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Abstract: Data-driven methods using synchrophasor measurements have a broad application
prospect in Transient Stability Assessment (TSA). Most previous studies only focused on predicting
whether the power system is stable or not after disturbance, which lacked a quantitative analysis of
the risk of transient stability. Therefore, this paper proposes a two-stage power system TSA method
based on snapshot ensemble long short-term memory (LSTM) network. This method can efficiently
build an ensemble model through a single training process, and employ the disturbed trajectory
measurements as the inputs, which can realize rapid end-to-end TSA. In the first stage, dynamic
hierarchical assessment is carried out through the classifier, so as to screen out credible samples step
by step. In the second stage, the regressor is used to predict the transient stability margin of the
credible stable samples and the undetermined samples, and combined with the built risk function to
realize the risk quantification of transient angle stability. Furthermore, by modifying the loss function
of the model, it effectively overcomes sample imbalance and overlapping. The simulation results
show that the proposed method can not only accurately predict binary information representing
transient stability status of samples, but also reasonably reflect the transient safety risk level of power
systems, providing reliable reference for the subsequent control.

Keywords: transient stability assessment; disturbed trajectory; risk quantification; snapshot
ensemble; long short-term memory

1. Introduction
1.1. Background and Motivation

With the continuous increase of renewable energy penetration and the access of a large
number of power electronic equipment, the inertia of modern power system continues
to decrease, so the resistance of the grid to disturbances becomes weaker. Therefore, the
security and stability of the power system ushered in more severe challenges. In order
to prevent serious chained failures and even large-scale blackouts caused by transient
instability, it is essential to explore efficient and reliable tools for power system transient
stability analysis.

Traditional TSA methods, such as time-domain simulation [1] and transient energy
function method [2], rely on the establishment of a physical model of the power system,
which cannot meet the accuracy and speed requirements of large-scale power grid online
assessment at the same time [3]. The smart grid uses a large number of sensors and
advanced communication technology to realize the automation of the power system. Its
typical equipment is wide area measurement system (WAMS), which is composed of a
large number of phasor measurement units (PMUs) [4,5]. Real-time monitoring of power
grid dynamic parameters can be realized through high-speed sampling of PMU, which
brings new opportunities for the development of data-driven TSA methods.

At present, data-driven TSA studies have two mainstream approaches at the level
of model input selection. The first approach is to construct single-point features by using
PMUs measurements at isolated time sections (such as the prefault moment, the moment

Sustainability 2021, 13, 6953. https://doi.org/10.3390/su13126953 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5094-3256
https://doi.org/10.3390/su13126953
https://doi.org/10.3390/su13126953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13126953
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13126953?type=check_update&version=1


Sustainability 2021, 13, 6953 2 of 21

of fault occurrence, and clearance) [6,7]. Such data are difficult to describe the continuous
evolution trend of the power system in the transient process. Another approach is to use
PMUs to continuously collect dynamic response data of electrical quantities to construct
time-series trajectory features [3,8,9], so that the inputs can more fully reflect the dynamic
behavior of the system. Such data can be continuously updated over time, which is
conducive to the continuous hierarchical assessment process of the model. This paper
adopts the second approach to carry out research.

1.2. Literature Review
1.2.1. Ensemble Learning Model for TSA

Due to the strong non-autonomy and nonlinearity of the power system, an individual
transient stability prediction model may have large fluctuations in its prediction accuracy
when faced with different operating conditions of the power grid. Ensemble learning
method uses a certain combination strategy to gather multiple base learners into one, absorb
the strengths of all, break through the limitations of the singularity and one-sidedness
of model parameters, and show higher prediction accuracy and generalization ability.
Reference [10] used stacked autoencoder to extract multi-level features from raw inputs,
so as to build multiple support vector machines (SVMs) with different parameters and
integrate them. Reference [6] adopted the centralized learning method in the training
process, randomly selected training samples, input features, number of hidden neurons,
and activation function, thereby establishing an ensemble classifier composed of multiple
extreme learning machines. Reference [11] used bootstrap sampling to generate different
sub-datasets, and then built sub-classifiers with randomly selected features to obtain the
ensemble model. Reference [12] proposed an ensemble classifier based on convolutional
neural network (CNN), which integrates CNNs with different structural parameters for
prediction in order to overcome the contingency of network structure selection. Existing
studies have shown that, by constructing an ensemble learning model, the performance
of transient stability prediction can be significantly improved. However, due to frequent
changes in the operating state and network topology of the power grid, the TSA model
needs to be maintained and updated regularly to maintain high prediction accuracy [7].
The ensemble models proposed in the above literature have cumbersome tuning process
and high training cost, so the maintenance time is long and it is difficult to quickly deploy
to the system.

1.2.2. Prediction of Transient Stability Index

Most of the previous studies only regard TSA as a binary problem (stable or not), and
rarely consider the transient stability index of the system such as stability margin, so the
reference information provided for dispatchers is not detailed enough. In [13], the critical
clearing time (CCT) was employed as the transient stability margin, and the elastic net
model was built for regression prediction of CCT. However, the binary classification results
of the model may produce missing alarms or false alarms, so it is difficult to guarantee
the reliability of the assessment if the margin is predicted indiscriminately on this basis.
Moreover, the actual values of CCT need to be calculated by a large number of time-
domain simulations. Reference [14] used a hierarchical assessment method to screen out
credible instances, and built a stable regression model and an unstable regression model to
predict the degree of transient stability of credible instances. Although this method can
effectively improve the reliability of prediction, it lacks further quantitative classification of
the security risk level of the power system, and it is not intuitive enough in terms of risk
display. Reference [15] divided the sample space according to the confidence [11] of the
prediction results, proposed the concept of critical region, and graded the severity of the
operation mode of the power grid based on the utility theory, so as to make the TSA results
more intuitive. However, this method needs to cooperate with the time domain simulations
to verify the samples in the critical region, which is contrary to the requirements of real-time
and rapid online assessment.
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The above literature review indicates that the complexity reduction of TSA ensemble
learning models and the further risk quantification of transient stability classification results
are issues that have not as yet been studied in sufficient depth. The limitations of existing
studies are mainly reflected in the following aspects. Firstly, most of the existing studies on
TSA ensemble models mainly focused on the differences and diversity of the base models.
How to quickly generate multiple base models with different parameters in a short time
requires further research. Secondly, after predicting and classifying the transient stable
status of the power system, it is necessary to further analyze its transient stability margin
and formulate reasonable risk grading rules. Moreover, missing alarms and false alarms in
the assessment should be minimized or even eliminated to ensure the safety and reliability
of the power system.

