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Abstract: The general framework of the bottom-up approach for modeling mobile emissions and
energy use involves the following major components: (1) quantifying traffic flow and (2) calculating
emission and energy consumption factors. In most cases, researchers deal with complex and arduous
tasks, especially when conducting actual surveys in order to calculate traffic flow. In this regard, the
authors are introducing a novel method in estimating mobile emissions and energy use from road
traffic flow utilizing crowdsourced data from Google Maps. The method was applied on a major
highway in the Philippines commonly known as EDSA. Results showed that a total of 370,855 vehicles
traveled along EDSA on average per day in June 2019. In comparison to a government survey, only
an 8.63% error was found with respect to the total vehicle count. However, the approximation
error can be further reduced to 4.63% if cars and utility vehicles are combined into one vehicle
category. The study concludes by providing the limitations and opportunities for future work of the
proposed methodology.

Keywords: Google Maps; transportation; energy use; emissions; modeling; vehicle flow

1. Introduction

Climate change, the effects of global warming, and air pollution are some of the
contemporary crucial issues faced by the global community [1]. Countries, especially
developing economies, are susceptible to risks of climates change as well as to the adverse
impacts of increasing air pollution and energy intensity caused by rapid industrialization in
recent years [2]. The rising global energy consumption demand brought about by increased
manufacturing outputs and transportation of goods and services has resulted in a record
high of 33.1 Gt CO2 in 2018 [3]. The latest 2.3% increase in CO2 emissions is almost twice
the average annual growth rate of CO2 emissions since 2010. The increase in CO2 emissions
is alarming despite the implementation of the Paris Climate Agreement, which aims to limit
global warming to a temperature increase of 2 ◦C in a 10-year span by reducing greenhouse
gas (GHG) emissions. All 196 countries who are signatories of the Paris Climate Accord
must develop individual long-term plans called nationally determined contributions in
lowering GHG emissions. In connection to that, conferences are held every five years by
all stakeholders to evaluate the progress in reducing GHG emissions based on the best
available research [4]. Air pollution can be directly linked to climate change: it not only
intensifies the effects of global warming but also contributes dreadful repercussions to
human health which result in increasing morbidity and mortality [5]. Approximately 60%
of the total air pollution globally is attributable to outdoor particulate matter [6]. Particulate
matter was responsible for 2.42 million deaths worldwide in 2007, while the mortality cases
increased by more than half a million in 2017 or about 21.6% [7].

The transportation sector accounts for about 21% of the total carbon emissions globally
due to its high fossil fuel consumption [8]. Carbon emissions by the transportation sector are
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steadily increasing. In 2018, it was estimated to be responsible for 24% of the global carbon
emissions, wherein road transportation was one of the main contributors [8–10]. Road
transportation accounts for as high as 77% of the total GHG emissions from transportation
globally [10]. With regard to air pollution and its health impacts, the share of transportation-
related PM2.5-associated mortality at the global scale was estimated to be at 11.6% in 2015,
while the health costs due to PM2.5 transportation-attributable deaths were $891 billion [11].
These estimates are significant and there is an exigency to regularly quantify, monitor,
and evaluate whether the goals in curbing carbon emissions and improving air quality
are being met. A yearly cross-sectional study is highly recommended to objectively meet
this requirement.

The increase in CO2 emissions is often correlated to increases in energy consump-
tion [12,13]. According to IEA [14], the transport sector had the highest share (35%) in
final energy consumption globally in 2018. Furthermore, 89% of the total transport energy
consumption was from road transport. However, a high percentage share does not imply
high utility. Generally, the efficiency of energy use in the transport sector is low [15]. On the
bright side, the efficiency is gradually increasing, and a 30% reduction in fuel consumption
is expected by 2050 due to improvements in the technologies of the internal combustion
engine [16]. That being said, much more needs to be done in order to have better efficiency
in road transport energy use.

