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Abstract: Urban freight transport is essential for supporting our society regarding providing the
daily needs of consumers and local businesses. In addition, it allows for the movement of goods, is
distributed within urban environments, provides thousands of jobs, and supports economic growth.
However, a number of issues are associated with urban freight transport, including environmental
impacts, road congestion, and land use of freight facilities that conflicts with residential land use.
Electric freight vehicles create zero emissions and provide a sustainable delivery system in compari-
son with conventional freight vehicles. In this study, a novel dynamic inventory routing and pricing
problem under a mixed fleet of electric and conventional vehicles was formulated to minimize the
total travel and charging costs. The proposed model is capable of deciding on replenishment times
and amounts and vehicle routes. We aimed to determine the maximum social welfare (SW) capable of
providing an optimal trade-off between the supplier cost and customer delay that uses a mixed fleet
of vehicles. Our computational study was conducted on real data generated from a delivery dataset
in Tehran. Under the proposed policy with a fleet of only electric vehicles, the SW increased by 3%
while the average customer delay reduced by 15% compared with a fleet of conventional vehicles.
The results show that the number of served customers and customer delay would be affected by
transitioning conventional urban freight vehicles to electric vehicles. Therefore, the proposed delivery
system has a significant impact on energy savings and emissions.

Keywords: urban freight transport; conventional vehicles; electric freight vehicles; dynamic pro-
gramming; inventory routing problem

1. Introduction

The demand for the transport of goods within cities is rising while significant progress
is being made in increasing the number of freight vehicles in daily city logistics operations.
Many companies are striving to improve their supply chains by making them more trans-
parent although conventional urban freight transport is a major contributor to greenhouse
gases (GHGs) and is associated with substantially increased health risks. Hence, delivery
companies in urban logistics must switch to zero-emission-capable road freight in urban
areas using electric or hybrid trucks. Electric freight vehicles (EFVs) offer a potential
solution for these issues. More precisely, they allow for the movement of goods and are
distributed within an urban environment that reduces air and noise pollutions compared
with conventional vehicles. However, the actual application of EFVs in urban logistics
operations remains restricted.

EFVs become more competitive for logistic companies in order to save operational
costs, leading to significantly increasing environmental benefits. However, the implemen-
tation of EFVs in urban logistic operations has several operational challenges, including
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charging, load capacity, and the limited range of energy. Therefore, vehicle routes should
be precisely planned as a result of the limited range of vehicles. Our contributions include
the following features:

(1) We propose a non-myopic dynamic inventory routing and pricing problem under a
mixed fleet of electric and conventional vehicles.

(2) We introduce a heterogeneous fleet of vehicles and use a realistic energy consumption
that considers vehicle speed, cargo load and gradients, vehicle miles traveled (VMT),
vehicle emissions, and charging costs.

(3) An empirical study is conducted on real data generated from a delivery dataset in
Tehran that investigates both fleet sizing (conventional and electric vehicles) and
allocation aiming at maximizing social welfare. The results show that the number of
served customers and customer delay would be affected by transitioning conventional
vehicles to electric vehicles.

Figure 1 presents an overview of the design of the inventory and delivery problem.
The supply-chain optimization problems (e.g., the inventory routing problem) aiming
at optimal joint decisions of inventory management, vehicle routing, and dispatching of
urban freight vehicles have recently received considerable attention. In general, there is a
set of pick-up nodes (suppliers) where a set of delivery nodes (customers) should be served
by a mixed fleet of electric and conventional vehicles. The products are transported using a
fleet of vehicles and customers gradually consuming the products. Pallets and boxes can
be used to deliver the products from supply points to demand points. The items can be
delivered by each vehicle that has a limited capacity. The type of truck route that must be
taken depends on the origins and destinations of deliveries. Due to the activities of private
logistics operators, three main classifications for road trucks based on weight are heavy,
medium, and light trucks. Heavy-, medium-, and light-duty trucks are vehicles with a
gross vehicle weight rating (GVWR) over 26,001 lbs, between 10,001 and 26,000 lbs, and
under 10,000 lbs, respectively. This study focuses on a set of trucks to transport goods to a
set of geographically scattered retailers.
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Figure 1. An illustration of the dynamic inventory routing problem.

In addition, the present study investigates a mixed fleet of conventional and EFV
freight vehicles that must deliver orders to a set of geographically scattered customers
over a long-term horizon look-ahead. The supplier takes on the responsibility of product
deliveries and inventory management to customers. Further, a dynamic inventory routing
problem is developed between supply and retailer nodes while considering an elastic
demand (i.e., a demand that depends on inventory, routing, and pricing). A non-myopic
approximation model for the specific case of a closed-loop supply chain problem is studied
that considers future states. The policy aims to determine the optimal prices and the
customers’ arrival rate in order to maximize social welfare (SW), which is computed as the
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difference between the revenue and the supplier and customer costs. The advantage of this
method is its “self-regulating” nature since it encompasses different relationships between
the effective arrival rate, replenishment times and amounts, vehicle route, dynamic price,
and control service capacity that needs automation. These automated systems can be used
in fully automated freight vehicles for a delivery system [1]. The remaining sections of this
study are organized as follows:

Section 2 presents a relevant literature review on the topic to reveal the contribution of
the research. A novel design of dynamic routing and the delivery of items under a mixed
fleet of trucks is presented in Section 3, followed by an analysis of numerical examples and
simulations of a real case in Section 4. Finally, Section 5 provides the concluding remarks.

2. Literature Review

Electric freight vehicles are much more energy efficient compared with conventional
freight vehicles, and, therefore, are expected to bring considerable energy savings to urban
freight. For example, [2,3] studied several approaches to solve the EVR under partial
recharge and multiple recharging technologies for using EFVs. Similarly, [4] proposed a
vehicle routing problem related to the use of EFVs under a limited capacity of the battery.
Likewise, [5,6] investigated a delivery problem for urban trucks that considers power
consumption for managing a limited battery capacity. The authors of [7] proposed a static
VRP model under a mixed fleet of electric and conventional trucks while considering linear
energy consumption. The authors of [8] proposed a mixed-integer linear programming
method for a delivery routing problem with a mixed fleet of electric and conventional
vehicles. The authors of [9] also introduced an electric vehicle routing problem (EVRP)
model that evaluates slow and fast recharging stations by a nonlinear charging approach.
Furthermore, [10] studied an EVRP model with recharging stations under a mixed fleet of
vehicles. Moreover, [11] extended the model that focuses on a combined fleet of vehicles,
such as conventional, plug-in hybrid, and electric vehicles.

