible solutions. The procedure is finished by considering a maximum number of
iterations.

Three classical case studies from the references are widely used to benchmark the
variations of the Muskingum method. These three case studies include: (1) smooth outflow
(Wilson 1974 [10]), (2) double-peak outflow (Viessman and Lewis 2003) [9], and (3) non-
smooth outflow with lateral flow (O’Donnel 1985) data sets [11]. The implementation of the
proposed methodology is validated using the three benchmark examples. The validation
exercise is focused on the following questions: (1) Do the achieved fuzzy values of K, x
have physical meaning? (2) Is the maximum outflow included satisfactorily within the
produced fuzzy band? (3) Does the produced fuzzy band include the data with a rational
width? (4) Does the produced fuzzy band include the aforementioned results of the crisp
(deterministic, without uncertainty) methods?

A fourth case study taken from real-life data in a basin in Spain was used to validate
the approach.

2. Materials and Methods
2.1. Principles of Fuzz Set and Logic

From a mathematical point of view, a fuzzy set can be described as a mapping from
a general set X to the closed interval [0, 1] [31]. The membership function (MF) is a key
concept which describes the fuzzy sets. Hence, the membership function declares to what
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degree an element belongs to the specific set. A membership degree of 0 denotes that the
element does not belong to the set, and a membership degree of 1 denotes that the element
belongs fully to the set. Subsequently, an element with a membership degree between 0
and 1 will partially belong to the examined set. A classical (crisp or precise or deterministic)
set can be considered as a special case of a fuzzy set with a MF that only takes values 0
and 1.

A fuzzy number is a special case of the fuzzy set satisfying additionally the properties
of convexity and normality. It is defined in the axis of real numbers, and its MF is a
piecewise continuous function (Figure 1).

Figure 1. Representation of the membership function for a fuzzy number.

In general, the definition of fuzzy numbers can be found in Klir and Yuan, 1995. It
is proven (Klir and Yuan, 1995) [31] that the MF of a fuzzy number (Figure 1) follows the
mathematical expression (Equation (1)):

µA(x) =


0 f or x < ω1
AL(x) f or ω1 ≤ x ≤ α1

′

1 f or α1
′ ≤ x ≤ α2

′

AR(x) f or α2
′ ≤ x ≤ ω2

0 f or x > ω2

(1)

where AL : [ω1, a1
′ ]→ [0, 1] and AR : [a2 ′ , ω2]→ [0, 1] are the left and right parts of the

membership function regarding the fuzzy number Ã. In addition, AL is increasing and
continuous from the right, and AR is decreasing and continuous from the left. The interval
[α1
′, α2

′] can be an interval or a point, but it cannot be an empty set [31].
A simple fuzzy number for representing the parameters K and x is the fuzzy symmet-

rical triangular number (Figure 2), which is a kind of fuzzy number [12]. The symbols α, w
denote the central value (a single point where µ = 1) and the width of the fuzzy number.

Figure 2. Fuzzy triangular symmetrical number.

The h-cut set of the fuzzy number A (with 0 < h ≤ 1) is the key idea to move from the
fuzzy to the precise (crisp) sets, and it is defined as follows [31,32] (Equation (2)):

Ãh =
{

x
∣∣µÃ(x) ≥ h, x ∈ <

}
. (2)
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The h-cut set is a crisp set determined from the fuzzy set according to a selected
value of the membership function, α, and, reciprocally, a fuzzy set can be derived from
a significant number of α-cut sets. In the case of a fuzzy triangular number, the α-cut is
(Equation (3)):

Ãh =
[

AL
h , AR

h

]
or equivalently:

Ãh =
[
A− (1− h) ·

(
A− A−

)
, A + (1− h) ·

(
A+ − A

)]
. (3)

The crisp set including all the elements with non-zero membership function is the
0-strongcut, which is defined as follows [33,34] (Equation (4)):

Ã0+ = {x|µA(x) > 0, x ∈ <}. (4)

The following symbols are used for the zero-cut (Equation (5)):

Ã0+ =
(

A−, A+
)
. (5)

More analytically, according to Equation (5), the 0-cut is an open interval and does
not contain the boundaries. For this reason (and to have a closed interval containing the
boundaries), Hanss (2005) [35] proposed the phrase “worst-case interval W”, which is the
union of the 0-strongcut and the boundaries [35,36].

We can now extend the operation of the usual crisp functions in cases where the inputs
are fuzzy sets, based on the extension principle that is briefly presented below.

Let X be a Cartesian product of universe X = X1 × X2 × . . .× Xn and Ã1, Ã2, . . . , Ãn
be defined in the universe sets X1, X2, . . . , Xn, respectively. Let f be a (crisp) mapping
from X to a universe Y, y = f (x1, x2, . . . , xn). The mapping f for these particular input
sets can now be defined as B̃ =

{(
y, µB̃(y)

)
|y = f (x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ X

}
in

which the membership function of the image B̃ can be defined (Zimmermann 1991) [32] by
(Equation (6)):

µB̃(y) = sup
(x1,x2,...,xn)∈ f−1(y)

min(µAn(x1), . . . , µAn(xn)) (6)

where f−1 is the inverse image of f.
The above principle is known as the extension principle. Its implementation provides

the means to use a crisp function even if the inputs are fuzzy numbers. With most input
variables, it is preferable to use a number of h-cuts in fuzzy analysis instead of using a MF
based directly on the above definition ([37]). If f is a continuous function in the extension
principle, the use of h-cuts can be also extended by determining the h-cuts of the function f,
as follows ([33,34]) (Equation (7)):

f L
(

Ã1, Ã2, Ã3

)
h
= min

{
f (x1, x2, x3, h)

∣∣∣x1 ∈ Ã1h , x2 ∈ Ã2h, x3 ∈ Ã3h

}
,

f R
(

Ã1, Ã2, Ã3

)
h
= max

{
f (x1, x2, x3, h)

∣∣∣x1 ∈ Ã1h , x2 ∈ Ã2h, x3 ∈ Ã3h

}
.