Emissions and energy use from road transport are quantified based on the number
of vehicles traveling along a road. The traditional methods of traffic flow data collection
fall under two main categories: (1) the manual counting method and (2) the automatic
counting method [17]. The manual counting method can be conducted by individuals
standing by the roadside collecting and recording their observations on tally sheets [18].
Alternatively, manual counting can also be done by people in a moving vehicle [19,20],
where the observers categorically count the number of vehicles moving in the opposite
direction. This may also be done along the same direction of the moving vehicle, which
will take into account the number of vehicles that are overtaking and are overtaken. The
automatic counting method, on the other hand, uses detectors based on electromagnetics
and wireless communication to observe vehicular presence on or proximate to the road [21].
Examples of the most common detectors used in automatic counting are: (1) pneumatic
tubes, (2) inductive loops, (3) weigh-in-motion sensors, (4) micro-millimeter wave radar,
and (5) video camera [17]. The majority of previous studies in traffic flow analysis utilized
the manual counting and automatic counting methods as the gold standard. However,
these methods require considerable amounts of resources and manpower, which can
be considered impediments to some developing countries in conducting such studies.
Thus, there is a need for an alternative methodology that is less resource-intensive but
also compendious.

Previous researchers have developed alternative approaches with regard to quantify-
ing traffic flow and eventually converting these into emissions and energy use estimates.
Zhao et al. [22] recommended an approach to obtain traffic flow characteristic parame-
ters such as traffic volume, average travel speed, and traffic density using electronic toll
collection (ETC) data. Seo and Kusakabe [23] introduced a method of estimating traffic
flow dynamics on the basis of spacing and positioning data of probe vehicles. Aksoy
et al. [24] integrated a fuel emission and consumption calculation model in logistics to
develop strategies to increase economic benefits and reduce the environmental impacts of
pollution and energy use. Jabali et al. [25] analyzed CO2 emissions and fuel consumption in
time-dependent vehicle routing by assigning and scheduling predetermined destinations
of vehicles. Bharadwaj et al. [26] analyzed the fuel consumption and greenhouse gas
emissions from road transport using vehicle kilometers traveled, obtained from an actual
traffic survey. Nesamani et al. [27] analyzed air pollutant emissions and energy use of
vehicles in relation to various operating conditions of vehicles such as geometric design
elements, traffic characteristics, the roadside environment, weather conditions, and driving
style. Maes et al. [28] proposed a methodology that evaluates road transport emission
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inventories in high resolution. The authors employed a probabilistic bottom-up approach
in their transportation model while utilizing fleet data such as engine size, model-year,
and fuel types of vehicles. Iqbal et al. [29] introduced an innovative approach through a
mesoscopic model where the magnitude of emission variations as well as the underlying
factors that affect emissions were evaluated. Zhang et al. [30] performed a microscopic
analysis by characterizing toxic emissions from gasoline and diesel vehicles on a busy
mountain road. The authors acquired real-world measurements through the use of a
portable emissions measurement system. Iqbal et al. [31] introduced a technique involving
Monte Carlo simulation for probabilistic health risk assessment in an urban area with
respect to vehicular emissions. While these studies and other related research have been
extremely useful in evaluating traffic flow, emissions, and energy use, the fact remains
that conducting research in this context is a challenge for developing countries, especially
considering the time and costs of doing it.

On this note, crowdsourcing is an emerging tool that can provide cost-effective so-
lutions to traditional problems [32,33]. In transportation planning, crowdsourcing is an
effective tool that can consolidate data from a large group of individuals on the same
platform in order to address a shared problem among its members [34]. Key areas in
which crowdsourcing proved to be very useful in transportation are the following: (1)
development of strategies for managing traffic flow in an urban environment; (2) efficient
detour routing of vehicles to avoid traffic congestion; (3) monitoring and assessment of road
conditions; (4) data analysis on traffic accident and road crime; and many more [35–39].
Transport modeling provides insights for the possible future development of a particular
area [40]. In the road transport sector, transportation modeling is an essential tool used in
estimating emissions and energy use.

To assess the potential of using publicly available crowdsourced data for transport
planning, the authors introduce in this paper a novel method for modeling road trans-
port emissions and energy use. In particular, crowdsourced data from Google Maps and
Google Street View are utilized to estimate vehicle and traffic data. Furthermore, emis-
sion and energy consumption factors are derived from various references to calculate the
total emission load and energy usage, respectively, with respect to the estimated vehicle
count. For the purpose of demonstrating the methodology, greenhouse gas emissions in
terms of CO2eq and air pollution in terms of PM2.5 emissions are also presented. The
proposed approach aims to provide an alternative to resource-constrained transport plan-
ners for traffic data gathering. While data uncertainty from Google Maps and Google
Street View is not yet tackled in this manuscript, the results presented here are validated
with an actual government-commissioned annual average daily traffic survey (AADT),
and recommendations on how to tackle data uncertainty are provided towards the end of
the manuscript.