Many existing studies have also considered the design of recharging infrastructures in
the EVRP. For example, [12] studied a routing-location problem under stochastic demands
aiming at minimizing the total cost including the construction cost of the recharging station
and the expected traveling cost of the route. In their study, the authors of [13] investigated
a two-stage mixed-integer linear program for an EVRP with a stochastic waiting time at
recharging stations. Additionally, [14] proposed a Markov decision process (MDP) for an
EVRP with a stochastic waiting time at public recharging stations. In another study, [15],
the authors introduced a robust optimization location-routing framework that considers
the problem of simultaneously routing vehicles and locating charging stations.

To the best of our knowledge, most studies in this area are related to the EVRP
in the context of stochastic decision-making problems. For instance, [16] presented a
stochastic EVRP without en-route recharging under a stochastic power consumption
function. Strategies that consider future states are defined as non-myopic policies. However,
a limited body of research has addressed the dynamic routing of electric vehicles under a
non-myopic policy. For example, [17] evaluated online EVs with battery swaps as an MDP
using an approximated dynamic programming method with linear temporal differencing.
The authors of [18] introduced a new social-based optimization model for the distribution
of batteries, where the approach comprises decisions related to loaded and unloaded
batteries, routing, and scheduling of vehicles between the battery charging and battery
swapping stations. A summary of recent contributions to routing and delivery systems is
described in Table 1.

This study proposes a new routing and scheduling model that considers replenish-
ment times and amounts under a mixed fleet for urban freight transportation problems,
stemming from the work of [18]. Currently, there are no dynamic models with a look-ahead
policy that incorporate heterogeneous electric freight vehicles and use energy consumption
for the problem analysis. In addition, no model has so far investigated both fleet sizing
(conventional and electric vehicles) and allocation aiming at maximizing SW or considered
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a dynamic dispatch system by taking into account the future state that minimizes the total
travel and charging costs. Using the real-time urban freight dataset, we show that both
customers and system providers are satisfied by the proposed methodology.

Table 1. Summary of routing and delivery studies.

Studies Model Feature(s)

[19] Incorporated energy consumption in a myopic electric routing problem while not
considering vehicle loads.

[20] Introduced mixed-integer linear programming for the probabilistic inventory routing
problem with a homogenous vehicle that considers emissions and energy consumption.

[16] Minimized the total costs of a myopic electric routing problem.

[21]
Introduced mixed-integer linear programming for a production inventory and delivery
problem with a heterogeneous vehicle while not considering energy consumption and
environmental concerns.

[18]
Maximized social welfare for the non-myopic distribution of the electric battery problem
with homogeneous vehicles while not considering energy consumption, vehicle loads,
and environmental concerns.

Current paper
Integrated the non-myopic dynamic optimization of routing, transportation, and
inventory with a heterogeneous fleet of vehicles that considers energy consumption and
environmental impacts.

3. The Mathematical Model

The proposed algorithm starts by determining the load size, the effective arrival
rates, the reward upon completion of service, and the degree of look-ahead for each new
customer, followed by updating the locations and service states of the tours determined for
the previous analyzed customer. Then, an optimization formulation Problem 1 is applied
for each truck to obtain a potential tour, and the optimal arrival rate of the current customer
is derived, along with the system revenue. Finally, the truck maximizing SW is chosen, and
the potential tour is updated with the selected one while keeping all the others the same as
before. In summary, there are three simultaneous decisions to make, including how much
to deliver when serving a customer under a mixed fleet of conventional and electric freight
trucks, how to route the vehicle among the customers to be served, and when to serve a
customer and the amounts. Table 2 presents the input and outputs of Problem 1.

Table 2. Input parameters and outputs of the proposed model.

Symbol Description

Indices and sets

i, j vertex $ the fuel-to-air mass ratio
p supply nodes χ the heating value of a typical diesel fuel
t time periods ς the conversion factor
N the set of all points in the network $ $ = 0.5CdρA
S the set of the supply nodes, S ⊂ N Cd expected air drag coefficient
D the set of the demand nodes, D ⊂ N ρ expected air density
τ the current location of the trucks, τ ∈ N A frontal area

e the dummy end node that all trucks will go to at
the end of their tour, e ∈ N γ γ = (1/1000Ψ)

T the set of needed steps to finish the delivery efficiency parameter for diesel engines
Oi the number of orders of customer nodes i ∈ D π π = g sin(α) + gCr cos(α)
Si maximum supply nodes i ∈ S Cr rolling friction coefficient
K the capacity of the truck α road angle (rad)
l0 an initial load of the truck g gravitational constant
dij the distance between points i and j ∈ N ϑ curb-weight (kg)
∆ij truck speed (km/h) w the weight of a full load of items

η η = LH Γ1
the energy consumption cost of a conventional

vehicle

L the engine displacement Γ2
the energy consumption cost of an electric

vehicle



Sustainability 2021, 13, 6703 5 of 16

Table 2. Cont.

Symbol Description

the engine speed ϕ auxiliary power demand (W)
H the engine friction factor Ψ vehicle drivetrain efficiency

δ δ = $/(ςχ) Vf

type of fuel f = {1, 2}, where 1 refers to
conventional freight vehicles and 2 refers to
electric freight vehicles, v f =

{
1, . . . ,

∣∣Vf
∣∣}

Decision variables
xijt if the truck goes from i ∈ N to j ∈ N at step t 1; otherwise 0
yijt the number of loaded items on the truck going from i ∈ N to j ∈ N at step t
lit the number of loaded items in i ∈ S by the truck at time period t
uit the number of unloaded items in i ∈ D by the truck at time period t

3.1. Energy Consumption

The total amount of fuel for the conventional freight vehicle C is calculated by the
engine module, which is linear in the travel cost and investigates vehicle speed and cargo
load, and gradients [22–25]. Table 3 presents the notations and parameters.

Cij = δk

(
ηk

(
dij

∆ij

)
+
(

γk$k1dij∆ij
2
)
+ γkπk1(ϑk1 + wl)dij

)
(1)

Likewise, the total amount of the energy consumption of the road segment for electric
freight vehicle E is computed by [16,23,26]

eij =

(
$k2dij∆ij

2)+ πk2(ϑk2 + wl)dij

3.6× 106 (2)

E =

{
Ψk2.eij +

ϕktij
3.6×106 , i f eij ≥ 0

ϕktij
3.6×106 i f eij < 0

(3)

3.2. Incorporating Uncertainty

In this section, a value function in terms of SW under the infinite-horizon look-ahead
is determined using the demand function that considers a one-to-one connection between
non-myopic pricing and effective customers joining the system, the supplier costs (in terms
of the length of tours under a mixed fleet of urban trucks), and the expected customer
delay. In this study, an approximation method is proposed to investigate future states by
examining the trade-off between “exploitation” and “exploration” policies [27,28]. This
study applies an approximation approach according to [18]:{

