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Abstract: Barter exchange is a system of swapping goods or services for other goods or services in a
moneyless and direct manner. Barter has become an effective model of a circular economy because it
reduces the consumption impact. Bartering maximizes the utility of assets and existing resources,
and can unleash the unspent social, economic, and environmental value of underutilized assets. The
present article analyzes the price-setting newsvendor problem with a barter exchange option. The
retailer facing a stochastic price-dependent demand sells a product on the market and, additionally,
needs another product for its own purposes. Therefore, first, the retailer trades the unsold product for
the product it needs by means of barter, and next disposes of the unsold product at a discounted price
at the end of the selling season. The retailer’s optimal order quantity and optimal price are derived
assuming additive uncertainty in demand. This type of demand function has special characteristics,
for example, the actual demand may attain negative values in times of economic uncertainty. The
possibility of negative demand realizations is taken into consideration in the study. It proves that,
in certain cases, the optimal solution belongs to the set of high barter prices which implies that the
actual demand may be negative.

Keywords: inventory management; price-setting newsvendor; additive demand; bartering

1. Introduction

Bartering is described as a system of a direct exchange of goods or services for other
goods or services without using a medium of exchange, such as money [1]. In other words,
bartering denotes an exchange of something one might no longer need for something one
does. Barter economy constitutes a circular economy because a circular sharing society is
driven by necessity, implied from the scarcity of food, materials, and objects [2]. Circular
economy is defined as an economic model whose objective is to produce goods and services
in a sustainable way by limiting the consumption and waste of resources, such as raw
materials, water, and energy, as well as the production of waste [3–5]. Today’s barter
economy specifies a solution to improving the “use” part of the cycle and to reducing
the consumption impact. The barter system may become an effective model of a circular
economy. At present, the traditional barter system has been redefined and should not
promote commercialism, but positive values, such as generosity, honesty, integrity, and
ecological awareness. In bartering, swapping goods and services is based on the mutual and
voluntary decision of two persons or enterprises. It is not treated as selling, because goods
or services are exchanged based on value, rather than price. Barter swap is not synonymous
with donating. The price of the item or service is never equal, but the satisfaction should
be so [6].

Bartering is a new way of understanding property because the process belongs to
the field of sharing economy, which has affected circular economy. The sharing economy,
also termed “collaborative consumption”, takes place in organized systems or networks in
which participants engage in sharing activities, for example, in the form of bartering, and
swapping goods, services, transportation solutions, or space [7]. Recently, conceptual links
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between the sharing economy and circular economy have been examined systematically
in [8]. It was found that notable links in the fields of sustainability, business models,
sustainable consumption, and governance exist. The sharing economy was conceptual-
ized as a subset of circular economy [8]. Rather than simple consumption, the sharing
economy is founded on the principle of maximizing the utility of assets, for example,
via bartering. Barter provides the ability to unlock the untapped social, economic, and
environmental value of assets which may not have been fully exploited. It also helps
maximize existing resources, that is, vehicles not being parked and left unused, and food
not going to waste [9–11]. The increase of collaborative consumption barter platforms
offers a new sense of ownership and allows to share resources when they are needed.
Passive consumers become collaborators, which leads to a more sustainable and altruistic
way of shopping. Barter intends to bring this concept forward by building trust among
peers, saving resources, and reducing spending. Circular economy mainly works on an
enterprise or multinational level, but barter can bring the circular economy into households.
Exchange has had certain disadvantages in the past, namely, finding the right product and
the risk of moving stock. This problem was solved with the emergence of new technologies
and easy access to relevant data [12].

Bartering is employed in the modern design as well. Mass production causes environ-
mental problems because it generates a high volume of waste. In bartering, the relationship
between objects and people is closer and more complicated. Through bartering, people
prevent the lives of objects from ending prematurely due to people’s preferences for new
objects. The process also allows the objects’ value to be continuously revealed and the
purpose of sustainability to be achieved. However, in the concept of barter, with the aid
of networking technology, the objects are allowed to circulate among people longer in
order to reduce the generation of waste and achieve sustainability more effectively [13].
For instance, the peer-to-peer bartering economy is especially popular among fashion
consumers. They can directly trade clothing on websites and in fashion swap groups. Very
frequently, one item is traded for another item, and their shelf prices are irrelevant. These
clothing swaps create a sense of community and extend the life of clothes. A circulated
object is reused and bartered [14].

A telling example of introducing bartering is an idea brought into life in Mexico. In
2012, the organization steering the capital’s environmental policy launched an original
initiative entitled the Mercado de Trueque—, a “barter market”. In the barter market,
people were able to exchange recyclable waste for local farm produce [15]. Bartering was
also popular in Argentine during the crisis in 2001. At that time, approximately one million
Argentinians turned to an alternative, moneyless economy to overcome their financial
problems. The barter system rescued a major part of the Argentinian lower and middle
classes from the money crisis. However, the benefits of barter exchange were noticeable in
many other areas [16–18].

In a slow economy, a barter system can help small businesses to find new customers
and move their inventory, which supports the circular economy. Old-fashioned barter
exchange has an exceptional power to attract new customers and sell excess inventory
in a reality of checks, electronic funds transfers, and credit cards and cash on deliveries.
Bartering provides member businesses with a cashless alternative that reduces bad debts,
converts surplus stock into profits, and mitigates cash expenditures for common business
and personal expenses. Business owners can use the barter system to pay for a wide range
of common expenses, such as business trips, auto repair, dental visits, or printing mate-
rials [19]. Barter relationships between businesses, non-profits, and other organizations
can be set up individually on a case-by-case basis, as well as with the use of personal
barter. Internet resources are designed to help firms make the connections they need.
Businesses can find bartering sites online. This helps to reach specific demographics, such
as busy mothers, particular geographic areas, or specific types of barters [20]. Online social
networks help spread the practice of product exchange, which is a trend of sustainable
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consumption [21]. It can be stated that the barter system may support the circular economy
and economic, social, and environmental sustainability [22].

Wrong inventory management can also definitely affect sustainability and resource
efficiency. Holding excess stock ties up working capital and can bring extra problems,
such as the spoilage of product, damaged goods, and an increased risk of theft. All of
these have adverse effects for businesses and promote inefficiency within the supply chain.
Maintaining minimum inventory levels offers several environmental benefits. Lower excess
production helps to eliminate carbon emissions, reduces water required to manufacture
products, lowers transportation needs, and decreases the cost of storing extra stock. There
is a growing focus on the environmental footprint of raw materials. Reduction of environ-
mental impacts is vital for sustainability goals to be achieved. By improving inventory
control, idle stock can be kept at a minimum, meaning a faster cash turnaround for the
business. This excess stock bears strong negative impacts for both company profit and
influence on the environment. By focusing on inventory control, companies can plan their
inventory requirements to minimize waste and increase overall sustainability efforts [23].

This article focuses on retail—commercial—barter in the newsvendor problem, which
is a core concept in the supply chain and inventory management [24]. The commercial
barter may operate on traditional barter platforms, and also on digital ones. In the com-
mercial barter, the sequence of events is as follows: first, Firm A registers on a barter
platform and provides fundamental information regarding the product to be swapped.
With the help of the broker, or autonomously, it finds Firm B that seeks the offered product.
Those two firms engage in a moneyless transaction and pay a commission of 5–15% of the
traded value. A noteworthy fact is that barter has specific requirements, such us fairness,
reputation, product indivisibility, and the fact that the barter price is the same as market
price. It distinguishes such an approach from principles followed on the secondary market
on which the price is discounted. The firm can obtain the product it needs on the barter
platform without money. Conversely, to achieve the same end on the secondary market,
the firm needs funds. In addition, economists distinguish gift economies from barter in
many ways, that is, barter features an immediate reciprocal exchange which is not delayed
in time; barter transactions are purely economic, involving no mutual obligation between
partners; barter is strictly taxable, and gifts in general are not [25]. A modern barter is a
multilateral exchange conducted through a cycle or chains. In the multilateral barter, if the
broker cannot find the firm for reciprocal transaction, that is, Firm A needs a product from
Firm B, but Firm B does not need a product from Firm A, then the broker finds Firm C,
which supports the multilateral barter. In modern barter, transactions may also involve
barter currency or barter credit, whose use is usually strictly limited to the specific barter
platform. Bartering has many advantages compared to traditional retail-like moving of a
distressed inventory, and also compared to the disposal of excess inventory at a very low
cost. Additionally, barter allows firms to obtain products without using money, which helps
to maintain liquidity. By means of barter, the firm can increase sales volumes, find new
customers, develop new markets, and face uncertain demand. Bartering retains cash for
other needs, delays, and obsolescence of unwanted goods. It also preserves resources [20].