The paper proceeds as follows: Section 2 describes the proposed methodology in
detail; Section 3 provides an illustrative case study in Epifanio de los Santos Avenue
(EDSA), Philippines; Section 4 discusses limitations and opportunities for future work of
the proposed methodology; and Section 5 concludes the study.

2. Methods and Data
2.1. Research Methodology

The proposed general procedure in estimating road transport emissions and energy
use by means of utilizing crowdsourced data from Google Maps is presented in Figure 1.
The average travel time and segment length for each road segment are collected in Google
Maps to estimate the bulk speed or the average speed of all vehicles. The computed bulk
speed is subsequently used as an independent variable to estimate hourly vehicle flows in
terms of passenger car units (PCU) for the full 24 h of the day from a speed-flow curve. A
speed-flow curve is empirically generated and plots bulk speed as a function of the flow
rate of PCUs. With the help of a speed-flow curve which refers to a roadside friction index
(RSFI), the PCU count is estimated by either manually plotting bulk speed values on the
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curve or using it as an input to a fitted regression equation. The hourly PCU counts for one
whole day must be consolidated into a daily PCU count and then translated into an overall
PCU count based on the intended periodicity of the study (e.g., monthly, annually, etc.).
The PCU count is eventually broken down into different vehicle categories (i.e., modal
share) through classified vehicle counting using the Street View feature of Google Maps
and using passenger car equivalence factors (PCEF). This will be further elaborated on the
succeeding sections below. Finally, the total road transport energy use and emission load
are estimated by multiplying the overall vehicle count with the assumed energy economy
and emission factors, respectively.

Figure 1. The general framework of the proposed method for estimating road transport energy use
and emissions using crowdsourced data in Google Maps and Google Street View.

The proposed detailed process for estimating energy consumption and emissions from
road transport using Google Maps and Google Street View data is outlined below:

• To begin, identify the specific road or highway that will be studied and determine its
starting and end points in Google Maps. The road must be divided into a preferred
number of segments. The segment length in kilometers (km) and the actual number
of lanes on each side of the road (e.g., northbound and southbound) shall be recorded;

• Decide on the periodicity (e.g., weekly, monthly, and yearly) of the study and select
the days of the week from which data collection will be made. Days can be classified
according to the identicality of their traffic situations. For example, the modeler can
opt to assume that Tuesday, Wednesday, and Thursday have similar traffic conditions;

• Across each road segment, collect and tabulate the average travel time, TAve, from
Google Maps. By default, this is provided by Google in terms of minutes (min).
Convert the unit of time from minutes to hours (hr). Do this at least 24 times, getting
at least one data point per hour of the day (i.e., from 0:00 to 23:00). Note that this will
be repeated for all the days covered in the study. This tabulation was done manually
in the illustrative case study below, but the modeler has the option to automate this
using Google Maps’ API service.
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• Calculate the bulk speed, VB, in terms of kilometers per hour (km/hr) by dividing each
segment length, LS, by the hourly average travel time, TAve [41] (see Equation (1) below);

VB =
LS

TAve
(1)

• Through the use of a speed-flow curve, the calculated bulk speed, VB, from Google
Maps is converted to passenger car units per hour (PCU/hr). The unit PCU is used
to convert the heterogeneous characteristics of vehicle flow due to the presence of
different vehicle types on the road into an equivalent homogenous quantity, using
relative weightage factors (i.e., PCEF) [42]. For example, the road space occupied by a
bus is equivalent to approximately two passenger cars;

• Assuming that the available speed-flow curve only applies to particular hours of the
day, correction factors can be used to adjust the rate of vehicle flow in hours when a
significant drop in traffic volume is expected, such as from midnight to the earliest
hours of the morning;

• Consolidate the estimated hourly PCU counts for the full 24 h into a total daily
PCU count;

• Within each road segment, assign point coordinates having roughly equidistant spac-
ing with one another as shown in Figure 2 [43]. The modeler has the discretion to
determine the distance/spacing between these points, with consideration of road
structures, such as the presence of an underpass, flyover, road intersection, etc. The
modeler must avoid potential duplication in the counting of vehicles. These points
will be used to estimate the modal share;

• Utilizing the Street View feature of Google Maps, perform a classified vehicle count
on all of the points identified in the previous step. Count the number of vehicles
per variant/category (i.e., motorcycle, tricycle, car, taxi, utility vehicle, jeepney, bus,
truck, etc.).

