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Abstract: Conventional aquaculture (ACUA-C) in Mexico is an activity that maintains an annual
growth rate of 6%. Tilapia (Oreochromis niloticus) aquaculture is the predominant aquaculture in
the country with 4623 farms, most of which operate with semi-intensive (SIS) and extensive (ES)
production systems, discharging untreated wastewater that negatively impacts the environment. To
address this problem, new ecotechnologies such as biofloc (BFT), recirculation systems for aquaculture
(RAS), constructed wetlands (CWs) for water treatment, and aquaponics (AS) have emerged to
mitigate the environmental impacts of untreated wastewater. The objective of this work is to evaluate
the feasibility of tilapia farming with BFT, RAS, CW, and AS ecotechnologies through an economic and
financial feasibility analysis, considering their environmental and social implications in a Mexican
aquaculture farm located in the state of Veracruz. Open interviews, direct observation, and diagnosis
of the semi-intensive tilapia system was carried out between 15 May 2019 and 15 February 2020 in
order to calculate, design, and theoretically evaluate the four ecotechnological alternatives (TBF, RAS,
CW, and AS). Economic (13), environmental (10), and social (5) variables were applied, making use
of the same facilities. The results reveal that the four ecotechnologies implemented in an SIS are
economically viable and environmentally acceptable, especially in water management, in addition
to being socially feasible. It is concluded that BFT offers an alternative to the producer by having a
lower additional cost to improve problems, despite the possible complexity of operation and energy
requirements to manage wastewater treatment. The technological transition to BFT is recommended
to solve the problem of sustainable water management.

Keywords: sustainable aquaculture; recirculation aquaculture systems; biofloc technology; con-
structed wetlands; aquaponics

1. Introduction

The productive activity with the highest growth in the agricultural sector in recent
decades has been aquaculture [1], presenting an annual growth of 5.8% during the pe-
riod from 2000 to 2018 [2], which is faster than other animal production segments [3].
Among the species of relevance in aquaculture are cichlids (tilapia), representing the largest
aquaculture production group in the world [4]. Tilapia is the common name given to
three genera of the family Cichlidae: Oreochromis, Sarotherodon, and Tilapia [5]. The most
important species for aquaculture are in the genus Oreochromis and are O. mossambicus, O.
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aureus, and O. niloticus. The latter is the most cultivated [6] representing 80% of tilapia
cultivated worldwide [7]. Mexico is no exception, where aquaculture maintains a growth
rate higher than the world rate (36%) over a period of 6 years, 6% annually, as pointed out
by SAGARPA [8], CONAPESCA [9], and Reyes-Vera et al. [10].

The number of aquaculture farms is close to 9300 APUs (aquaculture production units).
Among these, tilapia aquaculture is predominant in the country with 4623 official farms
in operation [8]. However, this production still does not meet the needs and per capita
consumption; therefore, tilapia is imported. Open systems with low productivity are the
prevailing ones; among the most used systems are earthen ponds, concrete, geomembranes,
both rectangular and circular, and in some regions where permitted, floating cages on
reservoirs and rivers [8,11–15]. The operation of these aquaculture systems has an impact
on the environment due to wastewater discharges from aquaculture farms, which contain
a high amount of pollutants [16,17]. Consequently, water management in aquaculture
systems needs to be more efficient.

Furthermore, food security in terms of aquaculture plays a relevant role due to global
population growth, which exceeds 7.2 billion and continues to grow [18]. Expectations
indicate that by 2050 the human population will be more than 9 billion people; therefore,
current production systems that are highly extractive of natural resources (land and water)
have to change [19]. Currently, ecotechnologies for production can be implemented in aqua-
culture production systems and these, when available, can recycle water and/or combine
it with aqua-agricultural systems. As noted by Barrington et al. [20], Béné et al. [21], and
FAO [2], ecotechnologies are a growing need in aquaculture systems. These systems include
biofloc technology [22,23], recirculation systems in aquaculture [24], constructed wetlands
for the treatment of discharge influents in aquaculture [25,26], aquaponics systems [27],
and recently, aquamimicry technology [28,29].

Sustainable Aquaculture and Ecotechnologies for Production

Most current aquaculture production systems seek to be intensive [30] due to the need
to increase global food production from 25% to 70% [31], so it is necessary for these to
be sustainable and undergo technological change [32–34]. However, it should be taken
into consideration that these systems, being mostly productive, should mainly mitigate
the excessive consumption of water resources and be ecologically friendly by being less
harmful to the environment. With regard to systems that reduce wastewater in aquaculture
production, the following are analyzed in this work:

Biofloc technology (BFT): biotechnology that takes advantage of the accelerated growth
of bacteria and microorganisms that consume suspended solids in water, eliminating
nutrients that are not appropriate for cultivation, such as total nitrogen, nitrates, nitrites,
and ammonium. In addition, they are a source of food for the culture organisms, being an
in situ treatment system with minimal water replacement [22,35–40].

Aquaponics systems (AS): technologies that function as filters for all aquaculture
system wastes and generate by-products (plants) of additional commercial value, which
are responsible for absorbing nutrients from pond wastes [27,41–44].