The above considerations justify the use of bartering in the proposed newsvendor
model. The aim of this study is to introduce and investigate the overall mathematical
model, which works well for any kind of commercial barter. In the present article, the
newsvendor problem with barter exchange considered by [26] is supplemented with
the non-negative price-dependent demand, and the optimization is conducted from the
beginning. Commercial barter with the following sequence of events is considered. The
retailer sets the optimal order quantity and price, which maximizes its profit to satisfy
customer demand on Product X at the beginning of the selling season. Subsequently, the
retailer sells Product X on the market according to the stochastic demand, and moves excess
inventory to the barter platform. On the barter platform, it exchanges unsold Product X for
Product Y, which the firm needs for its own purposes. Finally, the retailer salvages unsold
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inventory or buys the remaining needed portion of Product Y on the market. Two cases
are studied:

• There is a co-movement of the prices of Products X and Y; namely, those prices are
highly positively correlated. It is possible, for example, in a well-functioning market
in which the prices of processed products are strongly positively correlated with the
purchase price of the basic raw material. There is also the co-movement of food prices
and oil price [27,28], of crude oil and petroleum-product prices [29,30], and of energy
prices and agricultural commodity prices [31];

• The price of Product Y is exogenous and uncorrelated with the price of Product X.

In the study, the additive demand is considered because of its special feature, that is,
the possibility that the actual additive demand is negative. This characteristic is unique and
does not concern multiplicative demand. The modified non-negative form of demand func-
tion was taken into account, and the studied newsvendor problem with barter exchange is
resolved in relation to correlated and uncorrelated barter prices. Finally, a numerical exam-
ple is presented which vividly illustrates the obtained results. The main conclusion of this
study is that, in certain cases, the optimal solution of the price-setting newsvendor problem
with barter exchange belongs to the set of high retail prices for which the realized demand
may be negative. The numerical calculations were made using Mathematica software.

2. Related Literature

The present study is related to the price-setting newsvendor problem, barter exchange,
and Operations Research (OR) problems regarding the non-negative demand. The review
of recent literature concerning such subjects is presented below.

2.1. Price-Setting Newsvendor Problem

DeYong [32] states that the newsvendor problem is a staple of OR practice and ped-
agogy. In the basic formulation, the newsvendor problem aims at finding an optimal
replenishment policy for a perishable product in the face of uncertain demand. From
its roots as a single-period problem for a price-taking newspaper seller, the newsvendor
problem and its solutions have inspired generations of researchers while contributing to
inventory management [33,34]. The newsvendor model has been investigated for almost
60 years. The model provides a coherent description of the problem, and it is worth
mentioning that the newsvendor problem has a number of applications far beyond the
original ones. The model is employed to manage distribution channels, operating room
time, tax-sheltered income, service level capacity, air cargo, airlines, and hotels [32]. Many
modifications of this basic model have been introduced, adding to the complexity of the
problem [24,35]. One of the major generalizations of the classic newsvendor problem is
the use of price as a decision variable. This modification has been applied for decades.
However, over the recent years, the issue has become an increasingly popular subject
matter studied by scholars and practitioners [32].

Recently, the price-setting newsvendor problem with multiple criteria was considered
in [36–44]. The price-setting newsvendor problem with the mean-variance analysis used
in the objective function was carried out in [36,37]. These works focused on the impact
of stockout costs upon optimal decisions when comparing classic models with mean-
variance models. The newsvendor problem with additive and isoelastic demand under
the aforementioned criteria was studied in [38,39]. Ye and Sun [40] investigated the
newsvendor problem with pricing and strategic customers under two demand cases:
additive and multiplicative. For each case, they demonstrated that neglecting the price-
sensitivity of demand leads to sub-optimal decisions. Bai et al. [43] studied the joint
optimization of pricing and ordering decisions in different scenarios. They proved that
the effects of reference dependence and loss aversion were different depending on a
particular scenario. Yu et al. [41] explored the price-setting newsvendor model, which
involves a manufacturer with random yield and a retailer with uncertain demand using
stochastic comparisons. Kirshner and Shao [42] studied optimism and overconfidence of a
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newsvendor modelled as weights on demand and profit. They used the prospect theory to
show that optimism increases inventory. Schulte and Sachs [44] put forward a solution to
the price-setting newsvendor with Poisson demand. They analyzed differences between
continuous and discrete versions of the model and presented the decision rule of using
heuristics to solve the optimization problem.

2.2. Barter Exchange

Barter is a process constructed to maintain trade volumes and balance them, while
maximizing the utility of participants. Several studies aim to derive the optimal allocation
and efficient exchange algorithms for barter in many industries, for example, the med-
ical industry, education, energy industry, tourism, material processing industries, and
knowledge exchange. This article studies commercial barter, which occurs in business
alongside personal barter. A few studies examined the social, economic, marketing, and
logistics-related issues of commercial barter. The economic effect of barter concentrates
on the liquidity problem [45], capitalist economic crisis reduction [46], lightening the tax
burden [47], market segmentation and price discrimination [47,48], and negotiations [49].
Modern technologies can overcome the limitations of barter. Digital barter platforms, for
example, iBarter, IMS Barter, b2b-barter, and barterxyz, can be useful during a crisis such
as the one caused by COVID-19 [49]. Barter can represent a strategic answer to small and
medium enterprises’ growth and dexterity, allowing to increase sales and to pave the way
to new markets [50]. Several studies explore barter’s influence on logistics-related issues,
such as inventory, purchasing, and supply chain management [51–53]. However, there
are few modeling research studies focusing on the presence of barter in inventory deci-
sions [26,54,55]. Zhang et al. [55] considered barter exchange in a two-stage wholesale-price
pull contract in which the retailer sets the wholesale price and the manufacturer determines
the stocking quantity. In their model, the demand does not depend on the retail price, and
is defined as a random variable with a given distribution function. In [26], the authors
applied a commercial barter exchange to the newsvendor problem. They considered the
exogenous barter price and gave the optimal solution to the problem for the non-random
or random barter supply. The results of [26] are extended by considering the endogenous
barter price instead of the exogenous one, and the stochastic price-dependent demand
instead of the stochastic demand being a random variable.

2.3. Operations Research Models with Non-Negative Demand

The presence of the negative realized demand in OR models was examined in [56–58].
Krishnan [56] pointed out that the non-negativity assumption should be imposed on
the demand to ensure the generality of the study. If the non-negativity constraint is not
introduced, the solution may be sub-optimal, and the expected profit can be underestimated.
However, the non-negativity assumption can create problems with the sufficiency of the
first-order conditions in a monopoly and the existence of equilibrium in an oligopoly. These
challenges have been frequently ignored in OR studies. Kyparisis and Koulamas [57]
examined the price-setting newsvendor problem with the non-negative demand, and
proved that this problem always has an optimal solution, even in adverse market conditions.
Bieniek [58] investigated a two-stage Vendor-Managed Consignment Inventory (VMCI)
contract with a similar constraint imposed on demand. It was proved that in this case,
there is no guarantee that the retailer’s expected profit is quasi-concave with respect to
price. However, it was shown that VMCI always has at least one optimal solution, which is
possibly non-unique.