• Multiply the total vehicle count of each category (from Street View counting in Google
Maps) with its PCEF, and then divide it by the sum-product of vehicle counts and
PCEFs across all categories. This shall generate the PCU mix (i.e., modal share);

• To convert the PCU count into vehicle counts by category, VC, break down the PCU
count using the PCU mix obtained in the previous step, and then divide it by the
corresponding PCEF for each vehicle category;

• Derive mobile emission factors for each vehicle type with respect to greenhouse gas
and air pollutant emissions in terms of grams per kilometer (gemissions/km), taking
into account the variants, fuel type, local emission standards, fuel economy in grams
of fuel per kilometer (gfuel/km), and specific emission factors in grams of emissions
per gram of fuel (gemissions/gfuel). The emission factors used in this study are shown
in the illustrative case study in Section 3. An aggregated emission factor, EF, can be
estimated using the PCU mix obtained above;

• Multiply the emission factors, EF, (gemissions/km) to the segment length, LS, (km) and
to the total vehicle count, VC, in order to obtain the total emissions load, EL. See
Equation (2);

EL = EF × LS × VC (2)

• Derive energy consumption for each vehicle type, EC, in terms of megajoules per
kilometers (MJ/km) by taking into account the variants, fuel type, local emission
standards, fuel economy in grams of fuel per kilometer (gfuel/km), and calorific value
of fuels, specifically the lower heating values, in terms of megajoules per grams of fuel
(MJ/gfuel).

• Multiply energy consumption, EC, (MJ/km) to the segment length, LS, (km) and to
the total vehicle count, VC, in order to get the total energy use, EU. See Equation (3).

EU = EC × LS × VC (3)
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Figure 2. Assigning of point coordinates in Google Maps. Data Source: Google Maps.

2.2. Data Collection for the Illustrative Case Study

Epifanio de los Santos Avenue (EDSA) was the subject of the illustrative case study in
this paper. It interlinks seven major cities in Metro Manila, making it the main thoroughfare
of the economic capital of the Philippines [44]. EDSA will be divided into 12 road segments;
furthermore, the authors decided to use the Metro Rail Transit Line 3 (MRT-3) stations as the
basis for dividing the avenue into segments. Figure 3 illustrates the whole range of MRT-3
as well as the approximate locations of each station starting from Taft Avenue Station and
all the way to North Avenue Station [45]. Currently, MRT-3 has a total of 13 stations spread
across five cities: North Avenue Station, Quezon Avenue Station, GMA Kamuning Station,
Araneta Center-Cubao Station, and Santolan-Annapolis Station are located in Quezon
City; Ortigas Avenue station is located in Pasig City; Shaw Boulevard Station and Boni
Avenue Station are located in Mandaluyong City; Guadalupe Station, Buendia Station,
Ayala Station, and Magallanes Station are located in Makati City; furthermore, Taft Avenue
Station is located in Pasay City.

In the case study, the data collected by the authors was for June 2019. June is the
start of the rainy season in the Philippines, thus creating heavier traffic flow [46], while
most schools in the country typically start their academic year at this time of the year as
well [47]. In the month of June, data were collected for Mondays, Weekdays (i.e., Tuesday,
Wednesday, and Thursday), Fridays, Saturdays, and Sundays, assuming that the traffic
situations on Tuesdays, Wednesdays, and Thursdays are identical. However, during the
actual data collection in Google Maps, it had been observed that the data can have marginal
variations despite inputting the same date and time when collected on different occasions.
For this reason, the authors collected data on five separate occasions and utilized the
average. The dates looked up in Google Maps were 1 June, 2 June, 3 June, 4 June, and
7 June in the year 2019.

As discussed in the previous subsection, the bulk speed can be calculated by dividing
average travel time with its segment length. By making use of speed-flow curves, the
average speed of all vehicles for a given range can be translated into a rate of vehicle flow.
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A speed-flow curve is created using what is referred to as the roadside friction index (RSFI),
which describes side friction factors or occurrences on the side of the road that affect traffic
flow [48]. For example, road segments with schools and wet markets tend to have a higher
roadside friction. The speed-flow curve illustrated in Figure 4 was adopted for this case
study, with reference to the paper of Pal and Roy [49].