Constructed wetlands for discharge treatment (CW): designed to remove as many
nutrients as possible from contaminated municipal and industrial waters, such as from
aquaculture ponds that are discharged to CW for biological purification, usually with
phytoremediation plants, to be reused in the aquaculture system or discharged without
adverse environmental effects, or used for agricultural irrigation [45–49]. It should be noted
that, for the specific case of aquaculture waters, water contamination by ammonium is the
most important compound to eliminate. If the latter is found in average concentrations
greater than 1 mg/L it is harmful to organisms. Studies in wetlands have shown effective
elimination of this pollutant with removals of 30% to 80% [50,51] even with concentrations
of the nutrient higher than 5 mg/L, which is used by plants for its bioabsorption, or also
used during the nitrification process.
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Finally, recirculating aquaculture systems (RAS): nitrifying bacteria are used to convert
ammonia nitrogen into nitrate allowing a high culture density, also reusing water in
the same system, through equipment (settling, biological filtration, mechanical, aeration,
pumping, and disinfection) that treat the water to reincorporate it into the aquaculture
system [24,52,53].

These systems have several characteristics in common: they seek to minimize water
use and treat wastewater, basing their treatment on biotechnological principles for produc-
tion, while trying to be economically viable with the purpose of increasing production, as
well as avoiding environmental impacts due to eutrophication; they are considered closed
aquaculture systems. These systems have their advantages and disadvantages and can be
used individually or combined in hybrid recirculation systems [54]. However, they require
different investments in assets and management, so the decision to implement them will
depend on the particular conditions of the crop and the region where a farm with these
systems is intended to be built.

These systems can be considered ecotechnologies, as proposed by Moreno et al. [55]
who state that in developed countries a large part of the discussion on ecotechnologies has
emphasized their use as a means to reduce environmental impacts, following the guidelines
of sustainable technological development. Moreno et al. [55] (p. 16) proposed the following
operational definition of the term ecotechnology: “Devices, methods and processes that promote
a harmonious relationship with the environment and seek to provide tangible social and economic
benefits to their users, with reference to a specific socio-ecological context”.

For this reason, current aquaculture production systems, which can be defined as
traditional aquaculture, are those that have a negative ecological impact in the excessive
use of water and energy in their production process. The alternatives mentioned above
are ecotechnologies because their development and application are part of the sustainable
future of production systems.

It is essential to analyze the ecotechnologies under an integral perspective oriented to
the sustainability of these systems and the context of the users. Therefore, the objective
of this work is to evaluate the feasibility of tilapia (Oreochromis niloticus) culture with BFT,
RAS, CW, and AS technologies, through an economic and financial feasibility analysis
considering their environmental and social implications for the case study of a Mexican
aquaculture farm.

2. Methodology
2.1. Description of the Study Site

The aquaculture farm used for this study is located in the community of Tierra
Adentro, belonging to the Congregación de Joachín, municipality of Tierra Blanca, Veracruz
(Figure 1). The farm is located between the coordinates 18◦39′26′′ north latitude and
96◦17′58′′ west longitude, at an altitude of 63 m, having an approximate area of influence of
1000 hectares within the parallels 18◦38′53′′ N and 18◦39′51′′ N and meridians 96◦18′18.54′′

W 96◦16′43.34′′ W within the UTM 14 zone, at an altitude of 63 m. It is located in the
climatic zone type Aw” 2 (w) (e) g, warm sub-humid, with an average temperature of
27.4 ◦C. Rainfall in the area reaches an average annual volume of 1573 mm, concentrating
more in the middle of the year [56].
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Figure 1. Location of the APU Tierra Adentro fish farm.

2.2. Description of the Current Facility Analyzed

The APU is divided into the pre-fattening and tilapia fattening modules. Module II,
for tilapia fattening, covers an area of 600 m2 (0.06 ha) composed of 6 geomembrane ponds
with a diameter of 12 m by 1.20 m high each, which served as the basis to contrast and
propose alternative ecotechnologies for future implementation (Figure 2).
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Figure 2. Tierra Adentro fish farm, current aquaculture facility, module II.

2.3. Criteria for the Design of Alternative Ecotechnological Systems

The designs of the proposed alternative ecotechnologies aimed to raise the income
of the APU, to move from a REU (rural economic unit of stratum 4) (entrepreneurial
with fragile profitability) to one of stratum 5 (thriving entrepreneurial) according to the
classification of FAO-SAGARPA [57], while also mitigating the negative environmental
impacts on water.

In terms of location and region, all calculations and estimates are adaptable to the
tropics and the southeast region of Mexico, where the climatic characteristics are suitable
for tilapia production [24,58].
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Regarding the existing infrastructure, and in order to have a uniform criterion, it was
determined that with the module used, it is technically feasible to compare it with the use
of the four ecotechnologies for the consideration of Mexican producers.