1.3. Proposed Method and Contributions

In this paper, a two-stage TSA method based on snapshot ensemble LSTM network
that employs the time series of real-time measurements after disturbance as inputs is
proposed. In this regard, the main contributions of this paper are summarized as follows:

(1) By adopting the cosine annealing learning rate schedule, multiple global or local opti-
mal LSTM network models can be traversed in a single training process to complete
snapshot ensembling. This method not only can effectively improve the prediction
accuracy, but also significantly reduces the time complexity of the TSA ensemble
model, which is conducive to the rapid completion of the model training update.

(2) A risk function considering transient stability probability and transient stability index
(TSI) is proposed to realize the risk grading of transient angle stability, which provides
a reasonable reference for subsequent emergency control.

(3) Contrarily to [8,12], which simply give higher weight to the instability term in the
loss function and failed to improve the overall prediction accuracy of the model, this
paper takes into account the sample imbalance and overlapping, and modified the
cross entropy function to improve the loss contribution of hard samples and unstable
samples in the model training, thus optimizing the direction of gradient descent.
Combined with the proposed hierarchical prediction framework, the model with
modified loss function can be used to screen out credible samples more efficiently.

1.4. Organization of the Paper

The remainder of this paper is organized as follows: Section 2 introduces the principles
of the snapshot ensemble LSTM network. Section 3 proposes a two-stage prediction method
combining classification and regression for TSA. Section 4 proposes a model improvement
method for sample imbalance in TSA. Section 5 includes comprehensive case studies and
discussions. Finally, the paper is concluded in Section 6.

2. Model Principle Analysis
2.1. Long Short-Term Memory Network

LSTM network, which is an excellent variant of recurrent neural network, has been
widely used for TSA [8,16,17]. Its special memory structure can effectively solve vanishing
and exploding gradient problem in the training process of long sequence data, and capture
long-term dependent information in time series data. LSTM unit adopts a gating mecha-
nism to control the transmission path of information. As shown in Figure 1, LSTM unit
consists of a memory cell, a forget gate, an input gate and an output gate. The forget gate
determines what information needs to be forgotten from the memory cell. The input gate
controls the impact of the output at the previous moment and the input data at the current
moment on the input of the memory cell. The output gate controls how much information
the internal state of the current moment needs to be output to the outside status.
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The calculation formulas among the variables in Figure 1 are described as follows:

ft = σ(W f [ht−1, gt] + b f ) (1)

it = σ(Wi[ht−1, gt] + bi) (2)

c̃t = tanh(Wc[ht−1, gt] + bc) (3)

ot = σ(Wo[ht−1, gt] + bo) (4)

ct = ft � ct−1 + it � c̃t (5)

ht = ot � tanh(ct) (6)

where ft, it, ot, ct, c̃t, gt, and ht are respectively the forget gate, input gate, output gate,
memory cell state, memory cell candicate state, input vector and the output vector at the
current moment; ct−1 and ht−1 are respectively the memory cell state and the output vector
at the previous moment, W f , Wi, Wc, Wo are the weight matrices; b f , bi, bc, bo are the bias
vectors;� is the Hadamard product; and σ is the sigmoid function, which is mathematically
described as

σ(x) =
1

1 + e−x (7)

Multiple LSTM layers are stacked and connected to dense layers to form a complete
LSTM network. If used as a regressor, the number of neurons in the output layer and
whether the output layer employs an activation function depends on the target variable. If
used as a binary classifier, the output layer contains only 1 neuron, and the class probability
output is achieved after the sigmoid transformation shown in Equation (8).

ŷ = σ(θTH) (8)

where θ is the weight vector connected to the output layer, H is the output vector of the
previous layer, ŷ ∈ (0, 1) is the prediction probability of the model output, and in this
paper, it refers to the transient instability probability.

2.2. Snapshot Ensembling Strategy

Constructing a reasonable ensemble model can effectively integrate the different map-
pings learned by each base model, and further improve the overall prediction performance.
However, the time-consuming and computational cost of the general ensemble learning
method is too high, which hinders its application in engineering practice [12]. In this paper,
the snapshot ensembling [18] strategy is adopted to quickly integrate multiple different
LSTM networks without increasing memory overhead.

For a neural network with a given structure, its weight parameter combination can
be regarded as a point in a high-dimensional weight space, so there are infinite multiple
weight combinations for any network structure. The process of training the network
through the stochastic gradient descent (SGD) algorithm is essentially searching for the
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parameter combination corresponding to the lowest point of the loss function hypersurface,
that is, the global optimal solution. Due to the non-convexity of the loss function, there
are often multiple local optima on the hypersurface, and the deep neural network usually
adopts optimizer such as Adam [19] to adjust the learning rate adaptively to avoid falling
into local optima. However, the local optimal solution models are not meaningless. They
learn the internal rules of data from different perspectives, and to some extent, they capture
the representations that are ignored by the global optimal solution model. Snapshot
ensembling strategy introduces a cyclic cosine annealing learning rate schedule to SGD to
explore multiple local minima in the loss hypersurface. The expression of the learning rate
α is

α(j) =
α0

2

[
cos
(

πmod(j− 1, dJ/Ce)
dJ/Ce

)
+ 1
]

(9)

where j is the iteration times, α0 is the initial learning rate, J is the total number of iterations
during training, C is the cosine annealing cycles. In order to visually show the change
curve of the learning rate with cosine annealing, set α0 = 0.05, J = 200, and C = 5, and the
learning rate schedule is shown in Figure 2.
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As shown in Figure 2, with the increase of epochs, the learning rate fluctuates sharply
and cyclically. At the beginning of the training process, due to the sharp drop in the
learning rate, SGD will quickly converge to a local minimum in the loss hypersurface,
and take a snapshot to add the model of the current node to the collection. After the
snapshot is completed, SGD is warm restarted with a large initial learning rate, escapes the
current local minimum, and starts the exploration of the next local minimum. Through
this mechanism, the SGD propagation process will collect multiple local optimal models
to achieve ensemble learning. Because the mapping relationships established by different
weight combinations of the network are different, the diversity of the base learners is
ensured, and the ensemble model will show better performance.