Figure 3. The approximate locations of the 13 MRT-3 stations which will be used as the basis for
dividing EDSA into road segments in this paper. Data Source: Google Maps.

Figure 4. Adopted speed-flow curve for EDSA.

A regression equation was fitted to the speed-flow curve shown on Figure 4. This
is a relatively more accurate and convenient approach to obtain vehicle flow rates using
the curve [50]. Equation (4) shows the fitted quadratic equation. This will be used to
estimate the hourly vehicle flow or PCUCount, as a function of bulk speed. In an actual
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study, the authors recommend that speed flow curves for specific road links be utilized to
ensure accuracy.

PCUCount = 3.26VB
2 − 180.09VB + 2843 (4)

The outcome was then multiplied to the average number of lanes assumed for both
southbound and northbound directions of the road. An average number of lanes equal to 5
was assumed for EDSA (each way) in this study [51]. However, it is worth noting that the
second-degree polynomial equation pertaining to the best fit curve was only applied from
5:00 to 22:00, considering that the traffic is normally heavier during this period. In fact, the
average daily traffic volume in terms of PCU according to a transport and environmental
survey for some roads in the Philippines had been observed to comparatively drop from
23:00 to 4:00 [52]. Thus, correction factors (or proportionality constants) were introduced
for the hours 23:00, 1:00, 2:00, 3:00, and 4:00. Each correction factor was multiplied to the
average PCU count value from 5:00 to 22:00. These factors are determined and calibrated
by the modeler based on actual on-road observations. The proportionality constants used
in the illustrative case study are presented in Table 1.

Table 1. Correction factors used as constants of proportionality during hours with anticipated
significant drops in traffic volume.

Hours with Anticipated Significant Vehicle
Volume Drops Correction Factor

23:00 0.03
0:00 0.02
1:00 0.01
2:00 0.01
3:00 0.01
4:00 0.02

Vehicle volume counts need to be normalized as different vehicle categories have
different footprints or road space requirements. Expressing volume counts in terms of PCU
considers the approximate footprint of each vehicle category by estimating the number of
passenger cars occupying the same footprint [53]. These estimates, considered as weightage
factors, are called passenger car equivalence factors (PCEFs). Shown in Table 2 are the
passenger car equivalence factors used in this study. The PCEF values for a car, jeepney,
tricycle, bus, light-duty truck, and heavy-duty truck were adopted from a feasibility
study relevant to the Philippine road setting [54] while the PCEF values for van, taxi, and
motorcycles were adopted from the study of Adnan [55]. Moreover, utility vehicle (UV)
as a vehicle type was assigned by the authors to have a PCEF equal to 1. Dividing the
PCU count per vehicle type with their respective PCEF generates the estimated vehicle
count per category, which will then be used to estimate energy use and emissions. It
is worth noting that the jeepney is a unique vehicle category for the Philippines. The
Philippine jeepney is the most common mode of public transportation in the country
because of its accessibility and affordability [56]. Jeepneys are diesel-powered vehicles that
were originally refurbished American military utility vehicles left after the Second World
War [57]. Due to most jeepneys being old, the specific engine technology and standards
used are not documented, but they are most likely all pre-Euro engines. Fuel-wise, as of
writing, all fuel sold in the Philippines is at least Euro 4 quality.

For the classified vehicle count using the Street View feature of Google Maps, four
points were identified per road segment, and points were approximately one kilometer
from each other.

In the process of estimating emissions, transport activity data is multiplied with
emission factors [58,59]. In the context of the transport sector, the greenhouse gas emis-
sions arise from the combustion and evaporation of fuels from diverse forms of transport
activities [60]. In particular, the calculation of greenhouse gas emissions on the basis of
transport activities and emission factors is referred to as the bottom-up approach in which
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the transport activities are measured per vehicle kilometer traveled (VKT), and the emission
factors are in the units of grams per kilometer [61]. In relation to the current study, the total
estimated vehicle count of each road segment together with the respective road lengths
determine transport activity.

Table 2. Passenger car equivalence factors for various vehicle types.