2.4. Data Collection from the Rural Aquaculture System, Semi-Intensive (SIS)

The rural aquaculture semi-intensive system is currently in operation in module II
(Figure 2). Data collection of the system operation is semi-intensive and the analysis
of alternatives was carried out over 9 months, from 15 May 2019 to 15 February 2020.
Economic, environmental, and social variables were calculated

The data of the semi-intensive system for the diagnosis of the current operation was
collected during the research stay, with the information provided by the chief executive
officer (CEO) through reports, procedures implemented for the control of production,
and quality of water and finance. In addition, direct observation and open interviews
were carried out with the production staff of the aquaculture farm, supporting them in
determining the current operating conditions of the aquaculture farm with the SIS system

Finally, economic, environmental and social variables were calculated for the SIS * sys-
tem in operation and the proposed systems: biofloc technology system (BFT), recirculation
system in aquaculture (RAS), aquaponics system, and integrated recirculation system with
constructed wetland.

2.5. Proposal with Biofloc Technology System (BFT)

This system is proposed to be implemented in module II, where the results are cal-
culated and estimated following the methodology proposed by Avnimelech [59] and
Celdrán-Sabater [23]. Since the implementation of the BFT is possible with the current
infrastructure, the only important difference compared with the SIS is the aeration capacity,
which needs to be increased. With the addition of 2 HP (160 CFM) regenerative sweetwater
blowers, using 36 diffuser discs or FlexAir® bubble discs for diffusion, with which the
system is integrated with an aeration capacity of 15 Hp with 480 CFM, its independent
operation is proposed, although connected to the same air network, since the oxygen
demand is not the same during the production cycle.

The system has a sedimentation unit per pond. In the design of this system, it is
recommended to incorporate a reservoir with a storage capacity of 900 m3, with the
objective of storing the water with bioflocs, so that when the crops are harvested, these
waters are not discharged and can be reused for the subsequent production period or for
agricultural irrigation. This saves time in the preparation of the ponds for the generation
of the flocs. This additional investment is congruent with the purpose of the technology,
which seeks zero replacement. Occupying an additional land area of 1200 m2 as shown
in Figure 3.

Sustainability 2021, 13, x FOR PEER ARTICLE 5 of 18 
 

 

Regarding the existing infrastructure, and in order to have a uniform criterion, it was 
determined that with the module used, it is technically feasible to compare it with the use 
of the four ecotechnologies for the consideration of Mexican producers. 

2.4. Data Collection from the Rural Aquaculture System, Semi-Intensive (SIS) 
The rural aquaculture semi-intensive system is currently in operation in module II 

(Figure 2). Data collection of the system operation is semi-intensive and the analysis of 
alternatives was carried out over 9 months, from 15 May 2019 to 15 February 2020. Eco-
nomic, environmental, and social variables were calculated 

The data of the semi-intensive system for the diagnosis of the current operation was 
collected during the research stay, with the information provided by the chief executive 
officer (CEO) through reports, procedures implemented for the control of production, and 
quality of water and finance. In addition, direct observation and open interviews were 
carried out with the production staff of the aquaculture farm, supporting them in deter-
mining the current operating conditions of the aquaculture farm with the SIS system 

Finally, economic, environmental and social variables were calculated for the SIS * 
system in operation and the proposed systems: biofloc technology system (BFT), recircu-
lation system in aquaculture (RAS), aquaponics system, and integrated recirculation sys-
tem with constructed wetland. 

2.5. Proposal with Biofloc Technology System (BFT) 
This system is proposed to be implemented in module II, where the results are cal-

culated and estimated following the methodology proposed by Avnimelech [59] and Cel-
drán-Sabater [23]. Since the implementation of the BFT is possible with the current infra-
structure, the only important difference compared with the SIS is the aeration capacity, 
which needs to be increased. With the addition of 2 HP (160 CFM) regenerative sweetwa-
ter blowers, using 36 diffuser discs or FlexAir® bubble discs for diffusion, with which the 
system is integrated with an aeration capacity of 15 Hp with 480 CFM, its independent 
operation is proposed, although connected to the same air network, since the oxygen de-
mand is not the same during the production cycle. 

The system has a sedimentation unit per pond. In the design of this system, it is rec-
ommended to incorporate a reservoir with a storage capacity of 900 m3, with the objective 
of storing the water with bioflocs, so that when the crops are harvested, these waters are 
not discharged and can be reused for the subsequent production period or for agricultural 
irrigation. This saves time in the preparation of the ponds for the generation of the flocs. 
This additional investment is congruent with the purpose of the technology, which seeks 
zero replacement. Occupying an additional land area of 1200 m2 as shown in Figure 3. 

Figure 3. Pond design scheme with biofloc technology. 
Figure 3. Pond design scheme with biofloc technology.



Sustainability 2021, 13, 6853 6 of 18

2.6. Proposal for a Recirculation System in Aquaculture (RAS)

This system is also theoretical. It is proposed to implement its calculation in module II,
which was estimated following the design methodology proposed by Ingle de la Mora [60],
Timmons et al. [24], and Piedrahhita and Delong [61]. The system consists of the same six
circular ponds, which are connected to: a settler, a stabilization pond, submerged biofilters,
a rapid sand filter, pumps, a water reconditioning and aeration pond, and an ultraviolet
light lamp unit as shown in Figure 4.
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The water flow through the entire system is approximately 427.8 m3 per day. Each
circular pond has an operating volume of 814 m3 and an average water flow of 76.3 m3 per
hour, producing a total turnover of 5.4 times per day. The water passes through the other
components of the system, pumping an average of 23 h per day. The culture ponds and
biofilters are permanently supplied with 1440 CFM, by means of a blower arrangement
with 45 horsepower, which supplies aeration to the entire system. The settler capacity is
200 m3 and the biofilters are 60 m3 and operate with biospheres.