Unlike traditional ensemble learning that requires repeated construction of sub-models
for training, snapshot ensembling can generate multiple models in the same training
process, saving a lot of time and computing power. When electrical power equipment
overhaul and other factors cause changes in the grid topology, or regular maintenance,
the snapshot ensemble TSA model can be quickly adjusted to complete the update of the
network weight, and put into online implementation in time.

2.3. Optimal Weighted Combination Method

After generating a series of base learners through snapshot ensembling, it is necessary
to combine their prediction results into one through a certain combination strategy. In this
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paper, the error reciprocal method is adopted to carry out a weighted combination of each
base learner, and the calculation formula of the weight coefficient is

wm =

1
N
∑

i=1
ei

m

1
N
∑

i=1
ei

1

+ 1
N
∑

i=1
ei

2

+ . . . + 1
N
∑

i=1
ei

M

(10)

where M is the number of base learners, wm is the weight coefficient of the m-th base learner,
N is the total number of training samples, and ei

m is the error of the m-th base learner on
the i-th training sample.

Therefore, the final prediction result of the ensemble model can be expressed as

ŷ =
M

∑
m=1

wmŷm (11)

where ŷ and ŷm are the prediction results output by the ensemble model and the m-th base
learner, respectively.

Combining Equations (10) and (11), it can be seen that the base learner with a smaller
error will be given a larger weight coefficient. After model integration, the deviations
of the base learners in different directions will be offset with each other, and the overall
prediction accuracy will be further improved.

3. Proposed Model for TSA
3.1. Two-Stage Assessment Mechanism Based on Classification and Regression
3.1.1. Hierarchical Real-Time Classification Framework

In the actual dynamic monitoring of the power system, the real-time measurement
data transmitted by PMUs to the dispatching and communication center is continuously
accumulated, which contains a wealth of dynamic trajectory information of the power grid.
Based on the recursive structure of LSTM, a sliding time window is constructed to select
the sub-sequences of the real-time disturbed trajectory measurements as the inputs of the
classifier, which can realize the continuous hierarchical assessment process. As shown
in Figure 3, it is the active power output data set obtained from generator 30 in the New
England 39-bus system under various load levels. Figure 3a,b respectively correspond to
the distribution of data in stable and unstable conditions under different response times,
and the data have been normalized.
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If the distribution of a feature in two different classes is similar, the correlation between
the feature and the predicted target variable is weak. It can be seen from Figure 3a that
the data distributions in stable and unstable conditions are highly similar. It can be seen
from Figure 3a that the data distributions under stable and unstable conditions are highly
similar, indicating that the feature has a weak correlation with transient stability in the
early stage after fault clearance. In contrast, Figure 3b shows the distributions of data in
two different conditions at the 50th cycle after fault clearance. The comparison shows
that the electrical features have strong time-varying characteristics, and as time goes by,
the correlation between the features and the transient stability of the system will become
stronger. Therefore, in the hierarchical assessment process, the reliability of the prediction
results output by the ensemble LSTM classifier is improved step by step. Similar to the
confidence index proposed by [11], this paper defines the credibility index R to measure
the reliability of the prediction results, and its expression is

R = max{P(C1|x ), P(C0|x )} (12)

where P(C1|x ) = ŷ is the probability that the classifier predicts that x is an unstable sample,
P(C0|x ) = 1− ŷ is the probability that the classifier predicts that x is an stable sample.
Obviously, R ∈ [0.5, 1).

In order to gradually screen out credible samples, set credible instability threshold
and credible stability threshold to Ru and Rs respectively. When R = P(C0|x ), if R > Rs,
the instance is judged to be credible stable, otherwise it is marked as undetermined. When
R = P(C1|x ), if R > Ru, the instance is judged to be credible unstable, otherwise it is
marked as undetermined. When entering the next round of assessment cycle, the real-
time trajectory measurements corresponding to the undetermined sample are dynamically
extended, the time window slides forward to update the time series data, and then the
data is input into the ensemble LSTM classifier to determine again until the specified
upper limit of response time is reached. The transient information contained in the early
response trajectory measurements corresponding to some critical samples is not rich, and it
is difficult for the classifier to distinguish them reliably. However, the potential connection
between trajectory information and transient stability will continue to strengthen and
develop, and the classifier will output more reliable prediction results in the next round
of assessment.

3.1.2. Stability Margin Prediction and Risk Quantification

On the one hand, for samples that are still marked as undetermined by the ensemble
LSTM classifier after reaching the specified upper limit of response time, they need to be
judged again through the second line of defense. On the other hand, for samples that are
judged to be credible stable, it is necessary to further obtain their transient stability margins
to provide a more targeted reference for subsequent power system dispatching and control.
Therefore, for the above two types of samples, this paper constructs an ensemble LSTM
regressor to quantitatively predict their transient stability margins. If the assessment result
is instability, early warning should be given as soon as possible, and dispatchers can make
timely adjustments and decisions.