ˆ
ξ
∗

n,
ˆ
lv∗,

ˆ
uv∗,

ˆ
yv∗,

ˆ
p
∗
n

}
= argmax

χ

[
SW
(

ˆ
λn;

ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv,

ˆ
pn

)
− SW

(
ˆ
λn;

ˆ
ξn−1,

ˆ
lv,

ˆ
uv,

ˆ
yv,

ˆ
pn−1

)]
, (4)

where SW

(
ˆ
λn;

ˆ
ξ
∗

n,
ˆ
lv∗,

ˆ
uv∗,

ˆ
yv∗,

ˆ
p
∗
n

)
is the SW function and v f represents the set of vehicles

by sizes v and the type of fuels f = {1, 2}, where 1 refers to conventional freight vehicles
and 2 refers to electric freight vehicles, v f =

{
1, . . . ,

∣∣∣Vf

∣∣∣}. Let χ indicate the set of decision
variables that contains an optimal decision on replenishment times and amounts where
ˆ
lv∗ denotes the optimal number of loaded items at supply nodes and

ˆ
uv∗ is the optimal

number of unloaded items delivered to customer nodes. In addition,
ˆ
yv is the number of

loaded items on the vehicle. Further,
ˆ
ξ
∗

n is a new tour upon the arrival of a customer and

places a new request for new items, and, finally,
ˆ
p
∗
n represents the optimal price [18].
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SW
(

ˆ
λn;

ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv,

ˆ
pn

)

= ΛR 1−ρ(R− ˆ
pn)

ˆ
µ

1−ρ(R− ˆ
pn)

ˆ
µ+1
− θ

T
(

ˆ
ξn ,

ˆ
lv ,

ˆ
uv ,

ˆ
yv

)
T
(

ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv

)
− ψ

ˆ
λn(

ˆ
µ−

ˆ
λn

)2


− (1−θ)

T
(

ˆ
ξn ,

ˆ
lv ,

ˆ
uv ,

ˆ
yv

)
 n

∑
i=1

Si

(
ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv

)
+

ˆ
µ

ˆ
λn

2
(

ˆ
µ−

ˆ
λn

)T
(

ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv

)2

+ ψ
ˆ
λn(

ˆ
µ−

ˆ
λn

)2


(5)

k
(

ˆ
pn

)
≤
[(

R− ˆ
pn

)
ˆ
µ/σ

]
(6)

0 < λn ≤ Λ (7)

where T
(

ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv

)
is the length of a tour by vehicle v, which is determined by solving

an optimization module (Section 3.2.1). ∑n
i=1 Si

(
ˆ
ξn,

ˆ
lv,

ˆ
uv,

ˆ
yv

)
denotes the total sojourn

time, which is obtained from the simulation module regarding the potential tours
ˆ
ξn.

A weight differentiating the objectives is selected by θ, 0 ≤ θ ≤ 1, and β is the policy
parameters that differentiate among non-myopic policies and myopic policies.

Table 3. Model parameter values.

Parameter Description Value Parameter Description Value

η η = LH 33 w the weight of a full load of
items 20 kg

L engine displacement 5(l) Γ1
the energy consumption cost of

a conventional vehicle 1.4

engine speed 33(rev/s) Γ2
the energy consumption cost of

an electric vehicle 0.2

H engine friction factor 0.2 (kJ/rev/liter) ϕ auxiliary power demand (W) 1575

δ δ =$/(ςχ) 0.00003 Ψ vehicle drivetrain efficiency 0.4

$

fuel-to-air mass ratio (air–fuel
equivalence ratio (AFR),

$, is the ratio of actual AFR to
stoichiometry for a given

mixture$ = 1.0 is at
stoichiometry [29,30])

1 O the number of orders 3951 items

χ
heating value of a typical

diesel fuel 44 (kJ/g) σ the rate of waiting cost $1

ς conversion factor 737 (g/L) Nd the number of supply points 30

$
$ = 0.5CdρA (conventional and

electrical trucks) 2.889840, 1.6486537 Ns the number of demand points 5

Cd

expected air drag coefficient
(conventional and electrical

trucks)
0.6, 0.7 C the capacity of items at supply

nodes 2500, 2000, 3000

ρ expected air density 1.2041 kg/m3 V the number of vehicles 10

A frontal area (conventional and
electrical trucks) 8, 3.912 m2 R a reward for service 15

γ γ = (1/1000Ψ) 0.005 θ a weight 0.5

efficiency parameter for diesel
engines 0.5 ˆ

µ the service rate 6

π π = g sin(α) + gCr cos(α) 0.0981 Λ the aggregate arrival rate 4
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Table 3. Cont.

Parameter Description Value Parameter Description Value

Cr rolling friction coefficient 0.01 K vehicle capacity 100

α road angle (rad) 0 Ω the value of time 0.33

g gravitational constant 9.81(m/s2) β degree of look-ahead 0.2

ϑ curb-weight (kg) 6350 kg |T| the set of needed steps to finish
the plan 25

∆ij vehicle speed (km/h) 40

3.2.1. Mathematical Formulation

An optimization formulation is run to obtain potential tours. It aims to minimize the
traveled distance by the mixed fleet of vehicles to visit customers in a distribution and
transportation network. The objective function (8) of this study is to minimize the total
charging costs, composed of two terms. The first and the second terms correspond to
the sum of the total charging costs under the conventional freight vehicle and the electric
freight vehicle, respectively.

Problem 1: Integrated optimization of routing and inventory with a mixed fleet of
electric and conventional vehicles

Z = min ∑
i∈N

∑
j∈N

∑
t∈T

δ
((

η
∆ij

+ γ$∆ij
2 + γπϑ

)
dijxijt + γπwdijyijt

)
Γ1

+ ∑
i∈N

∑
j∈N

∑
t∈T

ΨVarijt +

 ϕ

(
dij
∆ij

)
3.6×106

xijt

Γ2

(8)

Subject to:

Varijt ≥
(
$∆ij

2 + πϑ
)
dijxijt + πwdijyijt

3.6× 106 ∀i, j ∈ N, t ∈ T (9)

∑
j 6=τ

xτ j1 = 1 (10)

xτ jt = 0 ∀j ∈ N, t ≥ 2 (11)

∑
j ∈ N
j 6= i

xijt = ∑
j ∈ N

j /∈ {i, e}

xjit−1 ∀i ∈ N\{τ, e}, t ≥ 2 (12)

∑
i∈N

∑
j∈N

xijt = 1 ∀t ∈ T (13)

xejt = 0 ∀j ∈ N, t ∈ T (14)

∑
i∈N

∑
t∈T

xiet = 1 (15)

yijt ≤ Kxijt ∀i ∈ N, j ∈ N, t ∈ T (16)