2.7. Aquaponics System Proposal (AS)

Considering a recirculation system, it is feasible to incorporate a hydroponic system
(Figure 5). This system was calculated to propose an extra income for agricultural produc-
ers, to be implemented in the same way in module II, where the results are calculated and
estimated following the design methodology proposed by Rakocy et al. [62] and Goddek
et al. [27].

It is proposed to integrate this RAS production system with hydroponic components,
for an area of 5000 m2 under tunnel-type greenhouse conditions with zenithal windows.
The supports are made of galvanized iron pipes and have an interior separation of 5 × 8.
The height is proposed to be 5 m for adequate ventilation; in the lateral bands the proposal
is 4 m. The width of these bays will be 9 m and will allow several bays to be attached
in battery. Ventilation is provided by zenithal windows that open to the outside of the
greenhouse where a hydroponic irrigation system is proposed to produce habanero peppers
(Capsicum chinense). This system consists of the installation of 4” diameter PVC pipes as the
central network coming from the RAS biofilter and connected to 2” lateral lines connected
to drip lines with a hose to each bag measuring 25 cm diameter × 30 cm high, filled with
tezontle substrate that is characterized by a pH close to neutral. It is also proposed that the
particle size is in a range between 10 to 20 mm.
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Figure 5. Schematic of the design of the integrated agri-aquaculture system (IAAS).

In this system, the nutrient solution is provided by the water from the RAS. The
proposed area is expected to have 10,000 projected plants. In the case of habanero peppers,
it was demonstrated that nitrogen is the essential element with the highest demand and that
it is always present in higher proportions in plant tissues with respect to the other elements,
in the different phenological stages [63], making it suitable for cultivation in the study
region [64]. Irrigation water will be collected for reintegration into the aquaculture system.

2.8. Proposed Integrated Recirculation System with Constructed Wetland (RAS-CW)

Finally, the construction of a treatment system using this method was calculated and
analyzed, although with the capacity to reincorporate the treated water into the system
and not only to lower the organic load of the discharges. This system is also intended to be
implemented in module II. The wetland was designed following the standards proposed
by Lara-Borrero [65] and Rivas-Hernández [66]. The installation requires: an aquaculture
unit, a sedimenter, a constructed wetland, and a reservoir (Figure 6).

Sustainability 2021, 13, x FOR PEER ARTICLE 7 of 18 
 

 

Figure 5. Schematic of the design of the integrated agri-aquaculture system (IAAS). 

In this system, the nutrient solution is provided by the water from the RAS. The pro-
posed area is expected to have 10,000 projected plants. In the case of habanero peppers, it 
was demonstrated that nitrogen is the essential element with the highest demand and that 
it is always present in higher proportions in plant tissues with respect to the other ele-
ments, in the different phenological stages [63], making it suitable for cultivation in the 
study region [64]. Irrigation water will be collected for reintegration into the aquaculture 
system. 

2.8. Proposed Integrated Recirculation System with Constructed Wetland (RAS-CW) 
Finally, the construction of a treatment system using this method was calculated and 

analyzed, although with the capacity to reincorporate the treated water into the system 
and not only to lower the organic load of the discharges. This system is also intended to 
be implemented in module II. The wetland was designed following the standards pro-
posed by Lara-Borrero [65] and Rivas-Hernández [66]. The installation requires: an aqua-
culture unit, a sedimenter, a constructed wetland, and a reservoir (Figure 6). 

Figure 6. Schematic of closed system of an aquaculture facility with constructed wetland for water treatment, without 
scale. 

It was determined that a vertically operated subsuperficial subsurface flow con-
structed wetland system is appropriate, consisting of three cells, each of 900 m2 with a 1:1 

Figure 6. Schematic of closed system of an aquaculture facility with constructed wetland for water treatment, without scale.

It was determined that a vertically operated subsuperficial subsurface flow constructed
wetland system is appropriate, consisting of three cells, each of 900 m2 with a 1:1 ratio that
together have the capacity to treat 1036 m3, with a hydraulic retention time of 72 h per cell.
Therefore, it has the capacity to treat 3108 m3.
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It was decided to use reeds (Phragmites australis) together with tule (Typha sp.) at a
density of 10 plants/m2. Said species were selected for their easy adaptation in any type
of climate and high pollutant removal rates [48,51,67,68]. The substrate to be used will be
tezontle as an anchoring medium for the plants, which have a TN (mg/L) removal capacity
of 57%, NO2-N (mg/L) 90%, and NO3-N (mg/L) 68% [26].