In this study, the stochastic demand is additive and that is why, in general, it may
attain actual negative values in times of major economic uncertainty. The overall solution
to the price-setting newsvendor problem with barter exchange is presented, taking into
account a special feature of the additive demand. It is proved that, in certain cases, the
optimal solution belongs to the region of high prices, and possibly negative realizations
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of the demand. Therefore, limiting the considerations exclusively to the positive actual
demand implies the loss of generality of the results.

3. Preliminary Facts

Most OR papers start with a specific function for demand. The price-dependent
demand function with uncertainty in a common form is denoted by D(p, ε), where p is
the price and ε is the uncertainty parameter, which is mainly a random variable with a
particular known distribution. Usually, the uncertainty is incorporated into deterministic
demand functions by introducing the additive or multiplicative uncertainty parameter. The
general additive demand model is presented as D(p, ε) = d(p) + ε, and the multiplicative
one is defined by D(p, ε) = d(p)ε, where d(p) is the deterministic demand. Without
the assumption of non-negativity, negative demand realizations are possible in additive
models. They may occur for high values of price p and significant negative realizations of
uncertainty parameter ε. Restricting the set of possible parameters leads to an incomplete
characterization of the optimal price. In the multiplicative case, the non-negativity of
demand is satisfied if both d(p) and ε are non-negative, and then the expected revenue
pE[D(p, ε)] = pd(p)E[ε] < ∞ is bounded. The additive case is quite different. If both
d(p) and ε are non-negative, the company can increase its expected revenue pE[D(p, ε)] =
p(d(p) + E[ε]) without any upper bound by setting price p arbitrarily high. Therefore, for
additive uncertainty, non-negativity cannot be imposed on d(p) and ε separately. Instead,
it has to be imposed simultaneously, for instance, by defining the random demand as
D+(p, ε) = max{d(p) + ε, 0} = (d(p) + ε)+ [56]. For the deterministic demand, which
constitutes a linear function d(p) = a− bp, a, b > 0, the uncertain additive demand is
given by

D(p, ε) = a− bp + ε. (1)

In the present study, ε is a random variable with expectation µ = 0 and variance
Var(ε), cumulative distribution function F, and continuously differentiable probability
density function f with support [A, B], where A < 0 and B > 0; hazard rate F̄(z) = 1− F(z)
and increasing failure rate (IFR) h(z) = f (z)/F̄(z). Without the loss of generality, it is
assumed that µ = 0, since if µ 6= 0, its value can be added to a. This can be done
provided a + µ > 0. If ε is defined on an open interval, an efficient truncation capturing as
much information as possible is taken into account. Most of the distributions used in OR
problems are IFR and have a twice-differentiable F with a continuous second derivative.
The common IFR distributions used in inventory problems include the uniform, normal,
Gamma, Power, χ2, Logistic, and Weibull distributions with specific parameters. Under
the given assumptions, it can be stated that demand realizations D(p∗, ε) = a− bp∗ + ε,
where p∗ is the optimal price, can be negative. This situation is allowed for p∗ > A+a

b and
large negative ε. Therefore, in this case, it is assumed that there is no demand. In view of
the foregoing, instead of (1), the demand function expressed by

D+(p, ε) = (a− bp + ε)+ (2)

will be used [57]. Note that if p > B+a
b , then D(p, ε) is always negative; therefore, the

considerations are limited to p ≤ B+a
b .

4. Model with Correlated Barter Prices and Non-Random Barter Supply

This article thoroughly analyzes the single-period price-setting newsvendor problem
with barter exchange from the retailer’s perspective. In this inventory model, the customer
stochastic demand is additive and depends linearly on the retail price, which equals barter
price. The retailer sets the optimal stocking and pricing policy through profit maximization
to satisfy customer demand on Product X at the beginning of the selling season. The retailer
disposes of the unsold Product X at a low price at the end of the selling season. In the
present model, the retailer also has to buy certain Product Y it needs from the market.
Therefore, the retailer can use a barter platform to barter the unsold Product X at almost



Sustainability 2021, 13, 6684 7 of 22

the full selling price for the needed Product Y. It is assumed that the selling prices of
Products X and Y are highly positively correlated; that is, in this case, the price of Product
Y is proportional to the price of Product X. In this section, the optimal solution to the
newsvendor problem with non-random barter supply is presented.

The notation used in the paper is as follows.
Assumptions:

1. c—supplier’s wholesale price;
2. v—salvage value per unit;
3. s—shortage penalty cost per unit;
4. p—retail (selling) price of Product X;
5. r—per-unit commission for the product the retailer pays to the barter platform given

in a share of retail price, in practice r ∈ [0.05, 0.15];
6. q0—needed quantity of Product Y in units at price p0 = kp, k ∈ R+; equivalently it

can be said that the retailer needs Q0 = kq0 units at price p;
7. (1− r)p ≥ c > v;

8. µ(z) =
∫ B

z (z− u) f (u)du, dµ(z)
dz = F̄(z), z ∈ [A, B];

9.

A + a− bc
1 + r
1− r

− r(A + Q0 − µ(A + Q0)) > 0. (3)

Decision variables:

• p—barter price per unit of Product X equal to the retail price per unit of Product X;
• Q—order quantity of Product X.

In the price-setting newsvendor problem with barter exchange, the retailer’s profit
is described in the following three cases. Note that after imposing the non-negativity
constraint on demand, the modified demand defined by (2) is considered.

Case 1. If 0 ≤ Q ≤ D+(p, ε), the retailer pays the shortage penalty cost for the
unsatisfied demand and buys Product Y on the market. The retailer’s profit is given by

Π̃(p, Q) = (p− c + s)Q− sD+(p, ε)− pQ0.

Case 2. If D+(p, ε) < Q ≤ D+(p, ε) + Q0, then Q− D+(p, ε) units remain unsold.
The retailer trades Q− D+(p, ε) units of Product X for Product Y on the barter platform,
pays the commission rp(Q−D+(p, ε)), and buys the remaining needed Product Y of value
p(Q0 − (Q− D+(p, ε))) on the market. Consequently, the retailer’s profit is equal to

Π̃(p, Q) = ((1− r)p− c)Q + rpD+(p, ε)− pQ0.

Case 3. If Q−Q0 > D+(p, ε), the retailer barters its Product X for Product Y at the cost
of the commission rpQ0 and disposes of the remaining Product X at v. As a consequence,
the retailer’s profit is given by

Π̃(p, Q) = (v− c)Q + (p− v)D+(p, ε)− (rp + v)Q0.

Transforming D+(p, ε) to D(p, ε) in the above formulas, it is obtained for Q ≥ Q0,

Π̃(p, Q) =


(p− c + s)Q− sD(p, ε)− pQ0, D(p, ε) ≥ Q;
((1− r)p− c)Q + rpD(p, ε)− pQ0, Q−Q0 ≤ D(p, ε) < Q;
(v− c)Q + (p− v)D(p, ε)− (rp + v)Q0, 0 ≤ D(p, ε) < Q−Q0;
(v− c)Q− (rp + v)Q0, D(p, ε) < 0,

(4)

and for Q < Q0,
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Π̃(p, Q) =


p(Q−Q0)− (c− s)Q− sD(p, ε), D(p, ε) ≥ Q;
p(Q−Q0) + rp(D(p, ε)−Q), 0 ≤ D(p, ε) < Q;
(−rp− c)Q + p(Q−Q0), D(p, ε) < 0.