(7)

It is customary to use fuzzy numbers as inputs (here, the parameters K and x) to the
crisp function (here, the Muskingum equation, which calculates the outflow, Q), and hence,
the boundaries of the decision space will be closed (because of Equation (1)). Then, from
the theorem of global existence for maxima and minima of functions with many variables,
it is known that if the domain of a real function is closed and bounded, and the real function
is continuous, then the function will have its absolute minimum and maximum values at
some points in the domain [38]. Based on this theorem, in cases where fuzzy triangular
numbers appear as inputs [37], the h-cut for any real continuous function with real variables
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in this domain can be determined. The determination of each h-cut is concluded to a double
sub-optimization problem. Hence, the fuzzy output can be described by determining
several representative h-cuts. Summarizing, in the case of fuzzy parameters, the simulation
problem (that is, the determination of the outflow based on the Muskingum method) leads
to the problem of determining several h-cuts, which is implemented through a double
optimization procedure. In case of lateral flow, then a fuzzy estimation of the parameter α
with the use of the h-cuts can be added.

2.2. Formulation of the Muskingum Method

The lumped hydrological model of Muskingum is based on the mass balance equation
(Equation (8)) and the storage equation (Equation (9)).

I −Q =
dS
dt

(8)

where I is the inflow rate to the reach, Q is the outflow rate from the reach, and S the
storage in the reach. In the case where the relationship between storage and flow through a
reach is linear, the Muskingum storage relationship can be written as (Equation (9)):

S = K[xI + (1− x)Q] (9)

where I is the inflow rate to the reach, Q is the outflow rate from the reach, K is the storage
time constant for the reach, and x is a weighting factor that varies between 0 and 0.5 [9].

The mass balance equation can be expressed in discrete form as follows (Equation
(10)): (

Ij + Ij−1
)

2
· ∆t−

(
Qj + Qj−1

)
2

· ∆t =
(
Sj − Sj−1

)
(10)

By combining Equations (8) and (9), the Muskingum routing equation is obtained
(Equation (11)):

Qj = C0 Ij + C1 Ij−1 + C2Qj−1

where C0 = −Kx+0.5∆t
K−Kx+0.5∆t ; C1 = (Kx+0.5∆t)

K−Kx+0.5∆t ; C2 = (K−Kx−0.5∆t)
K−Kx+0.5∆t

with C0 + C1 + C2 = 1

(11)

The linear Muskingum model can be modified to include the lateral flow. O’Donnell,
1985 [11] suggested a simple approach: “Possibly, the simplest model is one which assumes
that the rate at which lateral inflow enters the reach is directly proportional to the rate of
inflow I into the reach, with a proportionality factor α.”

Following this approach, the mass balance equation and the empirical storage equa-
tions can be written as (Equations (12) and (13)):

I(1 + α)−Q =
dS
dt

(12)

S = K[x(1 + α)I + (1− x)Q] (13)

After some algebraic operations, the following equation can be used (Equation
(14)) [11]:

d1 Ij + d2 Ij+1 + d3Qj = Qj+1,d1 = (1 + α)C1, d2 = (1 + α)C0, d3 = C2 (14)

Or equivalently [12] (Equation (15)):

Qj = (1 + a) ∆T+2Kx
∆T+2K(1−x) Ij−1 + (1 + a) ∆T−2Kx

∆T+2K(1−x) Ij

+−∆T+2K(1−x)
∆T+2K(1−x) Qj−1

(15)
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The focus of this work is the crisp function that determines the current outflow when
the parameters K and x are fuzzy numbers. Whereas in the case of no lateral flow, the
Equation (11) describes this function, in the case of lateral flow, the Equation (15) is applied.

2.3. Implementation of the Muskingum Method with Fuzzy Parameters

In this study, the parameters K and x (and α in case of lateral flow) are selected by
assuming them as fuzzy triangular symmetrical numbers (Figure 2). The simple linear
Muskingum equation is applied with fuzzy parameters. As aforementioned, the application
of a crisp function with fuzzy parameters is achieved by applying the extension principle.
In practice, several h-cuts can be determined in order to describe the values of the examined
function (in this application, the function f describes the outflow). In case of no lateral flow
(based on Equation (11)), the boundaries of each h-cut of the outflow can be determined as
follows (Equation (16)):

Qj
L
(

K̃, x̃
)

h
= min


∆T+2x1x2

∆T+2x1(1−x2)
Ij−1 +

∆T−2x1x2
∆T+2x1(1−x2)

Ij+
−∆T+2x1(1−x2)
∆T+2x1(1−x2)

Qj−1

∣∣∣x1 ∈ K̃h , x2 ∈ x̃h

,

Qj
R
(

K̃, x̃
)

h
= max


∆T+2x1x2

∆T+2x1(1−x2)
Ij−1 +

∆T−2x1x2
∆T+2x1(1−x2)

Ij+
−∆T+2x1(1−x2)
∆T+2x1(1−x2)

Qj−1

∣∣∣x1 ∈ K̃h , x2 ∈ x̃h

,

(16)

where I is the inflow rate to the reach, Q is the outflow rate from the reach, K is the storage
time constant for the reach, and x is a weighting factor. The index j is referred to the time
step, and the indexes L and R are referred to the left and the right hand of the produced
h-cut regarding the examined fuzzy number.