References [20,21] construct the transient stability margin index of the power system
based on CCT. However, CCT needs to be tested repeatedly to determine through multiple
time-domain simulations, which is cumbersome and extremely time-consuming for a large
number of samples, and is difficult to be applied in actual large-scale power grids. The
post-disturbance dynamic response curves of generator power angles in a power system
under different operation conditions are shown in Figure 4. It can be seen that the variation
of generator power angles can directly and effectively reflect the transient stability status
of the power grid.
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Therefore, this paper defines TSI [22] as Equation (13), and employs it as the target
variable predicted by the ensemble LSTM regressor.

TSI =
360− |∆δmax|
360 + |∆δmax|

(13)

where ∆δmax refers to the maximum power angle difference between any two generators
in the system. Obviously, TSI ∈ (−1, 1). When TSI < 0, the system is unstable. When
TSI > 0, the system is stable, and the greater TSI, the greater the transient stability margin
of the system.

Although TSI can quantitatively reflect the stability margin of the system, it is not re-
fined enough in terms of risk indication. Therefore, it is necessary to construct a reasonable
risk function and classify the risks so that the dispatcher can take more specific subsequent
control measures.

The strong nonlinearity and non-autonomy of the power system determine the non-
linearity of the risk function. As TSI decreases, its corresponding risk indicators should
rise faster and faster. Therefore, this paper adopts an exponential utility function to de-
scribe the degree of risk. The risk function S should consider both the system’s transient
stability probability and the severity of failure [23], so this paper defines the risk factor:
γ = P(C0|x ) · TSI. Set the threshold γth, when γ > γth, the system is considered to be
hyperstable, S = 0. When γ < 0, the system is considered to be unstable, S = 3. When
0 ≤ γ ≤ γth, the risk function expression is

S = Ae−γ + B (14)

where A and B are coefficients.
Since the risk function is a continuous function, substituting the coordinates (γth,0)

and (0,3) into Equation (14), the risk function on the domain can be obtained as

S =


0 γ > γth

3
1−e−γth

e−γ + 3e−γth

e−γth−1
0 ≤ γ ≤ γth

3 γ < 0
(15)

In the process of dynamic security monitoring of the actual power grid, dispatchers
should not only pay attention to the instability situation, but also pay attention to the
high-risk situations near the stability domain boundary, and formulate preventive control
measures in time to improve the stability of the system. This paper divides the risk into the
following five ranks
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Sr =


0 S = 0
1 0 < S ≤ Sth1
2 Sth1 < S ≤ Sth2
3 Sth2 < S < 3
4 S = 3

(16)

where Sr denotes the risk rank of the power grid, and Sth1 and Sth2 are the thresholds for
grading risk, which need to be set reasonably according to the security risk specification
requirements and sample conditions of the actual power grid. Sr = 0 means the system is
hyperstable and there is no risk of instability. Sr = 1 means the system is basically stable
and the risk of instability is low. Sr = 2 means the system is weak-stable and the risk of
instability is moderate. Sr = 3 means the system is critical stable and the risk of instability
is high. Sr = 4 means the system will be unstable.

3.2. Input Features of Model

For data-driven TSA methods, the performance of model predictions largely depends
on the selection of input features, so it is particularly critical to construct a set of features
that can accurately reflect the dynamic behavior of the power system. Taking into account
the strong abstract characterization ability of the LSTM network and the real-time nature of
PMU data acquisition, this paper selects the real-time disturbed trajectories of underlying
measurements as shown in Table 1 as the feature set, where n1, n2, n3, and n4 are respectively
the number of bus, transmission lines, generators, and load nodes in the power grid, and s
is the number of sampling times.

Table 1. Input feature set.

Feature Type Feature Description Feature Size

1 Active and reactive power output of generator 2n1 × s
2 Active and reactive power injection of load 2n2 × s
3 Active and reactive power of line transmission 2n3 × s
4 Magnitude and phase angle of bus voltage 2n4 × s

Feature types 1 and 2 characterize the power supply and demand in the system,
which are closely related to the operating conditions and fault conditions of the system.
Feature type 3 can implicitly describe the topology information of the system [24], and
Feature type 4 can reflect the dynamic changes of the system very quickly [25,26]. Each
type of feature complements each other, cover all bus and lines in the power grid, and can
comprehensively and quickly reflect the dynamic behavior of the power system.

The distribution of the underlying measurement data is usually skewed, and the
dimensions of each electrical quantity are different. In order to improve the prediction
performance and accelerate the convergence of the model, the raw measurement data
needs to be preprocessed before being input to the model. First, perform Yeo-Johnson
power transformation on the raw data, the calculation formula is

.
xt =


(xt+1)β−1

β β 6= 0, xt ≥ 0
ln(xt + 1) β = 0, xt ≥ 0
(−xt+1)2−β−1

β−2 β 6= 2, xt < 0
− ln(−xt + 1) β = 2, xt < 0

(17)

where xt and
.
xt are the transformed pre-value and post-value of a feature in the sample se-

quence at time t respectively, β is the transformation parameter, whose value is determined
by the maximum likelihood estimation method.
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Yeo-Johnson power transformation can correct the skewness of the raw feature data,
convert a skew distribution to a Gaussian distribution, thereby improving the modeling
accuracy. Next, perform Z-Score standardization on the data, the calculation formula is

..
xt =

.
xt − µ

σ
(18)

where
..
xt is the normalized value, µ and σ are the mean and standard deviation of feature

data at time t after Yeo-Johnson power transformation, respectively.
All feature data in the sample set obeys the standard normal distribution after Z-Score

standardization, which is in the same order of magnitude. Standardization can eliminate the
influence of excessive numerical differences between the features of different dimensions
on the learning of the ensemble LSTM model, and accelerate the algorithm convergence.