2.9. Economic Environmental and Social Evaluation

The calculations of the economic variables for the financial evaluation were performed
according to the methodology proposed by Blank and Tarquin [69] and Baca [70] for
evaluating investment projects. The social and environmental variables selected for analysis
were taken according to the proposals of Sarandón et al. [71] to evaluate sustainability,
as well as the system of green production indicators (SGPI) by Cervera-Ferri and Luz
Oreña [72], adapted for aquaculture production.

To select an appropriate variable to evaluate sustainability in aquaculture, it must be
recognized by technical, scientific, representative, relevant, and quantifiable criteria. In
this way, the dimensions and their variables must be able to show progress towards the
sustainability of aquaculture systems. Based on these criteria, Table 1 presents the three
dimensions of sustainability and their variables used for aquaculture systems, considering
13 economic, 10 environmental, and 5 social. Which were considered appropriate to address
the study.

Table 1. Economic environmental and social dimensions and variables and units.

Economic Environmental Social

Construction cost (USD) Volume of pond water (m3) Workdays generated cycle
Income from tilapia production (USD) Daily water replacement (%) Education level

Income from agricultural production (USD) Daily water discharge (m3) Stability and reliability
Tilapia in the system (organisms) Aeration energy required (HP) Access to and use of technology
Planting density (Organisms/m3) Aeration energy (kW/hour/day) Commercialization of production

System productivity (kg/m3) Energy required (kW/hour/day)
Fish production (kg) kW/hour/day total

Agricultural output (kg) CO2 emissions per energy (kg)
Feed supplied (kg) Land area required (m2)

Feed conversion factor (kg) Kilos of food produced per area unit (kg/m2)
Net present value (USD)

Internal rate of return (%)
Benefit-cost ratio

3. Results and Discussion

It is important to observe the results of the estimations of the exposed systems from
social, environmental, and economic dimensions. Despite the fact that the literature pre-
sumes these systems to be sustainable in their operation, this analysis, which contemplates
the three variables, allows obtaining a broad view of them. It is not intended to determine
which of them is sustainable, among other reasons because of the difficulty of translating
the philosophical and ideological aspects of sustainability into the ability to make decisions
in this regard [71]. This analysis establishes the elements to deepen the study of the appli-
cation of these ecotechnologies, taking into consideration the assumptions exposed, and
the decision making in the management of the study site.

As proposed, Sarandón et al. [71] established that the productive unit must comply
satisfactorily and simultaneously with the following requirements: to be sufficiently pro-
ductive, economically viable, and environmentally adequate. In our case study, these
dimensions are taken into account in order to apply them to aquaculture.
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3.1. Economic Dimension

Table 2 shows the results obtained in the economic dimension for the aquaculture
systems analyzed.

Table 2. Results of the aquaculture systems analyzed by production cycle. Economic and productivity variables.

Variable System

SIS BFT RAS CW AS

Construction cost (USD) 44,807.78 54,805.96 80,382.07 109,611.92 132,578.22
Income from tilapia production (USD) 16,570.19 38,238.90 127,463.00 16,571.23 50,985.20

Income from agricultural production (USD) - - - - 182,686.53
Tilapia in the system (organisms) 10,582 24,420 81,400 10,582 16,280
Planting density (Organisms/m3) 13 30 100 13 20

System productivity (kg/m3) 6.5 15 50 6.5 10
Fish production (kg) 5291 12,210 40,700 5291 8140

Agricultural output (kg) - - - - 70,000
Feed supplied (kg) 7936 13,441 61,050 7936 12,210

Feed conversion factor (kg) 1.5 1.1 1.5 1.5 1.5
Net present value (USD) 19,994.51 169,109.11 479,837.25 20,398.51 1,098,536.41

Internal rate of return (%) 23.7 38.32 40.65 16.51 39.51
Benefit-cost ratio 1.17 2.10 1.81 1.17 2.60

SIS: semi-intensive system; BFT: biofloc technology systems; RAS: recirculating aquaculture systems; CW: constructed wetland system; AS:
aquaponic system. (B) energy for water pumping; (R) energy for water recirculation.

3.1.1. Construction Costs

The five systems have different costs, so their application will depend to a great
extent on economic availability for their construction. It is evident that with the increase
in technification to closed systems, cost increases. This aspect provides evidence of why
such systems are little used in Mexico: high initial construction cost compared with a semi-
intensive system (SIS). This aspect is also reported by Trejo-lgueravide [73] in aquaculture
crops in Tamaulipas, Mexico, but for the case of extensive systems.

In relation to the AS, from an economic point of view, the hydroponic system requires the
highest implementation cost because it is a combination between aquaculture and agriculture,
requiring the construction of greenhouses for tropical climate of medium technology.

3.1.2. Income from Tilapia and Agricultural Production

The SIS and the CW systems generated the lowest income, mainly due to the low
system load compared with the BFT, RAS, and AS systems, which due to their characteris-
tics operate with a greater number of organisms. The RAS system stands out for its high
production potential.

Exchange rate 19.1 MXN per USD as of 28 February 2020.
In relation to the AS and having agricultural production as the main source of income,

the high income from the sale of agricultural production stands out. Since the habanero
pepper (Capsicum chinense), an agricultural product with high commercial value was
selected, this system demonstrates an advantage over the other systems analyzed, showing
the possibility to produce up to 70 tons of product.