∑
j∈N

yijt = ∑
j∈N

yjit−1 − uit ∀i ∈ D, t ≥ 2 (17)

∑
j∈N

yijt = ∑
j∈N

yjit−1 + lit i ∈ S, ∀t ≥ 2 (18)

∑
j∈N

yτ j1 = l0 (19)

l0 + ∑
i∈S

∑
t∈T

lit = ∑
i∈D

∑
t∈T

uit (20)
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∑
t∈T

lit ≤ Si ∀i ∈ S (21)

∑
t

uit = Oi i ∈ D (22)

ui1 = 0 ∀i ∈ N (23)

xijt ∈ {0, 1}, yijt ≥ 0, lit ≥ 0, uit ≥ 0 Varijt ≥ 0, ∀i, j ∈ N, t ∈ T (24)

The fuel rate of electric vehicles for a path is presented by constraint (9). The flow
equivalence in the nodes is guaranteed by constraints (10)–(15). Constraints (17) and (20)
cover the case with the loading and unloading of items in the demand/supply nodes. The
dummy node is defined to remove the necessity of returning a truck to the initial point.
Constraint (18) guarantees that the truck will not pick more items than what is needed for
demand points in its scheduled route. Constraints (16)–(21) guarantee that the load of the
truck and all picked items from a supply node will not violate the capacity of the truck
limitation at the supply node, respectively. The provision of the needed demand for each
customer node is stated in constraints (22) and (23). Finally, the type of variable is defined
by constraint (24).

The following algorithm, called Algorithm 1, is applied in the online operational
routing and delivery problem (and for simulated runs). The status of each truck location
regarding the supply and demand nodes is updated upon the arrival of a new request.
The remaining tour (ξ) shows the status of a mixed fleet of trucks v ∈ {V1, V2}, where
V1 denotes a set of conventional trucks and V2 refers to a set of electrical trucks. The
initially loaded items in the truck and the currently loaded items are determined by l0 and
l, respectively. The set of all nodes in network N is determined by supply points in the
route of the truck (dem(v.ξ)), the new demand points (n), and the dummy end node (e).
The distance between points dij is determined where the distance between points and the
dummy nodes is zero. Then, the inventory and routing with the mixed fleet model are
solved and are shown by constraints (8), along with constraint (24) for the given parameters
of the truck v, the nodes N, the capacity of supply nodes C, and the demand of customers
O. The SW function is maximized to find the best decisions, such as the best truck (v∗) and
the optimal delivery items and routes between supply and demand nodes. Eventually,
the outputs include the effective optimal arrival time, fare prices, and the sequence of
customers visited by each truck and the tour length.

Algorithm 1. Integrated optimization of vehicle routing, transportation, and inventory with the mixed fleet of vehicles

Step 0. Initialization: Input parameters.
For i ∈ n

For v ∈ {V1, V2}:
Step 1.

Update v.(ξ, l, l0)
N ← Ns ∪ dem(v.ξ) ∪ {n} ∪ {v.l} ∪ {e}[

dij
]
← distance(N)

ˆ
ξv ,

ˆ
lv ,

ˆ
uv ← IRMF

(
v, N,

[
dij
]
, C, O

)
Step 2.
Compute

SW
(

ˆ
λn ;

ˆ
ξn ,

ˆ
lv ,

ˆ
uv ,

ˆ
pn

)
← T

(
ˆ
ξn ,

ˆ
lv ,

ˆ
uv

)
ˆ
λ
∗

n ←
[

∂D
(

ˆ
pn

)
/∂λn = 0

]
Step 3.
Calculate

v∗ ← argmax
v∈V

{
SW
(

ˆ
λn ;

ˆ
ξn ,

ˆ
lv ,

ˆ
uv ,

ˆ
pn

)
− SW

(
ˆ
λn ;

ˆ
ξn−1,

ˆ
lv ,

ˆ
uv ,

ˆ
pn−1

)}
v∗ .(λ; ξ, l, u, p)←

(
ˆ
λ
∗

n ;
ˆ
ξ
∗

n ,
ˆ
lv∗ ,

ˆ
uv∗ ,

ˆ
p
∗

n

)
end
end
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4. Results

This section describes our tests of the proposed dynamic model. Section 4.1 explains
the generation of our test data. In Section 4.2, the efficiency of our proposed approach is
demonstrated in a real-life case study, and scenarios are created in a distribution company
in Tehran. The main point of the proposed model is an online delivery of items from supply
points to demand points under a mixed fleet of trucks. The branch and bound (B&B) algorithm
was implemented using Matlab, running on a desktop with an Intel® Core™ i5-8550U
processor with 16GB of RAM and a 64-bit platform using a Windows 10 operating system.

4.1. Data Collection

For testing, our computational study was run on real data generated from the daily
activity of a distribution company in Tehran. The selected area includes three suppliers
(S1, S2, S3) that serve 13 demand nodes (D1 . . . , D13). The distribution company is presently
one of the largest delivery companies in Iran. It blends, packs, sells, and deliveries teas as
well as a wide variety of other types of food products, including rice, spices, pistachios,
saffron, and so forth. The effects of other types of urban freight vehicles, such as refrigerated
trucks, on the charging cost and energy consumption will be modeled in a future study.
Figure 2 shows the distribution of items between the supply and demand networks.

The travel cost between road intersections was determined by the Euclidean distance

method. The customer arrival rate
ˆ
λ of items at each demand node appears as the Poisson

process and was computed by the historical dataset of a distribution company. The service

rate
ˆ
µ of items at each supply node was assumed to follow an exponential distribution and

was calculated by the service times from the historical dataset. Table 3 presents the applied
input parameters in our simulations.

4.2. Experimental Results

In the following section, the routing and delivery system is examined under the fleet
of only electric vehicles or the fleet of only conventional vehicles, followed by evaluating
the impact of feet size and demand rates on the performance of the distribution model.
Table 4 provides the results of vehicle routes, loading/unloading of items, and times under
the fleet of only electric vehicles. The VMTs for only electric vehicles are 172.7501, 84.86096,
70.232, 34.077, 73.058, 102.920, 102.119, 102.227, 177.344, and 75.408 km, respectively.
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Then, the impact of the feet size on the performance of the delivery system was
studied. Fleet sizes V are considered in the range 9–15. Next, the VMT and the amount of
emissions were determined for each fleet size. Table 5 presents the results of vehicle routes,
the loading/unloading of items, and times under the fleet of only conventional vehicles.
The VMT for the only conventional vehicles scenario is 175.962, 89.392, 155.970, 34.396,
55.590, 66.512, 94.751, 70.937, 51.937, and 173.317 km, respectively. Thus, the proposed
model has a significant impact on energy savings and the environment.