3.3. Network Structure of Model

This paper constructs a five-layer network model as shown in Figure 5 as the base
learner for TSA. In Figure 5, FC represents a fully connected layer, and BN represents batch
normalization [27]. FC-1/sigmoid(tanh) means that the fully connected layer contains 1
neuron, and the activation function is sigmoid function (classifier) or tanh function (re-
gressor). Similarly, LSTM-64/BN/ReLU means that the LSTM layer contains 64 neurons,
the data is batch normalized before the activation function to facilitate gradient propaga-
tion, and the Rectified Linear Unit (ReLU) is employed as the activation function, where
ReLU(x) = max(0, x).
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The first part of the model consists of 3 LSTM layers, and the number of neurons
decreases layer by layer, which can realize the progressive extraction of abstract high-
order features from the input time series data. After the time series passes through three
LSTM layers, the feature data points are reduced from 2(n1 + n2 + n3 + n4)× s to 16. The
latter part of the model is composed of two FC layers, which can establish a complex
nonlinear mapping between advanced features and the classes or margins of power system
transient stability.

In practical applications, the structural parameters of the LSTM network can be
adjusted according to the specific scale of the power system, but it does not affect the
subsequent analysis of the effectiveness of the proposed method.
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3.4. Indicators for Performance Evaluation

In actual power system dispatching, the TSA model’s missing alarms for instability
conditions will bring huge security hazards to the system, while the cost of false alarms
for stable conditions is relatively small. Considering the different costs of misclassification
of the two classes of samples in TSA, in addition to the conventional indicator accuracy
(PACC), this paper also introduces the missing alarm rate (PMAR) and false alarm rate
(PFAR) as evaluation indicators of the classifier. The confusion matrix of TSA is constructed
as shown in Table 2, where TP and FP respectively denote the number of samples predicted
by the classifier as unstable while actually labeled as unstable and stable, TN and FN
respectively denote the number of samples predicted by the classifier as stable while
actually labeled as stable and unstable.

Table 2. Confusion matrix of transient stability assessment (TSA).

Confusion Matrix Unstable (Predicted) Stable (Predicted)

Unstable (Actual) TP FN
Stable (Actual) FP TN

The calculation formulas for each evaluation indicator of the classifier are

PACC =
TP + TN

TP + TN + FP + FN
(19)

PMAR =
FN

TP + FN
(20)

PFAR =
FP

TN + FP
(21)

Meanwhile, for the output of each stage of hierarchical prediction, this paper defines
the indicator cumulative hit rate (ICHR) as Equation (22), which denotes the ratio of the
number of credible samples output by the hierarchical model up to the current stage to the
total number of test samples.

ICHR =
NCS + NCU

Ntest
(22)

where Ntest is the total number of test samples, NCS and NCU are respectively the number
of accumulatively identified credible stable samples and credible unstable samples.

For the transient stability margin regressor, the mean absolute error (EMAE) is em-
ployed as the evaluation indicator, and its expression is

EMAE =
1

Ntest

Ntest

∑
i=1

∣∣TSIi − TŜIi
∣∣ (23)

where TSIi and TŜIi are the actual and predicted values of TSI of the i-th test
sample, respectively.

4. Improvements Considering Sample Imbalance and Overlapping

The essence of deep learning model training is to minimize the loss function through
optimization algorithms. In the binary classification task of predicting whether the system
is stable or not, the model usually employs cross entropy as the loss function, and its
expression is

LCE =

{
− ln ŷ y = 1
− ln(1− ŷ) y = 0

(24)

Due to the robustness and self-healing ability of modern smart grids, the power system
can transition to a steady state by itself in most cases after the disturbance is cleared. In the
actual power system TSA, there is a significant sample imbalance problem, which means
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that there are far more stable samples than unstable samples that can be used for model
training. In order to minimize cross entropy during the training process, the model is more
inclined to predict unknown samples as stable samples, thereby sacrificing the prediction
accuracy of unstable samples.

Aiming at the problem of sample imbalance, the common improvement methods
mainly include the following two:

• In terms of input data, undersampling, oversampling, and data augmentation are
used to balance the ratio of the two classes of samples [28,29];

• In terms of algorithm, weighted cross entropy is employed to make the model cost-
sensitive [8,12].

However, all of the above methods will lead to an increase in false alarm results,
because another key factor that affects the performance of the model is not considered: there
are some overlapping areas in the feature vector space of the two classes of samples [30], and
the samples in these areas are called hard samples, and the TSA model’s prediction results
for these samples have low credibility and difficult to classify. To solve this problem, [31]
used SVM as the classifier, divided the feature space into credible area and incredible area
according to the optimal separating hyperplane constructed by support vectors, and built
several auxiliary classifiers as secondary criteria to identify the incredible area samples of
the main classifier. However, this method cannot essentially improve the level of credibility
of the prediction results of hard samples, and the choice of the main classifier lacks scientific
guidance and is subjective, which makes it difficult to ensure that the prediction results are
completely credible. Therefore, this paper makes improvements to the algorithmic defects
of cross entropy to overcome the problem of sample imbalance and deepen the mining of
hard samples.

It can be deduced from Equation (7) that σ(−x) = 1− σ(x). Substituting Equation (8)
into Equation (24), the following can be obtained:

LCE =

{
− ln σ(θTH) y = 1
− ln σ(−θTH) y = 0

(25)

The expression of the modified cross entropy is

LMCE =

{
−ε · σ(−λθTH) ln σ(θTH) y = 1
−σ(λθTH) ln σ(−θTH) y = 0

(26)

where ε and λ are the weight coefficient and the penalty coefficient, respectively.
By setting ε > 1, the loss contribution of unstable samples can be improved, and the

model’s sensitivity to the cost of unstable samples can be improved, thereby reducing
missing alarms. In this paper, set ε = Ns/Nus, where Ns and Nus denote the number of
stable samples and the number of unstable samples in the training set, respectively. Setting
λ to a larger positive value enables hard samples to obtain a larger gradient than easy
samples during SGD iteration, thereby correcting the optimization direction of the model.
Take the unstable instance y = 1 as an example, the higher the instability probability ŷ (i.e.,
the larger θTH) given by the model for the unstable instance, the smaller the penalty factor
σ(−λθTH). When ŷ is large enough, σ(−λθTH) will be very close to 0, thereby reducing
the loss contribution of easy samples in the model training process, making the model
more focused on the mining of hard samples. The same is true for stable instances (y = 0).
In this paper, set λ = 7.