In cases of lateral flow, based on Equation (15) it holds (Equation (17)):

Qj
L
(

K̃, x̃, ã
)

h
= min

 (1 + x3)
∆T+2x1x2

∆T+2x1(1−x2)
Ij−1 + (1 + x3)

∆T−2x1x2
∆T+2x1(1−x2)

Ij

+−∆T+2x1(1−x2)
∆T+2x1(1−x2)

Qj−1

∣∣∣x1 ∈ K̃h , x2 ∈ x̃h, x3 ∈ ãh

,

Qj
R
(

K̃, x̃, ã
)

h
= max

 (1 + x3)
∆T+2x1x2

∆T+2x1(1−x2)
Ij−1 + (1 + x3)

∆T−2x1x2
∆T+2x1(1−x2)

Ij

+−∆T+2x1(1−x2)
∆T+2x1(1−x2)

Qj−1

∣∣∣x1 ∈ K̃h , x2 ∈ x̃h, x3 ∈ ãh

,

(17)

For the case of non-lateral flow, to calibrate the Muskingum method, the parameters K
and x need to be estimated. The central values (h = 1) and the left and the right hands of the
zero-cut (or the worst-case interval W) regarding the outflow are exploited. The zero-cut
can be used to express the concept of inclusion, that is, to check the property that the fuzzy
band contains the observed data at least to a high degree. This is set as a key idea in order
to calibrate the proposed fuzzy Muskingum model. The determination of the boundaries
of the worst-case interval W is finally achieved by following an optimization procedure,
which, in the examined case, will have a solution since the inputs are fuzzy numbers and
the used crisp function Q is continuous. The determination of the worst-case interval W
composes the sub-optimization problem that arises during the calibration of the model.

The problem of the calibration process is to assess the central values and the semi-
width of the parameters K, x, and α so that a selected criterion is minimized (including
the inclusion constraints). Because of the model complexity, the calibration is achieved by
applying a heuristic optimization model. In this article, the particle swarm optimization
(PSO) method is selected. This method can be coupled with a simulation model; in this
study, the Muskingum equation enhanced with the use of the extension principle for fuzzy
parameters is applied.

2.4. Particle Swarm Optimization Method

Particle swarm optimization (PSO) is a stochastic global optimization method based
on the simulation of the swarm. As in genetic algorithms (GA), PSO exploits a population
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of possible candidate solutions to probe the search area. The PSO algorithm can be charac-
terized as one of the population-based algorithms (Parsopoulos and Vrahatis, 2002) [39].
Although PSO is an effective and widely used method, it is simpler than other heuristic
optimization algorithms (e.g., GA) because the crossover and mutation operations in the
original version of the GA [40,41] are not used.

PSO can deal with nonlinear optimization problems in non-convex domains [42]. Each
candidate solution is called a particle, and the set of potential possible solutions in each
iteration creates the swarm [41,43]. A swarm has a dimension N′, in which N′ is the number
of potential solutions. Each potential solution is comprised of D variables, in which D
is the dimension of the problem [41,44]. In this article, in case of non-lateral flow, D = 4(
K, wK, x, wx

)
, where K is the central value of K̃, wK the semi-width of K̃, x is the central

value of x̃, wx is the semi-width of x̃.
Analytically, the population dynamics in PSO simulates the behavior of a bird flock,

where social sharing of information takes place and individuals benefit from the discoveries
and previous experience of all other companions during their search for food. Thus, two
variants of the PSO algorithm were developed considering either a local neighborhood
or a global neighborhood. In the former, the partial optimum of the particle is usually
applied [40]. In the latter, each particle moves towards its best previous position and
towards the best particle in the whole swarm [39,41,45].

Several modifications to the original version of the PSO method of Kennedy and
Eberhart (1995) [45] have been proposed, such as the adaptation of inertia term and the
consideration of the maximum velocity (e.g., [46]).

The basic PSO algorithm is detailed below (e.g., [44,46,47]:

1: Initialize a population array of particles with random positions and velocities on D
dimensions in the search area.

2: Loop
3: For each particle, evaluate the desired optimization fitness function in D variables.
4: Compare particle fitness evaluation with its best previously visited position (pi). If

the current value is better than pi, then set pi equal to the current value.
5: Identify the particle with the best fitness function value of the swarm pg.
6: Change the velocity and position of the particle (xi) according to the Equation (18):{

υi(t + 1) = ωυi + c1ρ1 · (pi − xi(t)) + c2ρ2 ·
(

pg − xi(t)
)

xi(t + 1) = xi(t) + υi(t + 1)
(18)

7: If a criterion is met (usually a sufficiently good fitness or a maximum number of
iterations), exit loop.

8: End loop

where ρ() is a vector of random numbers uniformly distributed in the open interval 0,
1 that is generated at each iteration, and for each particle, pi is the best previously visited
position of the ith particle (partial optimum), and pg is the global best previously visited

position of all particles (global optimum). Furthermore, the term c1ρ1 ·
(→

p i −
→
x i

)
that asso-

ciates the particle’s own experience with its current position is weighted by the constant c1

and is called individuality (cognitive acceleration). The term c2ρ2 ·
(→

p g −
→
x i

)
is associated

with the social interaction between the particles of the swarm and weighted by the constant
c2, and is called sociality (social acceleration). As υ the velocity is meant. The velocity, by
supposing that ∆t = 1, modulates the new position xi(t + 1).

For the basic PSO, the coefficients c1 and c2 were allowed to take values in the interval
1.5 to 2.5 [41].

Clerc and Kennedy’s analysis [48] based on the initial PSO method proposed the
following modified equation for the new positions (Equation (19)):{

υi(t + 1) = χ
[
υi(t) + c1ρ1 · (pi − xi(t)) + c2ρ2 ·

(
pg − xi(t)

)]
xi(t + 1) = xi(t) + υi(t + 1)

(19)
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where χ is a parameter called constriction coefficient or constriction factor (Equation (20)):

χ =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ , ϕ = c1 + c2, ϕ > 4 (20)

On the other hand, based on the literature, the following parameters are proposed
([48]) (Equation (21)):

χ = 0.729, c1 = c2 = 2.05 (21)

In this study, the proposals of Clerc & Kennedy, 2002 are adopted in the implementa-
tion of the PSO.