Table 4. The results of only electric vehicles.

Vehicles Optimal Routes and Replenishment Times and Amounts

V1

Route: S1–D3–S3–D3–S3–D3–S3–D3–S3–D1–S3–D1–S3–D6–S3–D6
Time: 6.96–30.53–33.39–36.26–39.13–42.00–44.87–47.73–50.60–75.26–85.73–96.20–106.68–144.11–177.87–211.63

Load/unload: 80, 42, −42, 57, −57, 19, −19, 73, −73, 80, −80

V2

Route: S2–D7–S3–D7–S3–D7–S3–D7–S3–D7–S3–D7
Time: 10.33–28.66–37.54–46.42–55.30–64.18–73.06–81.94–90.83–99.71–108.59–117.47

Load/unload: 61, −61, 76, −76, 80, −80, 80, −80, 14, −14, 80, −80

V3

Route: S3–D3–S3–D4–S3–D8–S1–D8–S1–D8–S1–D8–S1–D8–S1–D8
Time: 1.70–4.77–7.64–26.83–46.01–64.53–66.71–68.89–71.07–73.25–75.43–77.62–79.80–81.98–84.16–86.34

Load/unload: 66, −25, 25, −66, 55, −55, 46, −46, 80, −80, 80, −80, 80, −80, 80, −80

V4

Route: S1–D13–S2–D11–S2–D13–S2–D13–S2–D11–S2–D13–S2–D13
Time: 7.10–31.27–39.13–43.17–47.22–55.07–62.93–70.78–78.64–82.68–86.73–94.58–102.44–110.29

Load/unload: 73, −73, 62, −62, 79, −79, 80, −80, 44, −44, 80, −80, 80, −80

V5

Route: S3–D1–S3–D2–S3–D2
Time: 36.14–46.62–57.09–70.75–84.41–98.07

Load/unload: 75, −75, 24, −24, 64, −64

V6

Route: S3–D11–S2–S2–D10–S1–D10–S1–D10–S1–D10–S1–D10–S1–D10–S1–D10
Time: 4.96–26.15–30.19–35.30–48.96–57.06–65.16–73.26–81.37–89.47–97.57–105.67–113.77–121.87–129.97–138.07–146.17

Load/unload: 54, −54, 21, 4, −25, 80, −80, 80, −80, 80, −80, 80, −80, 80, −80, 63, −63

V7

Route: S1–D5–S3–D12–S3–D12–S3–D12–S3–D12–S3–D12
Time: 8.24–26.97–41.08–52.73–64.39–76.04–87.69–99.35–111.00–122.66–134.31–145.97

Load/unload: 55, −55, 77, −77, 80, −80, 80, −80, 80, −80, 36, −36

V8

Route: S2–S3–D1–S3–D11–S2–D11–S3–D4
Time: 12.52–37.06–47.54–58.01–79.19–83.24–87.28–108.46–127.65

Load/unload: 35, 35, −70, 56, −56, 58, −58, 57, −57

V9

Route: S3–D5–S3–D9–S2–D9–S1–D6–S1–D6
Time: 10.81–55.73–69.41–90.61–94.79–98.96–121.10–154.85–188.61–222.37

Load/unload: 61, −33, 27, −55, 80, −80, 80, −80, 80, −80

V10

Route: S1–D9–S2–D9–S2–S2–D10–S1–D10–S1–D10–S1–D10
Time: 10.17–32.31–36.48–40.66–44.84–47.85–61.51–69.61–77.71–85.81–93.91–102.01–110.11

Load/unload: 44, −44, 80, −80, 66, 5, −71, 80, −80, 62, −62, 80, −80

Table 5. The results of only conventional vehicles.

Vehicles Optimal Routes and Replenishment Times and Amounts

V1

Route: S1–D3–S3–D3–S3–D3–S3–S3–D1–S3–D6–S1–D6
Time: 6.96–30.53–33.39–36.26–39.13–42.00–44.87–90.55–101.02–111.49–148.93–182.69–216.45

Load/unload: 57, −57, 80, −80, 43, −43, 57, 19, −76, 73, −73, 80, −80

V2

Route: S2–D11–S2–S3–D7–S3–D7–S3–D7–S3–D7–S3–D7
Time: 4.96–9.01–20.06–45.97–54.85–63.73–72.61–81.49–90.37–99.26–108.14–117.02–125.90

Load/unload: 54, −54, 56, 24, −80, 80, −80, 80, −80, 80, −80, 10, −10

V3

Route: S3–D4–S3–D3–S3–S1–D10–S1–D10–S1–D10–S1–D10–S1–S10–S1–D10–S1–D10–S1–D10–S1–D10–S1–D10
Time: 1.70–20.89–41.84–44.71–48.77–70.33–78.43–86.54–94.64–102.74–110.84–118.94–127.04–135.14–143.24–151.34–159.44–167.54–

175.64–183.74–191.84–199.95–208.05–216.15–224.25
Load/unload: 66, −66, 53, −42, 5, 64, −80, 61, −61, 80, −80, 80, −80, 80, −80, 80, −80, 80, −80, 80, −80, 80, −80, 80, −80

V4

Route: S1–D9–S2–D9–S2–D2–S3–D2
Time: 10.17–32.31–36.48–40.66–44.84–65.34–78.99–92.65

Load/unload: 44, −44, 80, −80, 24, −24, 64, −64
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Table 5. Cont.

Vehicles Optimal Routes and Replenishment Times and Amounts

V5

Route: S2–D13–S1–D8–S1–D8–S1–D8–S1–D9–S2–D9
Time: 7.10–14.95–41.61–43.79–45.97–48.15–50.34–52.52–56.04–78.17–82.35–86.53

Load/unload: 73, −73, 80, −80, 55, −55, 80, −80, 76, −76, 59, −59

V6

Route: S3–D3–S3–D13–S2–D13–S2–D13–S2–D13–S2–D13
Time: 3.04–5.91–16.30–36.02–43.87–51.73–59.58–67.44–75.29–83.15–91.00–98.86

Load/unload: 25, −25, 75, −75, 4, −4, 80, −80, 80, −80, 80, −80

V7

Route: S1–D7–S3–D10–S3–D12–S3–D12–S3–D12–S3–D12
Time: 10.33–22.80–36.28–47.93–59.59–71.24–82.90–94.55–106.21–117.86–129.52–141.17

Load/unload: 61, −61, 80, −80, 72, −72, 80, −80, 80, −80, 41, −41

V8

Route: S2–D1–S3–D1–S1–D8–S1–D8–S1–D8
Time: 11.85–44.43–54.91–65.38–86.64–88.82–91.00–93.19–95.37–97.55