5. Case Study
5.1. Test System and Data Generation

The New England 39-bus system integrated with wind farm is used as a test system to
verify the effectiveness of the proposed method. The synchronous generators connected to
bus 35 and bus 37 in the original system are replaced by doubly fed induction generators



Sustainability 2021, 13, 6953 13 of 21

(DFIGs). The system consists of 8 synchronous generators, 2 DFIGs, 12 transformers, 39
bus, and 34 transmission lines, whose topology is shown in Figure 6.
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Figure 6. Topology of the New England 39-bus system integrated with wind farm.

The time-domain simulations are conducted by PSD-BPA to generate an enormous
database. The synchronous generators are set as fourth-order models and the loads are set
as constant-impedance models. Each DFIG is set as GE wind power generator model, and
its capacity is equal to that of the corresponding original synchronous generator. Detailed
parameters of this system can be found in [32]. In order to generate a reasonable and
comprehensive dataset, the operating conditions of the test system are randomly varied.
Considering 10 different load levels of 80%, 85%, . . . , 125%, while adjusting the output of
each synchronous generator to ensure the convergence of the power flow and the deviation
of each bus voltage within 0.05 p.u. The output of each wind farm fluctuates randomly
between 30% and 100% of its rated capacity, and the variation of load and wind farm
output are shared by synchronous generators in proportion to their rated capacity. The
contingencies are mainly three-phase permanent short-circuits at each bus and 5 locations
(20%, 35%, 50%, 65%, and 80% lenth) of each transmission line. The failure duration is set
from 120 to 220 ms with a step length of 20 ms. The simulation time is 6 s, and the sampling
frequency is 60 Hz. Finally, a total of 10× 34× 6× 6 = 12,240 simulation results can be
generated, including 7419 stable samples and 4821 unstable samples. Using stratified
random sampling, all samples are divided into training set, validation set, and test set at
a ratio of 3:1:1 to ensure the same ratio of stable/unstable samples in each set. The test
set is completely unknown during the offline training of the TSA model, which is used to
simulate real-time input data during online prediction.

5.2. Effectiveness Analysis of Ensembling Strategy

The length of the sliding time window is set to 10 cycles. The following discussion
takes the sampling interval as the first 10 cycles after fault clearance and the classifier with
a classification threshold of 0.5 as an example to discuss the effectiveness and feasibility of
the proposed method. The hyperparameters of the proposed snapshot ensemble LSTM
network can be mainly divided into three types: structural parameters, loss function
parameters and learning rate parameters. The first two types of hyperparameters have
been given above, and the learning rate parameters in Equation (9) are set as follows:
α0 = 0.05, J = 200 and C = 4. In order to intuitively compare the differences in the training
process between the cyclic cosine annealing learning rate schedule and the typical learning
rate schedule, an LSTM network with the same structure using the Adam optimizer is
established. The training process of the two models is shown in Figure 7.
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In Figure 7, the red line denotes the snapshot ensembling, and the cyan line denotes
the Adam optimization with standard learning rates. It can be seen from Figure 7 that the
optimal loss values that the two curves converge to at the end of training are almost the
same, but the training processes of the two are quite different. The training loss value in
the early stage of the cyan line drops rapidly, and slowly decays after about 10 epochs, and
the curve is relatively flat. The evolution trend of the red line presents a state of twists
and turns, and the corresponding loss function values fall into 4 different local minima
at the 50th, 100th, 150th, and 200th epochs. After reaching a local minima, the curve
quickly rises and then drops again, showing a certain periodicity. In summary, the cyclic
fluctuations of the cosine annealing learning rate can enable gradient descent to obtain a
larger exploration domain on the loss hypersurface, so as to traverse and collect multiple
local optimal models.

In order to verify the effectiveness of the adopted ensembling strategy, the snapshot
ensemble LSTM classifier and each LSTM base classifier (respectively denoted as LSTMa,
LSTMb, LSTMc, LSTMd) are tested and compared on the same test set. The prediction
results are shown in Table 3.

Table 3. Prediction results of different long short-term memory (LSTM) classifiers.

Classifier PACC (%) PMAR (%) PFAR (%)

LSTMa 99.02 1.14 0.88
LSTMb 99.26 0.83 0.67
LSTMc 99.35 0.73 0.61
LSTMd 99.43 0.73 0.47

Ensemble LSTM 99.59 0.41 0.40

It can be seen from Table 3 that the PACC of each LSTM classifier is above 99%,
indicating that the LSTM network has a powerful multivariate time series data mining
capability, which is highly adaptable to high-dimensional, time-varying, and strongly
nonlinear power system data. The PMAR and PFAR of the ensemble LSTM classifier are
both lower than that of any base classifier, with the highest prediction accuracy, which
indicates that snapshot ensemble LSTM can effectively integrate the diversity of each base
learning, further improve the prediction accuracy and generalization ability, and verify
the effectiveness of the integration strategy used. From the results, the effectiveness of the
adopted ensembling strategy is verified.

5.3. Visual Analysis of Feature Extraction

T-distributed stochastic neighbor embedding (t-SNE) [33] is a nonlinear data dimen-
sional reduction algorithm that can project data sets in a high-dimensional Euclidean space
into a two-dimensional or three-dimensional embedding space to realize data visualization
while retaining a large amount of original information. In order to visually show the pro-
gressive representation learning process of the LSTM network for the underlying temporal
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features, this paper uses the t-SNE algorithm to project the original data of the test set and
the output of each LSTM layer onto a two-dimensional plane. The visualization results are
shown in Figure 8.
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It can be seen from Figure 8a that the distribution of samples in the original feature
space is highly discrete, and stable samples and unstable samples are doped and overlapped
with each other, which makes it difficult to demarcate an ideal stable boundary. According
to Figure 8b–d, it is shown that as the network deepens, samples of different classes are
gradually separated, forming more and more obvious clusters. After completing the feature
extraction of LSTM layers three times in sequence, a clear boundary has appeared between
the two classes of sample sets, showing a nearly linearly separable distribution state.