(5)

Since (5) attains negative values for Q < Q0, the considerations are limited to the case
Q ≥ Q0. If Q = a− bp + z ≥ Q0 and D(p, ε) = a− bp + ε, the profit can be written as

Π̃(p, z) =



(p− c)(a− bp + z) + s(z− ε)− pQ0, z ≤ ε ≤ B;
(p− c)(a− bp + z)− rp(z− ε)− pQ0, z−Q0 ≤ ε < z;
(p− c)(a− bp + z)− (p− v)(z− ε) + (p(1− r)− v)Q0 − pQ0,
bp− a ≤ ε < z−Q0;
(v− c)(a− bp + z)− (rp + v)Q0, A ≤ ε < bp− a.

(6)

The following lemma will be useful in calculating the retailer’s expected profit. All
proofs are relegated to the Appendix A.

Lemma 1. The following identities hold for any A + Q0 ≤ z ≤ B∫ z−Q0

A
(z− ε) f (ε)dε = z− µ(z−Q0)−Q0 F̄(z−Q0),

∫ z

z−Q0

(z− ε) f (ε)dε = µ(z−Q0) + Q0 F̄(z−Q0)− µ(z),

∫ z−Q0

bp−a
(z− ε) f (ε)dε = µ(bp− a) + zF̄(bp− a)

− µ(z−Q0)−Q0 F̄(z−Q0)− (bp− a)F̄(bp− a).

4.1. Non-Negative Realized Demand

Let us consider the optimization problem max EΠ̃(p, z), where Π̃(p, z) is defined by (6)
restricted to feasible set {(p, z) : p ∈

[
c

1−r , A+a
b

]
, z ∈ [A + Q0, B]}. Then, Π̃(p, z) = Π(p, z)

and profit Π(p, z) can be written as

Π(p, z) =


(p− c)(a− bp + z) + s(z− ε)− pQ0, z ≤ ε ≤ B;
(p− c)(a− bp + z)− rp(z− ε)− pQ0, z−Q0 ≤ ε < z;
(p− c)(a− bp + z)− (p− v)(z− ε) + (p(1− r)− v)Q0 − pQ0,

A ≤ ε < z−Q0.

(7)

Therefore, the retailer’s expected profit is given by

EΠ(p, z) = (p− c)(a− bp + z)− pQ0 + sµ(z)− rp
∫ z

z−Q0

(z− ε) f (ε)dε

− (p− v)
∫ z−Q0

A
(z− ε) f (ε)dε + (p(1− r)− v)Q0

∫ z−Q0

A
f (ε)dε,

which using Lemma 1, gives

EΠ(p, z) =(p− c)(a− bp + z)− (rp + v)Q0 + (s + rp)µ(z)

+ (p(1− r)− v)µ(z−Q0)− (p− v)z.
(8)
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Therefore, the following optimization task will be considered

max
p∈[ c

1−r , A+a
b ],

z∈[A+Q0,B]

EΠ(p, z) (9)

with EΠ(p, z) given by (8).
Now, the sequential optimization method proposed in [59] is employed. The method

finds the optimal price that maximizes the performance measure for a given z. The
existence of the optimal price requires the concavity of the performance measure with
respect to p. Then, the objective function is expressed in terms of only one variable z, and
is optimized. In view of such an approach, the first step in the optimization is to find the
price that maximizes (8) for any given z ∈ [A + Q0, B]. By solving the first-order condition
dEΠ(p, z)/dp = −2bp + a + bc− rQ0 + rµ(z) + (1− r)µ(z− Q0) = 0, the optimal price
is obtained equal to

p∗(z) =
a + bc− rQ0 + rµ(z) + (1− r)µ(z−Q0)

2b
. (10)

Moreover, d2EΠ(p, z)/dp2 = −2b < 0, dEΠ(p, z)/dp|p(1−r)=c > A + a− bc 1+r
1−r −

r(A + Q0 − µ(A + Q0)) > 0 under assumption (3) and limp→∞ EΠ(p, z) = −∞, which
assures that p∗(z) is a unique maximum. The first and the second derivatives of the
optimal price are given by p∗

′
(z) = 1

2b (rF̄(z) + (1 − r)F̄(z − Q0)) > 0 and p∗
′′
(z) =

− 1
2b (r f (z) + (1− r) f (z − Q0)) < 0, respectively. These formulas lead to the following

lemma describing the shape of p∗(z).

Lemma 2. Optimal price p∗(z) uniquely determined by (10) is increasing and concave for z ∈
[A + Q0, B].

At this point, it should be established whether function p∗(z) is hedged in interval[
c

1−r , A+a
b

]
. Let us define the hedged optimal price function in the form of a piecewise

function, that is,

π∗(z) =

{
p∗(z), z ∈ [A + Q0, zp);
A+a

b , z ∈ [zp, B],

where

zp = min
{{

z : p∗(z) =
A + a

b

}
, B
}

. (11)

Consequently and additionally, the following useful functions of z ∈ [A + Q0, B]:
P1(z) = EΠ(p∗(z), z) and P2(z) = EΠ

(
A+a

b , z
)

ought to be defined. Then, (9) can be
transformed into

max
z∈[A+Q0,B]

P∗(z),

where

P∗(z) = EΠ(π∗(z), z) =

{
P1(z), z ∈ [A + Q0, zp);
P2(z), z ∈ [zp, B].

Function P∗(.) is continuous, and its first derivative is equal to

P∗
′
(z) =

 v− c + (rp∗(z) + s)F̄(z) + (p∗(z)(1− r)− v)F̄(z−Q0), z ∈ [A + Q0, zp);

v− c +
(

r A+a
b + s

)
F̄(z) +

(
A+a

b (1− r)− v
)

F̄(z−Q0), z ∈ [zp, B].
(12)
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Now, the second derivative of P∗(.) is needed. It is given by

P∗
′′
(z) =


rF̄(z)(p∗

′
(z)− (p∗(z) + s

r )h(z))
+(1− r)F̄(z−Q0)(p∗

′ − (p∗(z)− v
1−r )h(z−Q0)), z ∈ [A + Q0, zp);

−
(

r A+a
b + s

)
f (z)−

(
A+a

b (1− r)− v
)

f (z−Q0), z ∈ [zp, B].
(13)

In the following lemma, the concavity of P1 and P2 under certain conditions is proved.

Lemma 3.

1. P1(.) is first increasing and concave in [A + Q0, B] if

lim
z→A+

h(z) >
1

2b(p∗(A + Q0)− v
1−r )

. (14)

2. P2(.) is increasing-decreasing and concave in [A + Q0, B] if(
A + a

b
(1− r)− v

)
F̄(B−Q0)− c + v < 0. (15)

The above lemma leads us to the theorem which presents the solution to the considered
optimization problem.

Theorem 1. The equilibrium decisions of the decision-maker of the problem (9) are as follows.

1. p∗ = p∗(z∗) and z∗ is the unique solution to P′1(z
∗) = 0 if P′1(zp) < 0 and (14) holds, or

2. p∗ = A+a
b and z∗ is the unique solution to P′2(z

∗) = 0 if P′1(zp) > 0 and (15) holds,

where zp is defined by (11).

4.2. Possibly Negative Realized Demand

Let us consider the optimization problem max EΠ̃(p, z) with EΠ̃(p, z) defined by (6)
restricted to feasible set {(p, z) : p ∈

[
A+a

b , B+a
b

]
, z ∈ [bp− a + Q0, B]}. By Lemma 1, the

restricted version of the problem can be presented as

max
p∈[ A+a

b , B+a
b ],

z∈[bp−a+Q0,B]

EΠ̃(p, z), (16)

where

EΠ̃(p, z),= (p− v)(µ(z)− µ(bp− a))− (c− v)(a− bp + z)

− (p(1− r)− v)(µ(z)− µ(z−Q0))− (rp + v)Q0 + sµ(z).
(17)

The following results are obtained.