It is worth noting that, in some cases, the PSO method converges rapidly to a local
optimum. This problem can be overcome by the strategy of Salehizadeh et al. (2009) [49]
by dividing the population or by using other hybrid methods, e.g., by combining the PSO
together with simulated annealing behavior. For instance, [41] applied a modified PSO to
achieve the identification of optimal hedging rules for complex real systems of operating
reservoirs with many parameters, seeking to mitigate the drought impacts.

3. Proposed Calibration and Performance Measures

A procedure is followed to implement the model calibration (PSO) method together
with the extension principle. First, a swarm of possible solutions is randomly created within
the decision space. For non-lateral flow, each possible optimum solution (member of the
swarm) contains the values of the parameters

(
K, x, wK, wx

)
that describe the membership

functions of K̃, x̃. Then, a fuzzy simulation method is applied based on the extension
principle. For each possible solution, the frontiers of the 0-cut and the central values are
calculated. Finally, we apply the PSO methodology, and the objective is calculated. The
objective function is identical with the fitness function, since by using the simulation stage,
the use of constraints could be avoided.

The key question is about the formulation of the objective function (fitness function),
which will be used during the calibration process. The objective function will differ from
those selected by the crisp calibrations, since the output of the model will be a fuzzy band
that expresses the outflow hydrograph. In this article, an objective function that contains a
weighted sum of four performance measures is proposed (Equations (22)–(24)):

f = w1

[
M
∑

j=1
aRj

(
Qobserved

j −Q+
j

)2
+

M
∑

j=1
aLj

(
Q−j −Qobserved

j

)2
]

including all data

+ 1
M

(
M
∑

j=1

(
Qobserved

j −Qj

)2
)

central values near to data

+

1
M

(
M
∑

j=1

(
Q+

j −Q−j
)2
)

f uzzy width

+

(
amax

(
Qmax −Q+

p

)2
)

including the maximum value

(22)

where

aRj =

{
0 i f Q+

j ≥ Qobserved
j

1 i f Q+
j ≤ Qobserved

j
, aLj =

{
0 i f Q−j ≤ Qobserved

j
1 i f Q−j ≥ Qobserved

j
(23)

The first term expresses the divergence of the produced fuzzy band to include all data.
In other words, the squared penalty term, E1, is activated only whether the observed data
are not included within the produced fuzzy band. This procedure was initially proposed
by Ishibuchi et al. (1993) [50] as a cost function to be minimized in the learning process
regarding a neural network with interval weights, whilst in this work, it is used as a term
of the fitness function (Equation (24)):

E1 =

[
M

∑
j=1

aRj

(
Qobserved

j −Q+
j

)2
+

M

∑
j=1

aLj

(
Q−j −Qobserved

j

)2
](

m3

s

)2

(24)
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The above measure represents the idea of inclusion of the fuzzy linear regression of
Tanaka [30]. According to this model, all the data must be included within the produced
fuzzy band [51,52].

The second term, E2, expresses the distance between the central values (α = 1) and the
observed data (Equation (25)):

E2 =

(
M

∑
j=1

(
Qobserved

j −Qj

)2
)(

m3

s

)2

(25)

The third term, E3, expresses the magnitude of the produced fuzzy width. A large
width leads to an unfunctional fuzzy band, which cannot be exploited in real applications
(Equation (26)):

E3 =

(
M

∑
j=1

(
Q+

j −Q−j
)2
)(

m3

s

)2

(26)

The use of this distance comes from the fuzzy regression of Tanaka where the problem
of the fuzzy linear regression concludes to a constrained optimization problem aiming to
minimize the total width of the produced fuzzy band (e.g., [51,52])

Finally, the last term, E4, expresses the distance between the maximum value of the
outflow and the right hand of the estimated outflow (Equations (27) and (28)):

E4 =

(
amax

(
Qmax −Q+

p

)2
)

including the maximum value

(
m3

s

)2

(27)

where amax =

{
1 i f qmax ≥ q+p
0 otherwise

, p : time when qmax = max(Q1, . . . , Qj, . . . , QM) (28)

This distance is activated only if the observed data are above the produced fuzzy band
as it is indicated by the coefficient αmax where p is the time, which is referred to as the
time where the maximum value occurs. This criterion is useful in river routing. For flood
protection, it is critical that the produced fuzzy band (from the proposed model) includes
the observed maximum value even in real time. Therefore, since this criterion expresses the
aforementioned property, it is obviously useful. This measure is proposed by [44] where a
fuzzified version of the fuzzy unit hydrograph was developed.

The terms Qobserved
j , Q−j , and Q+

j express the observed value at time j, the left, and
the right-hand boundary of the zero-cut, respectively.

These behavioral parameters are user defined and control the optimization process.
The adopted values were taken mainly from the literature because they are shown to lead to
good performance. Their effectiveness is later analyzed and compared to other alternatives
in the validation section.

The weight w1 is selected to give more emphasis on the first term of the fitness function.
Indeed, the main advantage of the fuzzy model, similarly with the fuzzy regression model
(e.g., [30]), is the inclusion of the observed data into the produced fuzzy band. However, in
the case of a precise satisfaction of the inclusion constraints, then an outlier can significantly
enlarge the size of the produced fuzzy band. Hence, the larger the w1, the closer to the
absolute satisfaction of the inclusion constraints the model becomes. If a non-useful fuzzy
band is produced, then the value of w1 is reduced. In fact, the first measure strengthens
the satisfaction of the inclusion constraints. E1 conflicts with E3; however, an unfunctional
fuzzy band must be rejected. E2 is similar but not identical with the crisp measures SSQ,
since apart from the central value, the output of the fuzzy model is the entire fuzzy number.
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4. Results and Discussion

In order to check the proposed methodology, four case studies from the references
are used to benchmark the proposed method. The first three case studies include: (1)
the routing of a smooth hydrograph (Wilson 1974 [10]), (2) a double peak hydrograph
(Viessman and Lewis 2003 [9]), and (3) non-smooth hydrograph with lateral flow (O’Donnel
1985) data sets [11]. The last case study is located in the Ebro River Basin with more data
available. Therefore, the validation of the solution achieved is studied in the last case study.