As explained above, the LSTM network has a strong temporal feature extraction
capability. By performing multi-level information distillation on the original input data,
it can transform advanced features that are strongly related to transient stability, thereby
realizing effective transient stability prediction.

5.4. Performance Comparison with Other Kinds of Classifiers

In order to further verify the superiority of the proposed model, the deep learning
classifiers deep belief network (DBN) and CNN, as well as the commonly used shallow
learning classifiers SVM and decision tree (DT) are built on the same data set as baseline
models. The DBN network adopts a four hidden-layer structure, and the number of neurons
in each hidden layer is 500-200-80-20. The CNN network consists of two convolutional
layers, two pooling layers, and two fully connected layers, and the convolution kernel
length is 3. SVM adopts radial basis function as the kernel function, and its optimal
hyperparameter combination is determined by grid search combined with five-fold cross-
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validation. DT adopts C5.0 algorithm. Except for snapshot ensemble LSTM and CNN,
the other model inputs are required to be one-dimensional vectors, so each time series
matrix in the sample set is flattened to one dimension according to the time dimension to
fit the corresponding classifiers. The performance of each model on the test set is shown in
Table 4.

Table 4. Test results of different kinds of classifiers.

Classifier PACC (%) PMAR (%) PFAR (%)

Ensemble LSTM 99.59 0.41 0.40
CNN 98.53 2.07 1.08
DBN 97.47 3.63 1.82
SVM 94.73 7.78 3.64
DT 92.28 9.96 6.27

It can be seen from Table 4 that the comprehensive prediction performance of the deep
learning models CNN, DBN, and ensemble LSTM is better than that of the shallow learning
models SVM and DT. The results show that the deep network structure can effectively
extract more generalized data representations from the underlying features, and then
establish a more accurate nonlinear mapping. Furthermore, after the multivariate time
series is flattened into a one-dimensional array, the dynamic change characteristics of the
electrical quantity in the continuous time section are buried, and DBN cannot perceive the
timing feature information from a large number of data points, so the overall performance
has a certain gap compared with CNN and ensemble LSTM. As a common model for
processing sequence data, CNN’s PACC on the test set reaches 98.53%. However, due to the
lack of consideration of the long-term dependence of the disturbed trajectory data and the
single network mapping rule, CNN is not as accurate as ensemble LSTM in prediction.

On the whole, the ensemble LSTM classifier achieved the best performance in all
three indicators, with PACC as high as 99.59%, PMAR and PFAR only 0.41% and 0.40%.
This shows that the ensemble LSTM network can fully mine the transient information in
the time series trajectories, and the identification ability of the two classes of samples is
relatively balanced.

5.5. Impact of Loss Function Modification on Hierarchical Prediction

In order to verify the effectiveness and necessity of loss function modification, LSTM
classifier with cross entropy (abbreviated as CE-LSTM) and LSTM classifier with modified
cross entropy (abbreviated as MCE-LSTM) are built by snapshot ensembing under the
condition that the other hyperparameters remained the same, and a comparative test of
hierarchical prediction is performed. In the continuous hierarchical prediction process,
the credibility threshold is a criterion to measure the reliability of the prediction result,
and the values of Ru and Rs need to be determined according to the prediction results of
the classifier on the validation set. Figure 9 shows the probability output of misclassified
samples on the validation set of two ensemble LSTMs with different loss functions.
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It can be seen from Figure 9a that if the value of Ru is set to be greater than 0.910,
ensemble CE-LSTM will not output false alarm results, so the results predicted to be
transient unstable are credible; if the value of Rs is set to be greater than 0.936, i.e., 1 −
0.064, ensemble CE-LSTM will not output missing alarm results, so the results predicted
to be transient stable are credible. Similarly, it can be seen from Figure 9b that the values
of Ru and Rs of ensemble MCE-LSTM should be set to be greater than 0.769 and 0.695,
respectively. Comparing Figure 9a,b, it can be seen that after the modification of cross
entropy, not only the misjudgment of the classifier is reduced, but also the probability
distribution interval of the misclassified samples is significantly reduced, which indicates
that ensemble MCE-LSTM has stronger generalization ability.

In order to make the established ensemble LSTM classifier universal in each stage
of hierarchical evaluation, a 10-cycle time window is slid along the time dimension, so
that the sequence in the sample set is sub-sampled multiple times and preprocessed as
the model inputs. In order to reduce the randomness of model training, the credibility
threshold is set and verified through 10-fold cross-validation, and some margin is left to
ensure the conservativeness of the prediction. For ensemble CE-LSTM, Ru and Rs are set to
94.75% and 96.82%, respectively. For ensemble MCE-LSTM, Ru and Rs are set to 80.84%
and 75.17%, respectively. In order to ensure the rapidity of TSA, the upper limit of response
time is specified as 30 power frequency cycles, i.e., 0.5 s. The comparative test results of
hierarchical prediction are shown in Table 5.

Table 5. Comparative test results of hierarchical prediction.

Response Time (Cycles)
Ensemble CE-LSTM Ensemble MCE-LSTM

NCS NCU ICHR (%) NCS NCU ICHR (%)

1 1173 732 77.82 1343 865 90.20
5 1280 803 85.09 1396 901 93.83

10 1351 861 90.36 1433 920 96.12
20 1404 889 93.67 1461 949 98.45
30 1427 913 95.59 1470 957 99.14

As can be seen from Table 5, ensemble MCE-LSTM can accurately determine more
than 90% of the samples in the first cycle. As time goes by, the undetermined samples are
gradually identified. When the response time reaches 30 cycles (0.5 s), ICHR of MCE-LSTM
has risen to 99.14%. This shows that the evolution of time series features can fully reflect
the dynamic behavior of the system in the transient process, and the ensemble LSTM model
has a deeper grasp of the development trend of the system, so as to reliably identify more
critical samples gradually. After verification, it is found that by the 30th cycle, the TSI
values of the remaining uncertain samples are all close to 0, which belong to the critical
stable or critical unstable samples. Among them, the instability occurrence time of the
unstable samples all exceeds 3 s, and there are multi-swing instability conditions. Therefore,
ensemble MCE-LSTM can quickly screen out faults that are far from the boundary of the
stability region, and can also reserve enough time margin for the very small number
of uncertain critical samples, so as to facilitate the quantitative risk assessment in the
second stage and subsequent emergency control. In addition, ensemble MCE-LSTM is
always ahead of ensemble CE-LSTM in terms of ICHR indicator in the assessment process,
indicating that after the modification of cross entropy, the model can more fully mine hard
samples, which further improves the sensitivity and rapidity of hierarchical prediction.