3.1.3. Tilapia in the System and Fish Production

Each system operates with different amounts of fish, although the SIS and CW operate
with the same amount, because the objective of the CW is to treat wastewater and not to
increase production. In the BFT system it is possible to increase production up to 2.3 times.
The increase in production is notorious in the RAS, since it is possible to increase it up to
7.6 times. The AS is more productive (1.5 times) than the SIS, although production is not
its main objective.
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3.1.4. Seeding Density and Productivity

These variables are related to the previous one and take into consideration the area
of the culture ponds analyzed, which in all are considered to consist of 814 m3 of water
volume. Similar to the RAS and BFT systems, productivity and seeding density were higher
compared with the SIS, CW, and AS. Therefore, it is possible to consider these systems as
having the highest productivity per unit volume.

3.1.5. Feed Supplied and Feed Conversion Factor

This is a determining factor in production costs and in this sense, in the systems
analyzed, the greater the number of organisms to be cultivated, the greater the amount of
feed necessary to reach a commercial size. The BFT is the system that stands out in this
aspect. This is due to its ability to generate natural feed in situ, and this can be reduced
up to 25% [74], which allows this variable to stand out compared with the other systems,
which are highly dependent on balanced feed.

3.1.6. Net Present Value, Internal Rate of Return, and Benefit-Cost Ratio

These economic variables are generally accepted for the evaluation of investment
projects. A five year evaluation period was considered, where the results confirm the eco-
nomic viability of the proposed designs. The criteria for accepting or rejecting investment
projects are as follows: the net present value should be positive, the internal rate of return
(IRR) should be better than that offered by the treasury certificates (CETES) for the Mexican
case, and the benefit/cost ratio should always be greater than unity. When these three
sustainable indicators are met, it is possible to consider the projects as viable [69,75]

Considering the above criteria and leaving for a moment the AS, which offers the
advantage of agricultural production, the BFT system obtained a positive and high present
value, with a rate of return of 38% and a benefit-cost ratio of 2.10, which indicates that
every dollar invested is recovered and a profit of 1.1 is also obtained. Therefore, the BFT
aquaculture system achieves the best results, since it requires less investment and offers a
high benefit-cost ratio.

On the other hand, it is evident that the RAS also yielded favorable results economically;
aspects already reported by Badiola et al. [76]. Although it has the disadvantage of having
the highest investment and operating costs, which is a limitation to its implementation.

As for the SIS, even with acceptable profitability, it is undoubtedly fragile, due to
the high operating costs for pumping and aeration, coupled with its low productivity
compared with the other systems.

The CW system has an important environmental advantage, but in economic terms
its possible implementation is affected by the low productivity of the aquaculture system.
However, despite this, the results of the evaluation affirm that its construction is economi-
cally feasible for application in aquaculture production and above all, in places where there
is little availability of water, since it offers treatment with a very low operating cost. Its
limitation is that it requires space and an initial investment much higher than the SSI, BFT,
and RAS, but if the land is available there would be no disadvantage.

Finally, it is noted that AS is an outstanding system for aquaculture production, but
even more so for agriculture. We can reaffirm that the principle of AS is to recycle nutrients
for plants to take advantage of. In this case, it is observed that it is the system with the
highest initial and operating costs, but its high impact on economic viability lies in the
high agricultural production and price of the selected product, leaving pure aquaculture
systems at a disadvantage. It is important to mention that aquaculture is considered a
high-risk investment [24] due to its operational characteristics, so this analysis and the
variables studied provide a broad view of the economic advantages that can encourage its
application. This aspect was also analyzed by Rodríguez-González [77], who determined
that aquaponic systems are an alternative for tilapia farming, however, it is essential to
control nutrients in the system and to evaluate it economically.
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3.2. Environmental Dimension

The ecological aspects of the systems are mainly observed, where land, water and
energy use stand out (Table 3).

Table 3. Calculated results of the aquaculture systems analyzed by production cycle. Environmental
variables.

Variable System

SIS BFT RAS CW AS

Volume of pond water (m3) 814 814 814 814 814
Daily water replacement (%) 30 2 5 5 10
Daily water discharge (m3) 244.2 8.14 40.7 40.7 81.40

Aeration energy required (HP) 5 15 45 7.5 20
Aeration energy (kW/hour/day) 44.47 268.2 804.6 67.05 357.6

Energy required (kW/hour/day) 119.3(B) 4.96(B) 19.86 (B)
171.35 (R)

19.86 (B)
44.7 (R)

39.72 (B)
44.7 (R)

kW/hour/day total 354.98 273.16 995.81 131.61 442.02
CO2 emissions per energy. (kg) 136.66 105.16 383.36 50.66 170.17

Land area required (m2) 600 1500 900 3300 5900
Kilos of food produced per area

unit (kg/m2) 8.81 8.14 45.22 1.6 13.24

SIS: Semi-intensive system; BFT: biofloc technology systems; RAS: recirculating aquaculture systems; CW:
constructed wetland system; AS: aquaponic system. (B) energy for water pumping; (R) energy for water
recirculation.