4.1. Smooth Hydrograph

The first data set is the data set presented by [10]. For these kinds of heuristic opti-
mization problems, a maximum of 100 iterations were selected. Furthermore, the swarm
consists of 50 members, whilst the expression of Clerc and Kennedy’s is adopted for train-
ing (Equations (19)–(21)). The results were not practically changed even if the SWARM was
activated again. The fitness or objective function consists of the four performance measures
(Equation (22)). These selections were adopted for all the examined examples.

Since no lateral flow occurs, the Equation (16) is used to determine the boundary of the
worst-case interval W, which is used to check the width of the produced fuzzy band and
the degree of inclusion. Because of the sub-optimization problems (according to extension
principle, Equation (16)) a significant computational time is required for the calibration
process. Initially, a significant value of the w1 is considered (w1 = M2). By following the
aforementioned calibration procedure, the following results are achieved:

K̃ = (1.2482, 0.6533)days and x̃ = (0.2972, 0.0580) and E1 = 3.31

where M is the number of data, whilst in the bracket, the first term means the central
value and the second term the semi-width. The brackets symbolize the fuzzy symmetrical
triangular numbers.

Wilson, 1974 [10] proposed the following crisp values for the examined parameters:
K = 1.5 days and x = 0.25, which are included from the produced corresponding quantities.

Therefore, the produced solution has physical sense and incorporates all the data to a
high degree. However, the above suggestion holds only if the width of the produced fuzzy
band is functional. For flood protection, the most important factor is the uncertainty within
the neighborhood of the peak flow. Figure 3 shows that a range between the left and the
right boundaries of the outflow is lower than 10 m3/s, which seems a reasonable range.
However, the greater values have a high dispersion in time according to the proposed
fuzzy solution.

Figure 3. Simulation of the Wilson (1974) [10] example based on the proposed fuzzy method for w1 =
M2 in the case of the Wilson (1974) data.
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The crisp formulation uses the measure SSQ = ∑M
j=1

(
Qobserved

j −Qj

)2
, which cannot

be compared directly with the performance evaluation measures, since according to the
proposed methodology, the output of the fuzzy Muskingum simulation will be a fuzzy
number in contrast with the crisp formulation where the output is a crisp number. In case
a significantly very small weight w1 is selected, an almost crisp solution is obtained. In
this case, the value of E1, E2, and SSQ are practically identical. However, the comparison
between the SSQ and E1 indicates that E1 takes the smallest value (Table 1 in Niazkar and
Afzali, 2016) of the SSQ.

Table 1. The logical test that is true if the fuzzy solution contains the other crisp methods. P (green box) means that the
model “passed” the test, and F (red box) means that the model “failed”.

Time (Hours)

Models 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126

Wilson-trial P P P P P P P P P P P P P P P P P P P P P P
Regression P P P P P P P P P P P P P P P P P F F F F F
NL-LSM P P F F P P P P P P P P P P F P P P P F F F
S-LSM P P F F P P P P P P P P P P P P P P F F F F
LMM P P F F P P P P P P P P P P P P P P F F F F

HJ+DFP P P P P P P P P P P P P P P P P P P P P P P
GA P P P P P P P P P P P P P P P P P P P P P P

BFGS P P P P P P P P P P F P P P P P P P P P P P
BFGS-HS P P P P P P P P P P F P P P P P P P P P P P
NLMM-L P P P P P P P P P P P P P P P P P P P F F F
NLI (SSQ) P P P P P P P P P P P P P P P P P P P P F F
NLII (SSQ) P P P P P P P P P P P P P P P P P P P P P P
NLIII (SSQ) P P P P P P P P P P P P P P P P P P P P P F
NLI (MARE) P P P P P P P P P F P P P P P P P P P P P P
NLII (MARE) P P P P P P P P P F P P P P P P P P P P P P
NLIII (MARE) P P P P P P P P P F P P P P P P P P P P P F

To summarize, it is proposed that, in the case E1 has a small value (preferably smaller
than the SSQ of the crisp simulation) and a logical width, then the fuzzy calibration can be
accepted. The time-step of Wilson 1974 [10], 6 h, can be characterized as sufficient, since in
6 h, some emergency measures can be implemented.

Analytically, for w1 = M2, the proposed measures, for which their weighted sum
composes the objective function, have the following values:

E1 =

[
M
∑

j=1
aRj

(
Qobserved

j −Q+
j

)2
+

M
∑

j=1
aLj

(
Q−j −Qobserved

j

)2
]

including all data

= 3.31

E2 =

(
M
∑

j=1

(
Qobserved

j −Qj

)2
)

central values near to data

= 344.9

E3 =

(
M
∑

j=1

(
Q+

j −Q−j
)2
)

f uzzy width

= 3, 410.8

E4 =

(
amax

(
Qmax −Q+

p

)2
)

including the maximum value

= 0.02

Two additional calibrations are presented in Figure 4 for (a) w1 = 1 and (b) w1 = 1/M.
In cases where smaller weights are selected, the produced fuzzy band becomes thinner
and smoother (Figure 4a,b), but it cannot contain a significant number of data (especially
Figure 4b, where a smaller weight is selected). However, the maximum discharge is
practically included in all cases. In all figures, the blue line expresses the central value, that
is, the value which corresponds to unit membership function.
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Figure 4. Simulation of the Wilson (1974) [10] example based on the proposed fuzzy method for (a)
w1 = 1 and (b) w1 = 1/M in the case of the Wilson (1974) data.