Load/unload: 75, −75, 70, −70, 80, −80, 80, −80, 46, −46

V9

Route: S3–D5–S3–S2–D11–S2–D11–S2–D11
Time: 8.24–21.92–52.03–76.62–80.66–84.71–88.75–92.80–96.84

Load/unload: 55, −55, 38, 42, −80, 80, −80, 60, −60

V10

Route: S1–D5–S3–D4–S3–D6–S1–D6
Time: 10.81–59.33–73.01–92.19–111.38–148.81–182.57–216.33

Load/unload: 61, −33, 29, −57, 80, −80, 80, −80

The application of electric trucks is extremely slow since the operational cost and user
cost remain extremely high in comparison with diesel or petrol cars. Using the proposed
model, the customer delays would not be affected by transitioning conventional urban
freight vehicles to electric vehicles. We compared the time that a customer is waiting to
receive their demands with electric and conventional vehicles. The average customer delay
for the two types of fleets for the delivery of items is shown in Figure 3. The results show
that the average customer delay for electric vehicles and conventional vehicles is 52.54 min
and 62.39 min, respectively.
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The optimal price that a customer is willing to pay is presented in Figure 4. The
results show that the socially optimal prices are sensitive to customer delays due to service
demands with electric and conventional vehicles. Therefore, the proposed model proposes
a competitive price to the customer that considers the customer waiting time and the value
of time.
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The study also focused on the type of fleets used to distribute items between supply
and demand nodes and evaluated the solutions considering different fleet sizes. Then, the
impact of the two types of fleets on vehicle miles traveled (VMT) was determined, which
is an interesting result for delivery companies. Accordingly, guidelines are provided to
make the right fleet sizing decisions according to different fleet size policies regarding
the minimization of SW. The levels of the emissions of GHGs due to the delivery of items
between supply and demand nodes were computed using the results of our simulated runs:

Emissions = VMT× Emission factor (g/km) (25)

NOx emissions average 0.225 g/km while CO2 emissions average 450.49 g/km.
Table 6 summarizes the performance differences of the two types of fleets for the de-
livery of items. More precisely, it presents the results of electric and conventional fleets,
as expressed by the SW, the VMT, the amount of emissions in terms of NOx and CO2
emissions, and the customer delay. Under the results of only electric vehicles when the
fleet size is 10 (Prob 2), the SW increases by 0.28%, and the average customer delay reduces
by 15% compared with a delivery system with a fleet of conventional vehicles. Therefore, it
is proven that the number of served customers and customer delays would not be affected
by transitioning conventional urban freight vehicles to electric vehicles.

In order to consider the pollution from the power charging system, we have to study
different types of recharging methods. For instance, battery swapping is an efficient and fast
recharging method enabling drivers to go to a battery swapping station (BSS) and replace
their empty batteries with full ones. The battery charging stations (BCS) are responsible
for distributing full batteries to the BSS nodes. However, batteries can be charged at BCSs
with renewable energy sources [18,31].
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In our experiment, we analyzed the performance of different density rates of customer
arrivals at supply nodes for the base case with respect to four key performance indicators
with a fleet of 10 vehicles, including VMT, customer delay, SW, and the amount of emis-
sions. Table 7 provides the results of different density rates with only electric and only
conventional fleets. Under a high density (0.1), the VMT and customer delay decrease by
8 and 7%, respectively, while the SW increases by 3% in comparison with a fleet of only
conventional vehicles. Therefore, the results reveal that the proposed model provides better
performance under the high density of demands, because each vehicle can use its capacity.
However, the conventional vehicles under a lower density have better performance.

Table 6. Results of electric and conventional vehicles under different fleet sizes.

Prob. Fleet Size Only Electric Vehicles Only Conventional Vehicles

1 9
VMT: 975.13 (km)

SW: 3147.796
Customer delay: 62.56 (min)

VMT: 992.93 (km)
Emissions: CO2 (447,305.04 g), NOx (223.41 g)

SW: 3152.628
Customer delay: 57.08 (min)

2 10
VMT: 1037.367 (km)

SW: 3156.63
Customer delay: 52.54 (min)

VMT: 1005.387 (km)
Emissions: CO2 (452,916.79 g), NOx (226.21 g)

SW: 3147.942
Customer delay: 62.39 (min)

3 11
VMT:1051.61 (km)

SW: 3160.41
Customer delay: 48.56 (min)

VMT: 1012.495 (km)
Emissions: CO2 (456,118.87 g), NOx (227.81 g)

SW: 3158.874
Customer delay: 50 (min)

4 12
VMT: 1045.708 (km)

SW: 3163.442
Customer delay: 44.82 (min)

VMT: 1061.988 (km)
Emissions: CO2 (478,414.97 g), NOx (238.95 g)

SW: 3164.159
Customer delay: 44.011 (min)

5 13
VMT: 1041.121 (km)

SW: 3165.474
Customer delay: 42.52 (min)

VMT: 1037.963 (km)
Emissions: CO2 (467,591.95 g), NOx (233.54 g)

SW: 3169.412
Customer delay:38.05 (min)

6 14
VMT: 1141.817 (km)

SW:3 168.571
Customer delay: 39 (min)

VMT: 1064.196 (km)
Emissions: CO2 (479,409.66 g), NOx (239.44 g)

SW: 3166.278
Customer delay: 41.60 (min)

7 15
VMT: 1131.038 (km)

SW: 3168.771
Customer delay: 38.78 (min)

VMT: 1085.712 (km)
Emissions: CO2 (489,102.40 g), NOx (244.29 g)

SW: 3165.42
Customer delay: 42.58 (min)

Table 7. The summary of different densities of demand at supply nodes.

Prob. Inter-Arrival Times Only Electric Vehicles Only Conventional Vehicles

1 0.1
VMT: 851.395 (km) (8%-)

SW: 2197.90 (3%+)
Customer delay: 75.55 (min) (7%-)

VMT: 926.51 (km)
Emissions: CO2 (417,383.49 g), NOx (208.46 g)

SW: 2128.92
Customer delay: 81.69 (min)

2 0.3
VMT: 969.451 (km)

SW: 2969.56
Customer delay: 73.48 (min)

VMT: 1057.48 (km)
Emissions: CO2 (476,384.17 g), NOx (237.93 g)

SW: 2988.698
Customer delay: 66.61 (min)

3 0.5
VMT: 1012.42 (km)

SW: 3057.835
Customer delay: 79.69 (min)

VMT: 974.48 (km)
Emissions: CO2 (438,993.50 g), NOx (219.26 g)

SW: 3079.47
Customer delay: 66.75 (min)
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Table 7. Cont.