Lemma 4. For a given p, the expected profit function defined by (17) is concave with respect to z.

Theorem 2. The problem defined by (16) always has an optimal—, possibly non-unique—solution.
There exists a unique solution if the objective function is quasi-concave with respect to p for a
given z.

4.3. Complete Solution

Considering the previous deliberations, the unified and complex mathematical so-
lution to the maximization problem is presented. The solution generalizes the results
of [26] in two directions. First of all, in the present model, the barter price is set by the
retailer. Moreover, the common restriction on the optimal price which exclusively creates
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non-negative realizations of the additive demand is removed. On the basis of the previous
results, it can be concluded that the problem given by maxp,z EΠ̃(p, z) can be written as

max

 max
p∈[ c

1−r , A+a
b ],

z∈[A+Q0,B]

EΠ(p, z), max
p∈[ A+a

b , B+a
b ],

z∈[bp−a+Q0,B]

EΠ̃(p, z)

. (18)

5. Model with Correlated Barter Prices and Uncertain Barter Supply

In this section, the single-period newsvendor problem with the uncertain barter supply
and the modified demand defined by (2) is considered. The notation and assumptions 1–7
given in Section 4 are used. Moreover, the following assumptions are made:

• w—random variable with pdf g, mean uw and variance σ2
w < ∞;

• wQ0—uncertain barter supply;

A + a− bc
1 + r
1− r

− r(A + Q0 − µ(A + Q0))− (1− r)Q0

∫ 1

0
(1−w)g(w)dw > 0. (19)

Decision variables:

• p—barter price per unit of Product X in the case of the uncertain barter supply;
• Q—order quantity of Product X in the case of uncertain barter supply.

The following two cases are considered: I. barter supply is higher than barter demand
if w > 1, or II. barter supply is lower or equal to barter demand if 0 ≤ w ≤ 1. These cases
are presented below.

I. If w > 1, the model is described in the same manner as the model in the previous section;
II. For 0 ≤ w ≤ 1,
Case 1. If Q ≤ D+(p, ε), the retailer pays the shortage penalty cost for the unsatisfied

demand and buys Product Y of value pQ0 on the market. The retailer’s profit is given by

Π̃u(p, Q) = (p− c + s)Q− sD+(p, ε)− pQ0.

Case 2. If D+(p, ε) < Q ≤ D+(p, ε) + wQ0, then Q − D+(p, ε) units of Product X
remain unsold. The retailer trades Q− D+(p, ε) units of Product X for Product Y on the
barter platform, pays the commission rp(Q − D+(p, ε)), and buys Product Y of value
p(Q0 − (Q− D+(p, ε))) on the market. Then, the retailer’s profit is equal to

Π̃u(p, Q) = ((1− r)p− c)Q + rpD+(p, ε)− pQ0.

Case 3. If Q− wQ0 > D+(p, ε), the retailer barters its Product X for Product Y at the
cost of commission rpwQ0 and disposes of the remaining Product X at v. Consequently,
the retailer’s profit is given by

Π̃u(p, Q) = (v− c)Q + (p− v)D+(p, ε)− (rp + v)wQ0 − pQ0(1− w).

Substituting (2) and Q = a− bp + z, in the above formulas

Π̃u(p, z) =



Π̃(p, z), w > 1;
(p− c)(a− bp + z) + s(z− ε)− pQ0, z ≤ ε ≤ B, 0 ≤ w ≤ 1;
(p− c)(a− bp + z)− rp(z− ε)− pQ0, z−Q0 ≤ ε < z,

0 ≤ w ≤ 1;
(p− c)(a− bp + z)− (p− v)(z− ε)− (p(1− r)− v)Q0 − pQ0,

bp− a ≤ ε < z−Q0, 0 ≤ w ≤ 1;
(v− c)(a− bp + z)− (rp + v)Q0, A ≤ ε < bp− a, 0 ≤ w ≤ 1.

(20)
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Now, the considerations are restricted to Q ≥ Q0 because, otherwise, the profit attains
negative values.

5.1. Non-Negative Realized Demand

Let us consider the optimization problem maxp,z EΠ̃u(p, z), where Π̃u(p, z) is de-

fined by (20) restricted to feasible set
{
(p, z) : p ∈

[
c

1−r , A+a
b

]
, z ∈ [A + Q0, B]

}
. Then,

Π̃u(p, z) = Πu(p, z) and Πu(p, z) is given by

Πu(p, z) =



Π(p, z), w > 1;
(p− c)(a− bp + z) + s(z− ε)− pQ0, z ≤ ε ≤ B, 0 ≤ w ≤ 1;
(p− c)(a− bp + z)− rp(z− ε)− pQ0, z− wQ0 ≤ ε < z,

0 ≤ w ≤ 1;
(p− c)(a− bp + z)− (p− v)(z− ε) + (p(1− r)− v)wQ0 − pQ0,

A ≤ ε < z− wQ0, 0 ≤ w ≤ 1.

(21)

Using Lemma 1, the expected profit under the uncertain barter supply is established,
which is equal to

EΠu(p, z) = (p− c)(a− bp + z)− (rp + v)Q0 + (s + rp)µ(z)

+ (p(1− r)− v)µ(z−Q0)− (p− v)z

+ (p(1− r)− v)
∫ 1

0
(µ(z− wQ0) + wQ0 − µ(z−Q0)−Q0)g(w)dw

(22)

for Q ≥ Q0. At this point, it should be noted that for Q < Q0, the profit is non-positive in
all cases. Therefore, below, the optimization task for Q ≥ Q0 is considered, which implies
z ≥ A + Q0. The following optimization problem is studied:

max
p∈[ c

1−r , A+a
b ],

z∈[A+Q0,B]

EΠu(p, z). (23)

Using the method proposed by [59], the first step in the optimization is to find the
price that maximizes the objective function for any given z ∈ [A + Q0, B]. By solving the
first-order condition

dEΠu(p, z)
dp

= −2bp + a + bc− rQ0 + rµ(z) + (1− r)µ(z−Q0)

+ (1− r)
∫ 1

0
(µ(z− wQ0) + wQ0 − µ(z−Q0)−Q0)g(w)dw = 0,

the following is obtained:

p∗u(z) =
a + bc− rQ0 + rµ(z) + (1− r)µ(z−Q0)

2b

+
(1− r)

∫ 1
0 (µ(z− wQ0) + wQ0 − µ(z−Q0)−Q0)g(w)dw

2b
.

(24)

Moreover, d2EΠu(p, z)/dp2 = −2b < 0, and by assumption (19)

dEΠu(p, z)
dp

|p(1−r)=c > A + a− bc
1 + r
1− r

− r(A + Q0 − µ(A + Q0))

− (1− r)
∫ 1

0
(1− w)Q0g(w)dw > 0,
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and limp→∞ EΠu(p, z) = −∞, which assures that p∗u(z) is a unique maximum. The first
and the second derivatives of the optimal price are given by p∗

′
u (z) = 1

2b (rF̄(z) + (1−
r)
∫ ∞

1 F̄(z− Q0)g(w)dw + (1− r)
∫ 1

0 F̄(z− wQ0)g(w)dw) > 0 and p∗
′′

u (z) = − 1
2b (r f (z) +

(1− r)
∫ ∞

1 f (z−Q0)g(w)dw + (1− r)
∫ 1

0 f (z− wQ0)g(w)dw) < 0. Based on these formu-
las, the lemma describing the shape of p∗u(.) has been proved.

Lemma 5. The optimal price p∗u(z) uniquely determined by (24) is increasing and concave for
z ∈ [A + Q0, B].