For illustrative purposes, Figure 5 shows the evolution of the member of the swarm. Since
there are four decision variables, only the parameters central values of K and x are represented.
The blue circles indicate the swarm of the possible solutions and the diamond the global
optimum solution for each generation. After the 50th generation, the swarm converts rapidly
near the global optimum, and the optimum solution remains stable after the 89th iteration.

Figure 5. Simulation of the Wilson (1974) [10] example based on the proposed fuzzy method for
w1 = M2 in case of the Wilson (1974) data. The blue circles indicate the swarm of the possible solution
and the diamond the global optimum solution for each generation.
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After the end of the calibration procedure (and hence, the PSO algorithm), for each
time step, the fuzzy number which corresponds to the outflow can be separately calculated
by considering a very large number of h-cuts. For each h-cut, the extension principle is used
to determine the boundaries of each h-cut. Figure 6 represents the produced outflow when
the maximum outflow occurs in the observed data. As it can be seen, the output remains a
fuzzy number (since it satisfies Equation (1)), but the linearity and the symmetry (which
appears in case of the parameters K and x) were lost because the used crisp functions
(Equation (16)) do not remain linear.

Figure 6. Produced outflow when the maximum outflow occurs in the real data in the case of the
Wilson (1974) data for w1 = M2.

By comparing the proposed fuzzy solution with many (crisp) methodologies, it is
concluded that the fuzzy solution contains the majority of the described solutions (see the
literature session). Indicatively, the Wilson-trial approach [10], the regression model, the
NL-LSM (Yoon and Padmanabhan 1993) [15], the S-LSM (Gill 1978) [13], the LMM (Das
2004) [7], the HJ+DFP (Tung 1985) [14], the GA, the BFGS (Geem 2006) [16], the BFGS-HS
(Karahan et al., 2013), the NLMM-L (Karahan et al., 2013), the NLI (SSQ) (Karahan et al.,
2013), the NLII (SSQ) (Karahan et al., 2013), the NLIII (SSQ) (Karahan et al., 2013), the NLI
(MARE) (Karahan et al., 2013), the NLII (MARE) (Karahan et al., 2013), the NLIII (MARE)
(Karahan et al., 2013) [53], the CS (Karahan et al., 2015) [18], and the CM (Easa 2015) [26]
models are figured together with the fuzzy solution. The fuzzy solution is depicted by the
left-hand and the right-hand bound of the zero-cut and the central values (Figure 7).

The Table 1 contains the comparison between the fuzzy solution with the aforemen-
tioned crisp models. The logical test is passed when the previous crisp solution for the
outflow is included within the produced fuzzy band. A tolerance of 1 m3/s is permitted.
From Table 1, it is shown that the majority of the crisp solutions are included within the
produced fuzzy band apart from the last (decreasing) part of the hydrograph. The yellow
lines indicate the time steps near the time where the maximum occurs.

In addition, the produced fuzzy band is separately compared with the graphical
solution of Wilson, 1974 [10] (Figure 8). The graphical solution is based on the graphical
representation of the storage versus the weighted discharge and with x as the preferred
value, which produces the narrowest loop. An important point is that by comparing the
central values of the fuzzy solution and the graphical solution, these two solutions are
close, and moreover, the initial region of the outflows has a similar decreasing behavior.
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Figure 7. Other crisp simulations, the observed data, and the produced fuzzy band in case of the
Wilson (1974) [10] data.

Figure 8. The graphical solution and the produced fuzzy band in the case of the Wilson (1974) data.

4.2. Two-Peak Hydrograph

The second case study is a multi-peak flood hydrograph [9]. By selecting w1 = M2,
K̃ = (3.5744, 1.5672), and x̃ = (0.3460, 0.1399), whilst E1 = 0.51 (Figure 9), where M is the
number of data for the examined set.
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Figure 9. Simulation of the [9] example based on the proposed fuzzy method for w1 = M2. The blue
line means the central values.

By selecting w1 = 1, a functional approach with a smaller fuzzy band but with some
points out of the fuzzy band is produced (Figure 10). The value E1 = 8974.5, which is
sufficient. K̃ = (3.6975, 0.3954) hr and x̃ = (0.3134, 0.1067). An interesting perspective is
that the two solutions are very close regarding the central values.

Figure 10. Simulation of the [9] example based on the proposed fuzzy method for w1 = 1. The blue
line means the central values.

Furthermore, the produced fuzzy band is compared with BFGS (Karahan 2014) [54]
and MHBMO (Niazkar and Afzali 2015) [25] (Figure 11). Although the crisp models are
rather complex with many parameters, the fuzzy model based on the Muskingum linear
method contains practically all the values for w1 = M2 (Figure 11a) and the majority of
the values when w1 = 1 (Figure 11b), whilst the fuzziness is within a rational value. The
method of BFGS seems to be away from the data.
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Figure 11. Other crisp simulations, the observed data ,and the produced fuzzy band in case of the [9]
data for (a) w1 = M2 (b) w1 = 1.

4.3. Non-Smooth Hydrograph with Lateral Flow

A non-smooth outflow hydrograph with lateral flow, previously presented by O’Donnel
(1985) [11], was analyzed. The data are based on the event on the River Wyre, 20–21 Oc-
tober 1982. The river flows into the Irish Sea at Fleetwood. It is approximately 28 miles
(45 km) in length. The river is a county Biological Heritage Site. According to O’ Donnel
(1985), there was a considerable increase in the flood volume between the inflow and
outflow sections (some 25 km apart), and furthermore, it also had a multi-peaked inflow.
Initially, a significant value of the w1 is considered (w1 = M2). Since lateral flow occurs,
Equation (17) is used to determine the worst-case interval. By selecting w1 = M2, it
is concluded that K̃ = (4.9405, 2.1945), x̃ = (0.0593, 0.1035), and ã = (2.5960, 0.1035)
(Figure 12). However, the values of x approach the value corresponding to the reservoir,
whilst small negative values are expected to be irrational.
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Figure 12. The observed data and the produced fuzzy band in the case of the River Wyre, 20–21
October 1982 data for w1 = M2.