Prob. Inter-Arrival Times Only Electric Vehicles Only Conventional Vehicles

4 0.7
VMT: 982.475 (km)

SW: 3100.221
Customer delay: 69.69 (min)

VMT: 1050.996 (km)
Emissions: CO2 (473,463.19 g), NOx (236.47 g)

SW: 3092.443
Customer delay: 75.37(min)

5 0.9
VMT: 1011.105 (km)

SW: 3126.25
Customer delay: 66.73 (min)

VMT: 980.88 (km)
Emissions: CO2 (441,876.63 g), NOx (220.70 g)

SW: 3138.25
Customer delay: 55.83 (min)

6 1.1
VMT: 1031.66 (km)

SW: 3146.20
Customer delay: 59.20 (min)

VMT: (1010.32 km)
Emissions: CO2 (455,139.06 g), NOx (227.32 g)

SW: 3148.19
Customer delay: 57.09 (min)

5. Conclusions

Urban freight vehicles in cities increase traffic-air and noise-pollution issues. Gases
emitted by combustion engines cause illnesses and deaths and have a significant impact
on economics and public health. However, the application of zero-emissions traffic is
extremely slow (i.e., less than 1% of the overall automotive market) since costs remain
extremely high in comparison with diesel or petrol cars. Electronic urban vehicles play
a key role in reducing the greenhouse effect and saving the driver’s energy expenditure.
This study proposed a novel dynamic non-myopic model for deciding about the allocation
of a mixed fleet for the delivery of items between supply and demand nodes. For this
purpose, it was shown how to assign incoming customer requests to fleet types, derive
an optimized schedule for the delivery service, and reroute the vehicles as a dynamic
non-myopic dynamic distribution system. Accordingly, a dynamic system was provided
for integrating routing, transportation, and inventory problems using a mixed fleet of
electric and conventional trucks. Additionally, a look-ahead policy was used in the SW
function to improve the opportunity costs by considering future states. These components
are embedded within a simulation system to evaluate the performance of various fleet for
serving customer demands. To investigate the proposed strategy, an experimental example
was generated from a delivery system in Tehran. Our experiments indicated substantial
improvements in energy and the environment over simpler methods.

For future research, a dynamic model will be proposed to guide trucks by finding an
optimal route that considers traffic congestion in the road network. In addition, an energy
consumption function for electric vehicles can be developed to manage the limited battery
capacity. Many cities around the world are starting to discuss what automated vehicles
will mean to their land use, traffic management, and transit planning. A dynamic model
can be considered for fully automated freight vehicles in future research that considers
joint decisions on charging location, the scheduling of charging, routing, and inventory
for a delivery system. Finding the optimal hub location and parking locations for urban
freight network design can be considered in future research [32,33]. The impacts of other
types of vehicles, such as refrigerated trucks, on energy consumption and charging costs
can be obtained and modeled in a future study [34]. Eventually, some customer nodes
will be able to receive items indirectly using a nearby node drop, so a flexible routing and
delivery system with elastic logistics can be considered in future research [35].

Author Contributions: The authors confirm the following contributions to this paper: study con-
ception and design: H.R.S. and V.M.; data collection: H.R.S.; analysis and interpretation of results:
H.R.S., V.M., and N.B.; draft manuscript preparation: H.R.S. and N.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research did not receive any grant from funding agencies in the public, commercial,
or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.



Sustainability 2021, 13, 6703 15 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Masood, K.; Zoppi, M.; Fremont, V.; Molfino, R.M. From Drive-By-Wire to Autonomous Vehicle: Urban Freight Vehicle

Perspectives. Sustainability 2021, 13, 1169. [CrossRef]
2. Felipe, A.; Ortuño, M.T.; Righini, G.; Tirado, G. A heuristic approach for the green vehicle routing problem with multiple

technologies and partial recharges. Transp. Res. Part E Logist. Transp. Rev. 2014, 71, 111–128. [CrossRef]
3. Schiffer, M.; Walther, G. The electric location routing problem with time windows and partial recharging. Eur. J. Oper. Res. 2017,

260, 995–1013. [CrossRef]
4. Conrad, R.G.; Figliozzi, M.A. The Recharging Vehicle Routing Problem. In Proceedings of the Industrial Engineering Research

Conference; Doolen, T., Aken, E.V., Eds.; Institute of Industrial Engineers: Norcross, GA, USA, 2011; pp. 2785–2792.
5. Preis, H.; Frank, S.; Nachtigall, K. Energy-optimized routing of electric vehicles in urban delivery systems. In Proceedings of the

Operations Research; Helber, S., Breitner, M., Rösch, D., Schön, C., von der Schulenburg, J.-M.G., Sibbertsen, P., Steinbach, M.,
Weber, S., Wolter, A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 583–588. [CrossRef]

6. Schneider, M.; Stenger, A.; Goeke, D. The electric vehicle-routing problem with time windows and recharging stations. Transp.
Sci. 2014, 48, 500–520. [CrossRef]

7. Goeke, D.; Schneider, M. Routing a mixed fleet of electric and conventional vehicles. Eur. J. Oper. Res. 2015, 245, 81–99. [CrossRef]
8. Soysal, M.; Belbag, S.; Sel, C. A closed vendor managed inventory system under a mixed fleet of electric and conventional vehicles.

Comput. Ind. Eng. 2021, 156, 107210. [CrossRef]
9. Montoya, A.; Guéret, C.; Mendoza, J.E.; Villegas, J.G. The electric vehicle routing problem with nonlinear charging function.

Transp. Res. Part B Methodol. 2017, 103, 87–110. [CrossRef]
10. Hiermann, G.; Puchinger, J.; Ropke, S.; Hartl, R.F. The electric fleet size and mix vehicle routing problem with time windows and

recharging stations. Eur. J. Oper. Res. 2016, 252, 995–1018. [CrossRef]
11. Hiermann, G.; Hartl, R.F.; Puchinger, J.; Vidal, T. Routing a mix of conventional, plug-in hybrid, and electric vehicles. Eur. J. Oper.

Res. 2019, 272, 235–248. [CrossRef]
12. Zhang, S.; Chen, M.; Zhang, W. A novel location-routing problem in electric vehicle transportation with stochastic demands. J.

Clean. Prod. 2019, 221, 567–581. [CrossRef]
13. Keskin, M.; Çatay, B.; Laporte, G. A Simulation-Based Heuristic for the Electric Vehicle Routing Problem with Time Windows and

Stochastic Waiting Times at Recharging Stations. Comput. Oper. Res. 2020. [CrossRef]
14. Kullman, N.; Goodson, J.; Mendoza, J.E. Electric Vehicle Routing with Public Charging Stations. Technical Report. ffhal-

01928730v2. 2021. Available online: https://hal.archives-ouvertes.fr/hal-01928730v2/document (accessed on 24 March 2021).
15. Schiffer, M.; Walther, G. Strategic planning of electric logistics networks: A robust location routing approach. Omega 2018, 80,

31–42. [CrossRef]
16. Pelletier, S.; Jabali, O.; Laporte, G. The electric vehicle routing problem with energy consumption uncertainty. Transp. Res. Part B

Methodol. 2019, 126, 225–255. [CrossRef]
17. Adler, J.D.; Mirchandani, P.B. Online routing and battery reservations for electric vehicles with swappable batteries. Transport.