It should be examined whether p∗u(z) is hedged in interval
[

c
1−r , A+a

b

]
or not. Let us

define the piecewise hedged optimal price function as

π∗u(z) =

{
p∗u(z), z ∈ [A + Q0, zpu);
A+a

b , z ∈ [zpu, B],

where

zpu = min
{{

z : p∗u(z) =
A + a

b

}
, B
}

. (25)

Furthermore, the following functions of z ∈ [A + Q0, B] will also be used: P1u(z) =
EΠ(p∗u(z), z) and P2u(z) = EΠ

(
A+a

b , z
)

and transform (23) into

max
z∈[A+Q0,B]

P∗u (z), (26)

where

P∗u (z) = EΠ(π∗u(z), z) =

{
P1u(z), z ∈ [A + Q0, zpu];
P2u(z), z ∈ (zpu, B].

Function P∗u (.) is continuous, and its first derivative is equal to

P∗
′

u (z) =



v− c + (rp∗u(z) + s)F̄(z) + (p∗u(z)(1− r)− v)
(
∫ 1

0 F̄(z− wQ0)g(w)dw +
∫ ∞

1 F̄(z−Q0)g(w)dw),
z ∈ [A + Q0, zpu];

v− c +
(

r A+a
b + s

)
F̄(z) +

(
A+a

b (1− r)− v
)

(
∫ 1

0 F̄(z− wQ0)g(w)dw +
∫ ∞

1 F̄(z−Q0)g(w)dw),
z ∈ (zpu, B].

(27)

Now, the second derivative of P∗u (.) is needed, which is given by

P∗
′′

u (z) =



[
rp∗

′
u (z)F̄(z)− (rp∗u(z) + s) f (z)

]
+
[
(1− r)p∗

′
u F̄(z−Q0)

−(p∗u(z)(1− r)− v) f (z−Q0)]
∫ ∞

1 g(w)dw
+p∗

′
u (z)(1− r)

∫ 1
0 F̄(z− wQ0)g(w)dw

−(p∗u(z)(1− r)− v)
∫ 1

0 f (z− wQ0)g(w)dw, z ∈ [A + Q0, zpu];

−
(

r A+a
b + s

)
f (z)−

(
A+a

b (1− r)− v
)

f (z−Q0)
∫ ∞

1 g(w)dw

−
(

A+a
b (1− r)− v

) ∫ 1
0 f (z− wQ0)g(w)dw,

z ∈ (zpu, B].

(28)

In the lemma, the concavity of P1u and P2u under certain given conditions is proved.
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Lemma 6.

1. P1u(.) is first increasing and concave in [A + Q0, B] if

p∗u(A + Q0)(1− r)− c + F̄(A + Q0)(rp∗(A + Q0) + s)

− (p∗u(A + Q0)(1− r)− v)
∫ 1

0
(1− F̄(A + (1− w)Q0))g(w)dw > 0

(29)

and
lim

z→A+
h(z) >

1
2b(p∗u(A + Q0)− v

1−r )
(30)

and for z ∈ [A + Q0, B]∫ 1
0 f (z− wQ0)g(w)dw∫ 1
0 F̄(z− wQ0)g(w)dw

>
1

2b(p∗u(A + Q0)− v
1−r )

. (31)

2. P2u(.) is increasing-decreasing and concave in [A + Q0, B] if(
A + a

b
(1− r)− v

)
F̄(B−Q0)− c + v

+

(
A + a

b
(1− r)− v

) ∫ 1

0
(F̄(B− wQ0)− F̄(B−Q0))g(w)dw < 0.

(32)

Remark 1. If ε ∼ U[A,−A] then the constraint (31), which should generally hold for any

z ∈ [A + Q0,−A], reduces to
∫ 1

0 g(w)dw∫ 1
0 (wQ0−Q0−2A)g(w)dw

> 1
2b(p∗u(A+Q0)− v

1−r )
.

Pursuant to the foregoing, the mathematical solution to the problem (23) which
generalizes the results presented in [26] is proved.

Theorem 3. The equilibrium decisions of the decision-maker of the problem (23) are as follows:

1. p∗u = p∗u(z∗u) and z∗u is the unique solution to P′1u(z
∗
u) = 0 if P′1u(zpu) < 0 and (29)–(31)

are satisfied, or
2. p∗u = A+a

b and z∗u is the unique solution to P′2u(z
∗
u) = 0 if P′1(zpu) > 0 and (32) are satisfied,

where zpu is defined by (25).

5.2. Possibly Negative Realized Demand

Let us consider the optimization problem maxp,z EΠ̃u(p, z) with Π̃u(p, z) given by (20)

restricted to feasible set
{
(p, z) : p ∈ [ A+a

b , B+a
b ], z ∈ [bp− a + Q0, B]

}
. Based on Lemma 1,

the restricted version of the problem can be written as

max
p∈[ A+a

b , B+a
b ],

z∈[bp−a+Q0,B]

EΠ̃u(p, z), (33)

where

EΠ̃u(p, z) = (p− v)(µ(z)− µ(bp− a))− (c− v)(a− bp + z)

− (p(1− r)− v)(µ(z)− µ(z−Q0))− (rp + v)Q0 + sµ(z)

+ (p(1− r)− v)
∫ 1

0
(µ(z− wQ0) + wQ0 −Q0 − µ(z−Q0))g(w)dw.

(34)

The following results are presented.

Lemma 7. For a given p, the expected profit function defined by (34) is concave with respect to z.
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Theorem 4. The problem defined by (33) always has an optimal—, possibly non-unique—solution.
There exists the unique solution if the objective function is quasi-concave with respect to p for a given z.

5.3. Complete Solution

On the basis of the results obtained in previous sections, it can be concluded that the
problem given by maxp,z EΠ̃u(p, z) can be written as

max

 max
p∈[ c

1−r , A+a
b ],

z∈[A+Q0,B]

EΠu(p, z), max
p∈[ A+a

b , B+a
b ],

z∈[bp−a+Q0,B]

EΠ̃u(p, z)

. (35)

6. Numerical Example—Model with Correlated Barter Prices

This section outlines the numerical examples which illustrate and verify the preceding
theoretical analysis. It is assumed that the random part of demand follows the uniform
distribution, and w follows the normal distribution. The newsvendor problem with the
non-random and random barter supply is examined separately.

In the first example, let us consider the linear demand function D(p, ε) = 65− p + ε,
where ε ∼ U[−10, 10] and w ∼ N[2, 1]. It is assumed that the cost of commodity c = 10,
the salvage value v = 3, the shortage cost s = 2, the quantity Q0 = 3, and the commission
r = 0.1. All required conditions are satisfied for models with the non-random and uncertain
barter supply (Tables 1 and 2). Optimal solutions to both models belong to the set of low
barter prices, for which demand has non-negative realizations. In the case of the non-
random barter supply, the optimal expected profit equals EΠ(z∗) = 660.775 for the optimal
retail price p∗ = 37.135 and the optimal service level z∗ = 8.651. In the case of the random
barter supply, the optimal expected profit equals EΠ(z∗u) = 656.872 for p∗u = 37.063 and
z∗u = 8.512 (Tables 3 and 4).

In the second example, let us investigate the model with linear demand function
D(p, ε) = 37− p + ε, where ε ∼ U[−15, 15] and w ∼ N[2, 1]. It is assumed that the cost of
commodity c = 10, v = 1, s = 1, Q0 = 1 and r = 0.1. All required conditions are satisfied
for models with the non-random and uncertain barter supply (Tables 1 and 2). It appears
that optimal solutions to both models belong to the set of high barter prices for which actual
demand is possibly negative. For the non-random barter supply, the optimal expected
profit EΠ̃(ẑ∗) = 89.355 for p̂∗ = 22.349 and ẑ∗ = 3.774 is greater than the expected profit
EΠ(z∗) = 89.291. In the case of the uncertain barter supply, the optimal expected profit
attains value EΠ̃u(ẑ∗u) = 88.758 for the optimal retail price p̂∗u = 22.305 and the optimal
service level ẑ∗u = 3.706, which is greater than the expected profit EΠu(z∗) = 88.708.
Solutions belonging to the set of low retail prices—where the demand always attains
non-negative values—are sub-optimal, and expected profits are underestimated (Tables 3
and 4). In this example, limiting considerations only to the set of low barter prices would
imply underestimated profit and a suboptimal order quantity and barter price.