By selecting w1 = 1, (Figure 13) it is concluded that K̃ = (6.7211, 2.6006), x̃ =
(0.0997, 0.0002), and ã = (2.9648, 0.1848) and E = 23.4438. These values approximate the
crisp values that are provided by [11]. By comparing the observed data and the produced
fuzzy band, it seems that although a new parameter was added, the performance of the
fuzzy solution can be characterized as sufficient since the produced fuzzy band includes to
a high degree the observed data of the outflow without an irrational width.

Figure 13. The observed data and the produced fuzzy band in the case of the River Wyre, 20–21
October 1982 data for w1 = 1.

Based on the three examples analyzed, results show advantages of the proposed
methodology to be highlighted: (1) the use of a fuzzy estimation with the aim of fuzzy
parameters is closer to observed; (2) the new methodology increases the safety of the
prediction including the uncertainty; (3) the produced fuzzy band include, to a significant
degree, the observed data; and (4) the output of the successful existent crisp methodologies
even if they include more complex assumptions.

4.4. Validation with Real-Life Data

The validation case study is located in the Ebro River Basin (Spain, Figure 14). The
gauge stations (automatic flow measures) belong to the SAIH network (Automatic Hydro-
logic Information System) managed by the Ebro Basin Water Authority. The reach under
analysis is located in the Aragón River between stations 9271 (elevation 1040 m, basin area
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101 km2) and 9018 (elevation 793 m, basin area 238 km2). The reach length is 18.09 km, and
the mean slope of the reach is 1.365%. The method proposed in this study is validated with
four hydrographs recently recorded in the reach. The time step of the original data is equal
to 15 min. In order to reduce computational time and for stability reasons, the original data
were resampled at ∆t = 1 h time step. The selected hydrographs can be characterized as
rather complex since they include important lateral flow, and their shapes are not smooth.

Figure 14. Case study in Aragón River, Ebro Basin, Spain. The studied reach starts at Canfranc gauge station (red dot, Id
9217) and ends at Jaca gauge station (red dot, Id 9018).

The performance of the method is tested by fitting the Muskingum parameters in
one hydrograph (Hydrograph 1) and validating the prediction obtained with the fitted
parameters for the three remaining hydrographs (Hydrographs 2, 3, and 4). The predictive
capability of the method was tested for two values of parameter w1: 1 and 0.1. The
value of w1: equal to one gives more weight on the inclusion of observations within the
fuzzy band, while the value of w1 equal to 0.1 gives more weight on the reduction of the
uncertainty of the forecast. The results obtained for w1 = 1 after 100 iterations are K̃ =
(5.1605, 3.5130)h, x̃ = (0.1773, 0.0495), and ã = ( 1.5160, 0.4579). The results obtained
for w1 = 0.1 are K̃ = (3.8328, 1.5637)h, x̃ = (0.2273, 0.0006), and ã = ( 1.8568, 0.1930).
The fuzzy bands obtained for the outflow hydrographs are presented in Figure 15. In both
cases, the most relevant values of the outflow hydrograph (near the peak discharge) are
included within the produced fuzzy band. The wider fuzzy band for w1 = 1 includes a
larger fraction of values, but the narrower fuzzy band for w1 = 0.1 reduces the uncertainty
of the forecast.
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Figure 15. Inflow and outflow hydrographs (data corresponding to Hydrograph 1) and the predicted fuzzy band of the
Ebro River based on the proposed method for (a) w1 = 1 and (b) w1 = 0.1.

Afterwards, the fuzzy parameter values obtained for the two solutions were validated
by applying them on three other real events, named Hydrograph 2, 3, and 4. The results are
shown in Figure 16. For the fuzzy parameters obtained with hydrograph 1 and w1 = 1, the
stronger emphasis on the inclusion during the calibration process leads to results for other
events where the observed outflow is almost included within the fuzzy band produced.

Figure 16. Validation of the achieved solution based on three real available hydrographs for (a) w1 = 0.1 and (b) w1 = 1. Left
column corresponds to Hydrograph 2, central column to Hydrograph 3, and right column to Hydrograph 4.
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This aspect is quantified with the following modified measure E1:

E1 =
1
M

[
M

∑
j=1

aRj

(
Qobserved

j −Q+
j

)2
+

M

∑
j=1

aLj

(
Q−j −Qobserved

j

)2
]

including all data

,

The values of the modified measure obtained for Hydrographs 2, 3, and 4 are 0.6556,
0.3304, and 0.2526. These values are small, indicating a good coverage of the observations,
although most of the observed discharges are below the central values of the fuzzy band.

For the fuzzy parameters obtained with Hydrograph 1 and w1 = 0.1, the observed
outflow is not included within the produced fuzzy band in most cases (Figure 16a). How-
ever, the shape of the observed outflow is similar to the produced fuzzy bands, suggesting
that the deviation may be due to the different contribution of incremental flow in each
event. The values of the modified measure are 6.8537, 10.8548, and 4.8134 (Table 2). As
aforementioned, the property of inclusion (which is expressed by the modified measure
E1) is in conflict with the goal of low uncertainty, which is expressed by the measure E3
(Table 2).

Table 2. Modified measure E1 (property of inclusion) and E3 (uncertainty) by testing weights w1 = 0.1
and w1 = 1 and applied to Hydrographs 1 (training) and 2, 3, and 4 (validation).

Training Validation

Hydrograph 1 Hydrograph 2 Hydrograph 3 Hydrograph 4

w1 = 0.1

E1 3.8382 6.8537 10.8548 4.8134
E3 18.8438 24.9167 41.3546 20.9019

w1 = 1

E1 0.7458 0.6556 1.1253 0.4815
E3 84.5021 79.5274 144.0766 75.1660

These fuzzy parameters showed a good skill to produce operational forecasts based
only on inflow to the reach. The results were encouraging, particularly considering that
incremental flow was important in comparison with the inflow to the reach. The parameter
w1 could be used to control whether the emphasis should be placed on inclusion of the
observations within the fuzzy band or in narrowing the uncertainty of the predictions. It
should be noted that important hydrograph’s characteristics were simulated with a high
degree of accuracy, for example, the volume of the hydrograph, the peak flow, the lag time,
and the duration of the hydrographs, among others.