Res. Part B Method. 2014, 70, 285–302. [CrossRef]
18. Sayarshad, H.R.; Mahmoodian, V. An intelligent method for dynamic distribution of electric taxi batteries between charging and

swapping stations. Sustain. Cities Soc. 2021, 65, 102605. [CrossRef]
19. Fontana, M.W. Optimal Routes for Electric Vehicles Facing Uncertainty, Congestion, and Energy Constraints. Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. Available online: https://core.ac.uk/download/pdf/198793
28.pdf (accessed on 9 August 2013).

20. Fang, X.; Du, Y.; Qiu, Y. Reducing carbon emissions in a closed-loop production routing problem with simultaneous pickups and
deliveries under carbon cap-and-trade. Sustainability 2017, 9, 2198. [CrossRef]

21. Kuvvetli, Y.; Erol, R. Coordination of production planning and distribution in closed loop supply chains. Neural Comput. Appl.
2020, 1–19. [CrossRef]

22. Barth, M.; Boriboonsomsin, K. Real-world CO2 impacts of traffic congestion. Transp. Res. Rec. J. Transp. Res. Board 2008, 2058,
163–171. [CrossRef]

23. Barth, M.; Younglove, T.; Scora, G. Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model; California PATH
Program, Institute of Transportation Studies, University of California at Berkeley, 2005; Available online: https://escholarship.
org/uc/item/67f0v3zf (accessed on 1 January 2005).

24. Demir, E.; Bektas, T.; Laporte, G. A comparative analysis of several vehicle emission models for road freight transportation.
Transp. Res. Part D Transp. Environ. 2011, 16, 347–357. [CrossRef]

25. Franceschetti, A.; Honhon, D.; Van Woensel, T.; Bektas, T.; Laporte, G. The time dependent Pollution-Routing problem. Transp.
Res. Part B Methodol. 2013, 56, 265–293. [CrossRef]

http://doi.org/10.3390/su13031169
http://doi.org/10.1016/j.tre.2014.09.003
http://doi.org/10.1016/j.ejor.2017.01.011
http://doi.org/10.1007/978-3-319-00795-3_87
http://doi.org/10.1287/trsc.2013.0490
http://doi.org/10.1016/j.ejor.2015.01.049
http://doi.org/10.1016/j.cie.2021.107210
http://doi.org/10.1016/j.trb.2017.02.004
http://doi.org/10.1016/j.ejor.2016.01.038
http://doi.org/10.1016/j.ejor.2018.06.025
http://doi.org/10.1016/j.jclepro.2019.02.167
http://doi.org/10.1016/j.cor.2020.105060
https://hal.archives-ouvertes.fr/hal-01928730v2/document
http://doi.org/10.1016/j.omega.2017.09.003
http://doi.org/10.1016/j.trb.2019.06.006
http://doi.org/10.1016/j.trb.2014.09.005
http://doi.org/10.1016/j.scs.2020.102605
https://core.ac.uk/download/pdf/19879328.pdf
https://core.ac.uk/download/pdf/19879328.pdf
http://doi.org/10.3390/su9122198
http://doi.org/10.1007/s00521-020-04770-5
http://doi.org/10.3141/2058-20
https://escholarship.org/uc/item/67f0v3zf
https://escholarship.org/uc/item/67f0v3zf
http://doi.org/10.1016/j.trd.2011.01.011
http://doi.org/10.1016/j.trb.2013.08.008


Sustainability 2021, 13, 6703 16 of 16

26. Asamer, J.; Graser, A.; Heilmann, B.; Ruthmair, M. Sensitivity analysis for energy demand estimation of electric vehicles. Transp.
Res. Part D Transp. Environ. 2016, 46, 182–199. [CrossRef]

27. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.
Appl. 2021, 166, 113917. [CrossRef]

28. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution
algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [CrossRef]

29. Peng, T.; Yang, X.; Xu, Z.; Liang, Y. Constructing an Environmental Friendly Low-Carbon-Emission Intelligent Transportation
System Based on Big Data and Machine Learning Methods. Sustainability 2018, 12, 8118. [CrossRef]

30. Murakami, K. A new model and approach to electric and diesel-powered vehicle routing. Transp. Res. Part E 2017, 107, 23–37.
[CrossRef]

31. Sayarshad, H.R.; Mahmoodian, V.; Gao, H.O. Dynamic non-myopic routing of electric taxis with battery swapping station.
Sustain. Cities Soc. 2020. [CrossRef]

32. Hwang, J.; Lee, J.S.; Kho, S.; Kim, D. Hierarchical hub location problem for freight network design. IET Intell. Transp. Syst.
2018, 12. [CrossRef]

33. Sayarshad, H.R.; Sattar, S.; Gao, H.O. A scalable non-myopic atomic game for smart parking mechanism. Transp. Res. Part E
Logist. Transp. Rev. 2020, 140, 101974. [CrossRef]

34. Wang, M.; Wang, Y.; Liu, W.; Ma, Y.; Xiang, L.; Yang, Y.; Li, X. How to achieve a win–win scenario between cost and customer
satisfaction for cold chain logistics? Phys. A 2021, 566, 125637. [CrossRef]

35. Lee, M.; Hong, J.; Cheong, T.; Lee, H. Flexible Delivery Routing for Elastic Logistics: A Model and an Algorithm. IEEE Trans.
Intell. Transp. Syst. 2021. [CrossRef]

http://doi.org/10.1016/j.trd.2016.03.017
http://doi.org/10.1016/j.eswa.2020.113917
http://doi.org/10.1016/j.asoc.2020.106761
http://doi.org/10.3390/su12198118
http://doi.org/10.1016/j.tre.2017.09.004
http://doi.org/10.1016/j.scs.2020.102113
http://doi.org/10.1049/iet-its.2018.5289
http://doi.org/10.1016/j.tre.2020.101974
http://doi.org/10.1016/j.physa.2020.125637
http://doi.org/10.1109/TITS.2021.3063195

	Introduction 
	Literature Review 
	The Mathematical Model 
	Energy Consumption 
	Incorporating Uncertainty 
	Mathematical Formulation 


	Results 
	Data Collection 
	Experimental Results 

	Conclusions 
	References