3.2.1. Pond Water Volume

This analysis considers the same volume of the ponds on the farm, i.e., 814 m3, a
volume of 135 m3 for each pond of 12 m in diameter. This is the size available in the current
semi-intensive system.

3.2.2. Daily Water Replacement and Discharge

In this variable each system operates with different daily replacement rates to maintain
optimal water quality for fish production. This is a vitally important aspect in aquaculture
and depends on many aspects.

The SIS stands out for its high daily turnover, which reached up to 30%, with
13 organisms/m3 of planting density. Reduced water use is one of the factors that led
to promotion of the present research.

The proposed alternatives require less replacement (Table 2). The BFT with its im-
plementation is advantageous from this point of view, compared with RAS, CW, and AS.
Based on the proposed design, as a whole these systems are considered closed aquaculture
systems by minimizing their turnover rate. If we infer the amount of water discharged
annually, we would find a stratospheric amount in this aspect, since a SIS farm of this type
operates 365 days a year. The replacement in BFT, RAS, and AS is due to the fact that water
must be replaced by evaporation and the minimum discharge of total suspended solids,
and in cases of emergency.

3.2.3. Energy for Aeration, Pumping and Recirculation

This aspect is directly proportional to the culture density. The higher the production,
the more the aeration system plays a fundamental role, and in these cases, the differences
are evident.

The most efficient system in the use of energy is the CW, due to the low production
of fish and the proposed recirculation for its reincorporation into the aquaculture system,
which requires pumping to recirculate the water treated by anaerobic biological means.
Although the BFT requires more energy for aeration [74], due to the requirements of the
system (mixing and aeration of the water), there is a notable saving in the energy required
for pumping fresh water, which is significant depending on the characteristics of the



Sustainability 2021, 13, 6853 12 of 18

location of the deep well and the dynamic levels of operation of the pump installed for
this purpose.

In the case of the RAS system, since it has the highest production and requires constant
aeration 24 h a day, in addition to pumping for recirculation, it requires the greatest amount
of energy for its operation. Even though it is considered the most sustainable method for
fish production [76], its high energy consumption can be considered a determining factor in
its fixed costs and its sustainability can be questioned. In this sense, energy is an aspect that
can be improved with the use of grid-connected photovoltaic systems (G-CPVS), although
the initial investment cost would increase due to the acquisition of the photovoltaic system.

3.2.4. CO2 Emissions from the Use of Electricity

This aspect has been little studied in the literature, especially in countries such as
Mexico, where energy use depends on generating plants that operate from non-renewable
sources, so the use of electricity has to be considered. Therefore, depending on the amount of
energy used by these systems, it is possible to calculate the CO2 emissions to the atmosphere.

The CW showed lower emissions because it is a system that does not require energy to
treat the water, only to reuse it, followed by the BFT, despite the high aeration required for
its operation, in this case at a productivity of 15 organisms/m3 which was considered ap-
propriate for its initial implementation, although it is possible to increase it with experience
in the management of the system. It is observed that, due to the high aeration, the RAS
is the system that generates the highest emissions, for this reason this system, although
it recycles water, is at a disadvantage from the energy point of view compared with the
other systems.

3.2.5. Land Area Required

This aspect is important to take into consideration, because the area of arable land
is expected to decrease in the future. In the study site there is no land area limitation,
therefore the land requirement for CW and AS stands out. In the case of the CW, it stands
out because of the space for the installation of the treatment cells and settling tanks. AS
stands out because of the installation of agricultural land. With regard to BFT, it should be
clarified that the installation of the reservoir required more space, although it is possible
to avoid this and thus operate with the same 600 m2 as the SIS. The RAS system requires
additional space for the preparation of its subsystems.

3.2.6. Kilograms Produced Per Area Unit of Land Required

When submitting the food production in relation to the space required, it was possible
to obtain a variable that indicated that although the AS is the one that produces the greatest
number of kilograms of food, it was not the highest result.

As was the case with the RAS with 45.22 kg/m2, followed by the AS and the BFT.
The SIS lagged behind the CW due to its inability to produce added value to its removal
mechanisms, a performance aspect that is necessary to improve, as addressed by Marín-
Muñiz [51] and Sandoval-Herazo et al. [78], for the production of ornamental plants.

3.3. Social Dimension

Finally, the social implications of the application of aquaculture systems are observed,
an aspect little considered in the literature (Table 4).
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Table 4. Calculated results of the aquaculture systems analyzed by production cycle. Social variables.

Variable System

SIS BFT RAS CW AS

Workdays generated cycle 180 540 540 180 900
Education level low medium high low high

Stability and reliability high medium medium high medium
Access to and use of technology easy difficult very difficult easy very difficult

Commercialization of production immediate immediate complex immediate complex

3.3.1. Shifts Produced

When including an agricultural component, the personnel requirement for the AS
represents the greatest impact, followed by the BFT and RAS, as it requires three work
shifts to maintain surveillance of the critical variables of the system operation and to have
prevention protocols in place in case of failures and critical changes in water quality, which
put production at risk.