Table 1. Conditions of the solution to the model with the non-random barter supply, ε ∼ U[A,−A].

(A, a, b, c, v, s, Q0, r) zp (3) (14) (15)

(−10, 65, 1, 10, 3, 2, 3, 0.1) 10 Yes Yes Yes
(−15, 37, 1, 10, 1, 1, 1, 0.1) 2.71 Yes Yes Yes

Table 2. Conditions of the solution to the model with the uncertain barter supply, ε ∼ U[A,−A],
w ∼ N(2, 1).

(A, a, b, c, v, s, Q0, r) zpu (19) (29) (30) (31) (32)

(−10, 65, 1, 10, 3, 2, 3, 0.1) 10 Yes Yes Yes Yes Yes
(−15, 37, 1, 10, 1, 1, 1, 0.1) 2.773 Yes Yes Yes Yes Yes
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Table 3. Solutions to the model with the non-random barter supply, ε ∼ U[A,−A].

(A, a, b, c, v, s, Q0, r) c
1−r ≤ p ≤ A+a

b
A+a

b ≤ p ≤ −A+a
b

(−10, 65, 1, 10, 3, 2, 3, 0.1) p∗ = 37.135 p̂∗ = 55
z∗ = 8.65 ẑ∗ = 9.99
EΠ(z∗) = 660.775 EΠ̃(ẑ∗) = 344.038

(−15, 37, 1, 10, 1, 1, 1, 0.1) p∗ = 22 p̂∗ = 22.349
z∗ = 3.582 ẑ∗ = 3.774
EΠ(z∗) = 89.291 EΠ̃(ẑ∗) = 89.355

Table 4. Solutions to the model with the uncertain barter supply, ε ∼ U[A,−A], w ∼ N(2, 1).

(A, a, b, c, v, s, Q0, r) c
1−r ≤ p ≤ A+a

b
A+a

b ≤ p ≤ −A+a
b

(−10, 65, 1, 10, 3, 2, 3, 0.1) p∗u = 37.063 p̂∗u = 55
z∗u = 8.512 ẑ∗u = 9.856
EΠ(z∗u) = 656.872 EΠ̃(ẑ∗u) = 337.578

(−15, 37, 1, 10, 1, 1, 1, 0.1) p∗u = 22 p̂∗u = 22.305
z∗u = 3.537 ẑ∗u = 3.706
EΠ(z∗u) = 88.708 EΠ̃(ẑ∗u) = 88.758

7. Model with Uncorrelated Barter Prices

In this section, the general model described in Section 4 with uncorrelated barter
prices is investigated. Now, the barter price of Product Y is exogenous and is not correlated
with the price of Product X, which is endogenous. It is assumed that the value of Product Y
needed by the retailer equals w0 = p0Q0, where Q0 and p0 are the pre-specified quantity
and selling price, respectively. The current considerations are limited to the non-random
barter supply because, even in this case, the problem is mathematically complicated, and
giving precise solutions is not possible. Other assumptions of the model in this section are
the same as the assumptions 1–7 presented in Section 4.

Similarly to (4), it is obtained that for Q ≥ w0
p , the profit can be written as

Π̃(p, Q) =


(p− c + s)Q− sD(p, ε)− w0, D(p, ε) ≥ Q;
((1− r)p− c)Q + rpD(p, ε)− w0, Q− w0

p ≤ D(p, ε) < Q;

(v− c)Q + (p− v)D(p, ε)− (rp + v)w0
p , 0 ≤ D(p, ε) < Q− w0

p ;

(v− c)Q− (rp + v)w0
p , D(p, ε) < 0,

which can be transformed into

Π̃(p, z) =



(p− c + s)(a− bp + z)− s(a− bp + ε)− w0, B ≥ ε ≥ z;

((1− r)p− c)(a− bp + z) + rp(a− bp + ε)− w0, z− w0
p ≤ ε < z;

(v− c)(a− bp + z) + (p− v)(a− bp + ε)− (rp + v)w0
p ,

bp− a ≤ ε < z− w0
p ;

(v− c)(a− bp + z)− (rp + v)w0
p , A ≤ ε < bp− a.

(36)

Otherwise, for Q < w0
p the profit is negative. Therefore, by Lemma 1,

EΠ̃(p, z) =(p− v)(µ(z)− µ(bp− a))− (c− v)(a− bp + z)

− (p(1− r)− v)
(

µ(z)− µ

(
z− w0

p

))
+ sµ(z)− (rp + v)

w0

p
.

(37)
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Let us consider the optimization problem maxp,z EΠ̃(p, z) with EΠ̃(p, z) given by (37)

restricted to feasible set {(p, z) : p ∈
[

c
1−r , B+a

b

]
, z ∈

[
max{A, bp− a}+ w0

p , B
]
}. Solving

this problem, the following lemma is needed.

Lemma 8. For a given p, function EΠ̃(p, z) defined by (37) is concave with respect to z.

Using the above lemma, the following theorem is proved.

Theorem 5. Problem max{p∈[ c
1−r , B+a

b ], z∈
[
max{A,bp−a}+ w0

p ,B
]
} EΠ̃(p, z) with EΠ̃(p, z) defined

by (37) always has an optimal—, possibly non-unique—solution. There exists the unique solution
to the problem if the objective function is quasi-concave with respect to p for a given z.

Now, numerical examples are presented which illustrate the above result.
In the first example, let us consider linear demand function D(p, ε) = 65− p + ε,

where the random variable ε is uniformly distributed ε ∼ U[−10, 10] and w0 = 30. It is
assumed that the cost of commodity c = 10, the salvage value v = 3, the shortage cost
s = 2, and the commission r = 0.1. The optimal solution to this model belongs to the
set of low barter prices, for which realizations of demand are non-negative. The optimal
expected profit equals EΠ(z∗) = 689.488 for the optimal retail price p∗ = 37.407, and the
optimal service level z∗ = 8.651 (Table 5).

In the second example, let us investigate the model with linear demand function
D(p, ε) = 37− p + ε, where ε ∼ U[−15, 15] and w0 = 10. It is assumed that the cost of
commodity c = 10, v = 1, s = 1 and r = 0.1. It appears that the optimal solution to
the model belongs to the set of high barter prices for which actual demand is possibly
negative. The optimal expected profit equal to EΠ̃(ẑ∗) = 95.472 for the optimal retail price
p̂∗ = 22.621 and the optimal service level ẑ∗ = 3.443 is greater than the expected profit
EΠ(z∗) = 95.267. In this example, the optimal solution restricted to the set of low retail
prices—where the actual demand always attains non-negative values—is sub-optimal, and
the optimal expected profit is underestimated (Table 5).

Table 5. Solution to the model with uncorrelated barter prices, ε ∼ U[A,−A].