5.6. Risk Quantification of Transient Angle Stability

The modeling process of the snapshot ensemble LSTM regressor is similar to the
snapshot ensemble LSTM classifier, but the mean square error is adopted as the loss
function. 500 samples from the test set are randomly selected for visualization, and the
curves of the true and predicted TSI values are shown in Figure 10.
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As can be seen from Figure 10, the predicted value curve of TSI by snapshot ensemble
LSTM regressor is highly consistent with the actual value curve, and has a synchronized
change trend. After calculation, EMAE of the regressor on the entire test set is only 0.00183,
and the prediction accuracy is high enough to meet the requirements of practical assessment
application.

Furthermore, according to the TSI prediction results and the transient stability proba-
bility prediction results of the samples, the risk grading of transient angle stability can be
realized. The thresholds γth, Sth1, and Sth2 are set to 0.8, 0.5, and 1, respectively. According
to Equations (15) and (16), the risk grading results of the samples are shown in Table 6.

Table 6. Risk grading results of each sample set.

Risk Rank
Number of Samples

Training Set Validation Set Test Set

0 146 69 57
1 2180 665 704
2 1504 462 508
3 619 287 213
4 2895 965 966

Comparing and analyzing the risk grading results in Table 6 and the time-domain
simulation settings corresponding to the samples, it is found that the risk grading results
are consistent with the actual operating experience of power systems. That is to say, under
some operation modes such as heavy load on some grid nodes, some transmission line
power flows close to the power transfer limit, and a long fault duration, the transient
stability probability and TSI predicted by the TSA models are low, corresponding to high
risk ranks 3 and 4, and vice versa.

The risk grading obtained by combining the predicted results of the proposed TSA
models and the risk function is essentially a quantitative analysis based on big data statistics.
It can effectively overcome the subjectivity and incompleteness of manual experience
grading, better reflect the transient safety risk level of power system, and provide an
important reference for the risk management and control of power grid.

6. Conclusions

In order to make full use of the time series data sampled by PMUs and overcome
sample imbalance and overlapping, this paper proposed a two-stage power system TSA
method based on real-time disturbed trajectory measurements and snapshot ensemble
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LSTM network. Through the simulation experiments on the New England 39-bus system
integrated with wind farm and the analysis of the case results, the following conclusions
were drawn:

1. The proposed snapshot ensemble LSTM network can effectively collect multiple global
and local optima corresponding base models obtained in a single training process.
Through the weighted combination of each base model, the obtained ensemble model
can output more accurate predictions. LSTM network has stronger representation
learning ability for transient stability temporal information, and can effectively extract
higher-level abstract features with better separability from the original input, so
the proposed model has higher prediction accuracy than other machine learning
classifiers.

2. Through the proper setting of credibility thresholds, it can effectively prevent the
missing and false alarms during the hierarchical assessment process. As time goes by,
the credibility of the prediction results gets higher and higher, so the critical samples
are gradually and reliably identified. Moreover, the improvement of the loss function
for sample imbalance and overlapping further improves the credibility of the model
output and reduces misclassification.

3. The built ensemble LSTM regression model can predict the transient stability margin
accurately. Combined with the two-stage prediction output of classifier and regressor,
the risk grading of transient angle stability can be further realized according to the
established risk function, which is instructive for the subsequent risk control.

In future work, we will conduct in-depth analysis on the robustness of the proposed
model in the case of partial measurement data missing caused by PMU failure and mea-
surement data containing noise. Meanwhile, further verification of the proposed method
with actual large-scale power grids as cases is also the work to be performed in the future.
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Nomenclature

Parameters
W f , Wi, Wc, Wo weight matrices
b f , bi, bc, bo bias vectors
θ weight vector connected to the output layer
α0 initial learning rate
J total number of iterations during training
C cosine annealing cycles
M, N number of base learners and training samples
wm weight coefficient of the m-th base learner
Ru, Rs credible instability threshold and the credible stability threshold
γth risk factor threshold
A, B coefficients in the risk function
Sth1, Sth2 thresholds for grading risk
n1, n2, n3, n4 number of bus, transmission lines, generators and load nodes
s number of sampling times.
Ntest total number of test samples
ε, λ weight coefficient and the penalty coefficient
Ns, Nus number of stable samples and unstable samples in the training set
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Variables
ft, it, ot forget gate, input gate, and output gate at time t
ct, c̃t memory cell state and memory cell candicate state at time t
gt, ht input vector and the output vector at time t
H output vector of the previous layer of the output layer
ŷ prediction probability of the model output
α(j) learning rate in the j-th iteration
ei

m error of the m-th base learner on the i-th training sample
ŷ, ŷm prediction probability output by the ensemble model and the m-th base learner
R credibility index
TSI transient stability index
∆δmax maximum power angle difference between any two generators in the system
γ risk factor
S risk function value
Sr risk rank
xt ,

.
xt transformed pre-value and post-value of a feature at time t

..
xt normalized and post-value of a feature at time t
µ, σ mean and standard deviation of feature data
NCS number of accumulatively identified credible stable samples
NCU number of accumulatively identified credible unstable samples
LCE cross entropy loss function
LMCE modified cross entropy loss function
Indicators
PACC accuracy
PMAR missing alarm rate
PFAR false alarm rate
ICHR cumulative hit rate
EMAE mean absolute error
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