In this validation exercise, the effectiveness of behavioral parameters was tested
against an alternative parameter configuration proposed by Pedersen and Chipperfield [55],
who suggested to simplify the approach by eliminating the use of the particle’s previous
best-known position by setting c1 = 0. The performance of this option was lower than
that of the traditional values for behavioral parameters in the examined case. The small
improvement in computation time was not found to be relevant because the large com-
putation time is caused by the simulation (based on the extension principle) and not by
the topology of the network and the corresponding update of the positions of the swarm.
Therefore, the simplification of the topology of the swarm in this problem cannot win
computational time and leads to poorer results.

A critical point of which these kind of studies should be aware is the number of
data. For instance, the approach of the ANFIS system based on the Wilson, 1974 data [10]
is not a safe choice since the ANFIS requires several variables. Furthermore, the use of
sophisticated non-linear Muskingum models with either 10 [54] or significantly large [56]
calibrated parameters, with only 18 sets of data available, have the risk of overtraining.
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A disadvantage of the proposed methodology is the high computational time con-
sumption required and secondly, the selection of the proper weight w1, which differentiates
the solution. However, (1) the production of a functional uncertainty (2) with parameters
that make physical sense and (3) the inclusion of the observed data to a high degree,
especially near the maximum value, will be the determinant criteria in the selection of the
weight. For instance, in the case of the third example, a large quantity of w1 leads to an
unfunctional uncertainty as well as an irrational values for the parameter x.

An extension of the proposed methodology could be the application of a nonlinear
form regarding the Muskingum model. However, two limitations must be taken into
account. The first one is that a significant number of data is required for calibration, and
the second is the difficulty in the incorporation of the fuzziness. Indeed, by using the linear
Muskingum theory, an explicit relation exists to determine the outflow with respect to the
parameters K and x (and α for lateral flow), while in the case of the nonlinear relation, a
process with many steps is required. Hence, in the first case, the extension principle can be
directly applied to determine the selected h-cuts.The more traditional optimization prob-
lems are gradient-based and local search algorithms, and hence the final optimum solutions,
may depend on the consideration of the initial point. The evolutionary algorithms, such as
genetic algorithm (GA) and swarm intelligence, has an advantage that overcomes this diffi-
culty. Such global optimizers are in most cases simple, flexible, and efficient. However, it
lacks in-depth understanding of how such algorithms may converge and how quickly they
can converge to the global optimum, and hence, this point is a topic for further investiga-
tion [57]. The PSO method is selected because of its simplicity and since it has been applied
in the examined problem of river routing with satisfactory results ([21,58,59]). Indeed, [60]
suggested that their outcomes confirmed that the PSO algorithm estimated the parameters
in a complex nonlinear Muskingum model with high accuracy along with a fast rate of co-
nvergence. In addition, in the examined case, which is a calibration problem, we can sup-
pose a possible range of the parameters, and hence, a randomly created initial swarm can
be easily constructed. The use of other heuristic algorithms is challenging especially in more
complex simulation where a lateral flow exist, and the no linear Muskingum model may
be adopted. For instance, the use of hybrid simulated annealing-PSO methods [61]) seem
promising alternatives for further work. As it is written in [61], many algorithms introduce
ideas that could be easily exported to other methods with varying degrees of compatibility.
In [62], these hybrid models were proposed in the case of a water-based algorithm (e.g., [62]).
For instance, by a similar way with the PSO, rain-fall optimization algorithm (RFO) has
been applied as a new, naturally inspired algorithm based on behavior of raindrops with
an effective approach [63].

The utility of the method might be extended in the cases of the rain-runoff models
since some conceptual models use the well-known Muskingum method to express the quick
flow development (instead of the unit hydrograph theory) and, with other parameters, the
slow flow development [1].

5. Concluding Remarks

A general methodology to assess the parameter of the linear Muskingum model
for river routing by considering parameters as fuzzy symmetrical triangular numbers is
presented in this study. The expanded linear Muskingum storage method presented by
O’Donnel (1985) [11] is used also in cases where a lateral flow occurs. Since the calibration
model is an optimization of a case model, the PSO is used since it enables us to use a
simulation process for each possible solution that composes the swarm. Hence, for each
candidate solution, the extension principle of fuzzy sets and logic is activated in order to
determine a fuzzy band of the outflow.

A fitness function is established that expresses the divergence of the produced fuzzy
band to include all data. It takes into account the distance between the central values
and the observed data, the total width of the fuzzy band and the distance between the
maximum value of the outflow, and the right hand of the estimated outflow. A critical
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point is that the aim of divergence of the produced fuzzy band to include all data (property
of inclusion) is in conflict with the aim of minimization of the total width of the produced
fuzzy band. A weighted sum of the above goals composes the fitness function, whilst a
functional width that contains most of the observed data is applied to select the weights of
the fitness function.

Four case studies from the references are used to benchmark the proposed method,
including smooth and non-smooth hydrographs with lateral flow and a double peak
hydrograph. The last case study includes a complicated, real case study, and it is used
for validation purposes. The proposed methodology improve results with the use of a
fuzzy estimation with the aim of fuzzy parameters closer to nature; the new methodology
increases the safety of the prediction; and furthermore, the produced fuzzy band can
include, to a significant degree, the observed data and the output of the existent crisp
methodologies even if they include a more complex formulation. Regarding the PSO
model, results suggest that 100 iterations of a swarm with 50 members is sufficient to
approach the final solution, while the candidates solutions converge to the total optimum.
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