(A, a, b, c, v, s, w0, r) c
1−r ≤ p ≤ A+a

b
A+a

b ≤ p ≤ −A+a
b

(−10, 65, 1, 10, 3, 2, 30, 0.1) p∗ = 37.407 p̂∗ = 55
z∗ = 6.830 ẑ∗ = 7.877
EΠ(p∗, z∗) = 689.488 EΠ̃(p∗, z∗) = 381.102

(−15, 37, 1, 10, 1, 1, 10, 0.1) p∗ = 22 p̂∗ = 22.621
z∗ = 3.116 ẑ∗ = 3.443
EΠ(p∗, z∗) = 95.267 EΠ̃(p∗, ẑ∗) = 95.472

8. Discussion

In this article, the issue of the negative demand realizations in the price-setting
newsvendor problem with barter exchange is investigated. This feature is characteristic
of the additive stochastic demand. Numerous studies concerning the supply chain man-
agement literature ignore the problems associated with the additive demand [38,60–62].
Only a few studies take into account the non-negativity issue in OR models. According
to our best knowledge, this subject was surveyed in [56–58] only. In [57,58], it was shown
that applying the non-negativity assumption on demand could change the optimal order
quantity and retail price. Similarly, in this paper, it is shown that the negative actual
demand may influence optimal solutions to the newsvendor problem with barter exchange,
and not considering this issue may cause sub-optimal solutions to the problem. These
sub-optimal results often translate into underestimated profits. That is why the need for
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obtaining complete optimal solutions requires the non-negativity constraint to be imposed
on the demand in OR problems with the additive stochastic demand.

The mathematical model of this article extends the model of [26]. The retail price
as a decision variable and price-sensitive demand are introduced. The analytical results
on the optimal order quantity are similar to those given in the aforementioned work, but
additionally, the formulas for the optimal selling price are presented.

9. Conclusions

Recently, especially at a time of crisis, such as during the COVID-19 pandemic, firms
have increasingly moved their excess or obsolete inventory to barter platforms, including
traditional and digital barter platforms [63,64]. This approach supports sustainability goals,
that is, reduces the risk of wasteful stock disposal, because excess inventory wastes carbon
and energy. Digital barter platforms, in particular, allow organizations to free up their
cash flow by trading what they have to obtain what they need. By means of digital barter
platforms, one can party exchange excess products for other budgeted products or services
from other network members. For example, restaurants can fill empty tables and use such
earnings to complete necessary renovations; hotel owners can find creative ways to fill
vacancies and use such income to pay for advertising [65].

The objective of this article was to determine the general mathematical model adapted
to any kind of commercial barter. The problem of the negative actual demand in the
price-setting newsvendor problem with barter exchange is considered. The examined
problem was solved assuming that the barter price is endogenous and demand is price-
dependent and additive. The considerations are built on the results of [26], where the
barter price was exogenous and demand was simply a random variable. The basic model
has to be transformed due to the fact that the barter price is not fixed and becomes a
decision variable. Two cases have to be considered: products on the barter platform
have correlated or uncorrelated barter prices. Moreover, the additive form of the demand
is taken into account because of its special feature—, that is, the possibility of negative
realizations—described above.

The newsvendor model with barter exchange is constructed as follows. A retailer sells
Product X and needs a specific quantity of Product Y. The retailer can barter unsold Product
X for Product Y on a barter platform. Next, if needed, it can buy the remaining portion of
Product Y on the market. The retailer decides the order quantity and barter price which
maximizes its expected profit. Two cases are considered—with correlated and uncorrelated
barter prices of Products X and Y. The author indicates that the optimal order quantity and
optimal barter price sometimes belong to the set of high barter prices for which demand
realizations may be negative. This fact is illustrated in numerical examples. It turns out
that restricting the investigation exclusively to positive demand realizations considerably
reduces the generality of insights, and in addition, it may produce sub-optimal solutions.

This article definitely extends the newsvendor model with barter exchange studied
in [26] by adapting the basic model to reality in view of pricing and uncertainty. In the new
model, the retail price is a decision variable along with the order quantity. The important
issue of possible negative demand realizations is also addressed.

The newsvendor problem has numerous applications for decision-making in manufac-
turing and services, as well as decision-making by individuals. The newsvendor model is
used, for example, to address supply chain contracts which constitute agreements between
buyers and suppliers. Future research can examine the implications of barter exchange
for firms using newsvendor-type settings. It can be especially useful in times of economic
uncertainty when barter may be a viable option for overcoming the crisis. Finally, one can
also investigate the newsvendor problem with barter exchange in terms of other forms of
demand function—, that is, multiplicative form—characteristics for specific products.

Funding: This work was supported by grant no. 2019/35/D/HS4/00801, funded by the National
Science Centre, Poland.
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Appendix A

Proof of Lemma 1. Using standard algebraic derivations, the statement of the lemma
is obtained.

Proof of Lemma 3. Using (12) it can be seen that P′1(A + Q0) > 0 under assumption (3)
which implies that P1(.) increases in A + Q0. Moreover, if

h(z−Q0) >
p∗
′
(z)

p∗(z)− v
1−r

(A1)

and

h(z) >
p∗
′
(z)

p∗(z) + s
r

, (A2)

then the second derivative given by (13) is negative and therefore P1(z) is concave for
z ∈ [A + Q0, B]. Let us note that (A1) implies (A2). From (A1) and the fact that p∗(z) is
increasing by Lemma 2, p∗

′
(z) < 1

2b and F is IFR, (14) is obtained.
Next, by (13) it can be stated that the second derivative P′′2 (z) < 0 for any z ∈

[A + Q0, B], which implies that P2(.) is concave. Moreover, P′2(A + Q0) > 0 and P′2(B) < 0
by (15), which proves that P2(.) is increasing-decreasing on [A + Q0, B].

Proof of Theorem 1. Using Lemma 3, it can be seen that there are two possible cases. They
were described in this theorem in Points 1. and 2. It ought to be noted that function P∗(.)
is smooth. Therefore, under the assumptions, in the first case, the maximum belongs to
interval [A+ Q0, zp] since P1(.) and P2(.) decrease in zp, and in the latter case the maximum
belongs to interval [zp, B], which ends the proof.

Proof of Lemma 4. Using (17) for a given p implies

dEΠ̃(p, z)
dz

= v− c + (rp + s)F̄(z) + (p(1− r)− v)F̄(z−Q0),

and consequently

d2EΠ̃(p, z)
dz2 = −(rp + s) f (z)− (p(1− r)− v) f (z−Q0) < 0.

Therefore, EΠ̃(p, z) is concave with respect to z.

Proof of Theorem 2. By the Extreme Value Theorem, continuous function EΠ̃(p, z) defined
by (16) attains at least one maximum value on convex set {(p, z) : p ∈

[
A+a

b , B+a
b

]
, z ∈

[bp− a + Q0, B]}. By Lemma 4, the solution is unique if EΠ̃(p, z) is quasi-concave with
respect to p for a given z. The proof is complete.

Proof of Lemma 6. The proof is similar to the proof of Lemma 3. It can be seen that
P′1u(A + Q0) > 0 if (29) is satisfied. P1u is concave if (30) and (31) hold. Moreover,
P′2u(A + Q0) > 0 from the definition and P′2u(B) < 0 if (32) is satisfied, which ends
the proof.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1.

Proof of Lemma 7. The proof is similar to the proof of Lemma 4.

Proof of Theorem 4. The proof is similar to the proof of Theorem 2.

Proof of Lemma 8. Using (37) for a given p implies

dEΠ̃(p, z)
dz

= v− c + (rp + s)F̄(z) + (p(1− r)− v)F̄
(

z− w0

p

)
,
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and consequently

d2EΠ̃(p, z)
dz2 = −(rp + s) f (z)− (p(1− r)− v) f

(
z− w0

p

)
< 0,

which implies that EΠ̃(p, z) is concave with respect to z.

Proof of Theorem 5. By the Extreme Value Theorem, continuous function EΠ̃(p, z) given
by (37) attains at least one maximum value on convex set {(p, z) : p ∈

[
c

1−r , B+a
b

]
, z ∈[

max{A, bp− a}+ w0
p , B

]
}. This function is concave with respect to z by Lemma 8 which

implies that the solution in a specific convex set is unique if EΠ̃(p, z) is quasi-concave with
respect to p for a given z. The proof is complete.
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