3.3.2. Education Level

Timmons et al. [24] state that aquaculture is not for everyone, and that a certain level
of education is required, which is a factor that becomes even more important when using
complex systems such as the ones analyzed. In application, a high level of education is
required for the RAS due to the different processes involved in the system and for the AS
because it integrates an additional component such as protected agriculture. In the case of
BFT, a high level of knowledge is required for the operation including controlled reproduc-
tion of bacteria and the maintenance of water quality without replacement. These aspects
undoubtedly limit their application in aquaculture, and producers should preferably have
equipment and personnel trained for this purpose.

The SIS and CW systems do not require a high level of knowledge, since their operation
designs have less variables to control and maintain a strict follow-up compared with the
other systems.

3.3.3. Stability and Reliability

In aquaculture, direct interaction between operators and organisms is very impor-
tant [79]. In this sense, the SIS and CW are more reliable and stable in their operation. Thus,
adverse water quality aspects are easily corrected with replacements, and in the case of
power supply failure, with power plants. CWs are susceptible to clogging due to excess
organic load, so a settler was incorporated in the design of the RAS, CW, and AS systems,
although it is also important to have electrical power backup.

In the case of the RAS, other equipment failures can cause problems, i.e., it has more
components that are susceptible to failure: pumps, biofilters, blowers, saturated settlers,
and sand filters.

In the case of the BFT, an inadequate carbon-to-nitrogen ratio and low oxygen level in
the pond promote an imbalance in water quality that can be fatal to production.

3.3.4. Access to and Management of Technology

Closed systems are little applied, mainly due to lack of knowledge and little encour-
agement for the use of these technologies and their costs.

With regard to the RAS, we agree with Badiola et al. [76] in considering this high-
tech production system and equipment. As the components of the system increase, the
complexity of the operation also increases; therefore, it is simpler to promote the use of
aquaculture in SIS. In addition, there are few technical specialists in these systems and little
rapprochement between academia and the productive sector.

As for CWs, according to Sandoval-Herazo et al. [78], they still do not contribute
significantly to wastewater treatment in Mexico. Another cause of the scarce use of CWs
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in water treatment is the lack of knowledge and the inexistence of accessible designs for
potential users [80,81].

3.3.5. Commercialization of Production

The greater the quantity of production, the more complex its commercialization
becomes. Undoubtedly, implementing a RAS and an AS will first require obtaining a broad
portfolio of clients and diverse distribution channels in order to have the capacity to sell
the aquaculture and agricultural product at a competitive price. Delaying sales increases
the cost of production due to the feed and energy required for the system. In the case of
SIS, BFT, and CW, since the production quantity is smaller, the risks in this sense are lower.

4. Conclusions

Food production through systems that generate healthy products, economic growth,
and social inclusion, and at the same time are produced in an environmentally sustainable
manner, is an ideal strategy. According to the systems analyzed in this study, it is evident
that they offer different characteristics. When compared, all of them offer an optimal but
not definitive solution, which depends on the needs, characteristics of the farm, regulations,
and capital.

According to the data obtained, the investment cost of the BFT system in the cultivation
of Oreochromis niloticus is lower compared with other ecotechnologies. Therefore, migrating
from SIS to BFT becomes easy; additional requirements only increase construction costs
by 18%.

On the other hand, from the environmental point of view, the use of BFT stands out in
terms of lower water use by 96.7%; in terms of energy, the system with the lowest impact
was CW, with 37% in contrast to SIS.

In the social aspect, the AS stands out, due to its capacity to generate employment in
the region; however, the level of education required is higher.

The BFT and RAS are similar due to the personnel requirements to cover 24 h.
The results are important because the benefits of these ecotechnologies were analyzed

in depth from an integral point of view. In the economic vision it was found that all
systems are economically viable; the pure aquaculture system with the best results was
RAS, however, it requires greater investment. In the case of BFT, it had the best cost-benefit
ratio and the lowest investment cost, which makes it an important alternative to consider.
The AS has an advantage for the agricultural production in that it is very outstanding and
competes with the BFT in the IRR (internal rate of return) close to 40% in the evaluation
period considered.

The importance for regional development is that the results of this paper offer a broad
vision for aquaculturists who wish to migrate to any of these ecotechnologies, which will
depend on their objectives and financial capacity to implement them. The BFT, CW, RAS,
and CW systems are economically viable, environmentally acceptable, especially in water
management, and socially feasible.

In the case of this study, it is determined that biofloc technology offers an alternative
with lower additional costs to improve the problems of the aquaculture farm studied,
taking into account its complexity of operation and additional energy requirements.

Finally, the results obtained in the research provide aquaculturists and the scientific
community with important data to complement the analysis of these ecotechnologies in
aquaculture. It was shown that these can be sustainable in their operation, as long as
they consider economic aspects in their evaluations, both environmental and social. The
incorporation of study variables used for each dimension in this work provides a sustain-
ability analysis useful for decision-making in future projects regarding design, construction,
implementation, and future research in the aquaculture sector; thus aiding in mitigation of
the excessive use of water, energy, and animal protein for the formulation of fish diets, in
addition to the discharge of wastewater into receiving water bodies without treatment.
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