Type of Vehicle PCEF

Tricycle 1
Motorcycle 0.25

Jeepney 1.5
Taxi 1
Car 1

Utility Vehicle 1
Bus 2

Light Truck 2
Heavy Truck 2.2

Emission factors represent the ratio between the quantities of pollutants, expressed
in unit weight, that are being discharged to the atmosphere and the activity, expressed in
unit weight, volume, distance or time, in connection to the release of these pollutants [62].
However, deriving emission factors relevant to a particular study is an arduous task. With
regard to road transport, one needs to take into account the emission standards (i.e., Euro 4
in the Philippines), shares in use of fuel types (diesel or petrol), fuel economies (km/lfuel
or gemissions/km), fuel properties, specific emission factors (gemissions/gfuels), and vehicle
variants. In this study, the fuel economy, fuel properties, and specific emission factors
were obtained from the databases of Argonne National Laboratory. Specifically, these
are from the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation
(GREET) Model [63] and the Alternative Fuel Life-Cycle Environmental and Economic
Transportation (AFLEET) Tool [64]. The energy use in road transport can also be estimated
in the same manner, but the calorific value of the fuel is used as the multiplier instead of
the specific emission factor. The calorific value of gasoline and diesel were obtained from
the Mechanical Engineer’s Data Handbook authored by James Carvill [65]. For emissions and
energy use, the Metro Manila drive cycle utilized in [2] was used.

3. Illustrative Case Study
3.1. Estimation of Monthly Vehicle Count

The estimated vehicle counts in June 2019 are summarized in Table 3. The data reflects
that there were no heavy-duty trucks and tricycles traveling along EDSA both in the
southbound and northbound directions, except for the Magallanes Station to Taft Avenue
Station road segment, which had an estimated total count of 3546 tricycles. Jeepneys
plying EDSA were also limited in number relative to other vehicle types. This is because
of the prohibitions by the government for these vehicle types to use most parts of the
circumferential road, to accelerate traffic flow [51].

Another assumption made by the authors that can affect the classified vehicle counts
involved the assumed variants belonging to each vehicle type. Car as a vehicle type
includes the following variants: mini-compact, subcompact, compact, and full-size sedan.
On the other hand, utility vehicle considers all variants of sport utility vehicles (SUV),
pick-up trucks, and vans such as multi-purpose vehicles (MPV), crossover utility vehicles
(CUV), mid-size SUVs, and full-size SUVs. Thus, it is understandable why the majority of
the road segments counted more utility vehicles than cars.
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Table 3. Estimated Vehicle Count in June 2019.

Monthly Vehicle Count (Southbound EDSA)

Road Segment Tricycle Motorcycle Jeepney Taxi Car Utility
Vehicle Bus Light

Truck
Heavy
Truck

North A-Quezon A 0 51,933 0 81,610 59,352 126,124 44,514 3710 0
Quezon A-G Kamuning 0 81832 0 37768 44,063 176,253 0 0 0
G Kamuning-A C Cubao 0 339,941 0 59,837 60,704 105,798 64,173 0 0
A C Cubao-Santolan A 0 45,296 2831 49,543 117,487 134,473 84,931 11,324 0
Santolan A-Ortigas A 0 55,772 2145 23,596 98,674 178,042 39,684 1073 0

Ortigas A-Shaw B 0 16,773 0 16,773 122994 178,900 36,339 2795 0
Shaw B-Boni 0 46,081 0 31,902 106341 233,951 21,268 7089 0

Boni-Guadalupe 0 54,241 0 27,121 57631 149,164 30,511 0 0
Guadalupe-Buendia 0 29,357 1957 25,443 111556 187,884 45,014 0 0

Buendia-Ayala 0 78,073 7435 33,460 74355 66,919 29,742 7435 0
Ayala-Magallanes 0 82,409 0 12,361 61807 86,530 127,735 0 0
Magallanes-Taft A 0 56,876 23,334 30,626 56876 107,919 18,959 16,042 0

Monthly Vehicle Count (Northbound EDSA)

Road Segment Tricycle Motorcycle Jeepney Taxi Car Utility
Vehicle Bus Light

Truck
Heavy
Truck

North A-Quezon A 0 86,341 13,283 43,170 149,436 209,211 36,529 6642 0
Quezon A-G Kamuning 0 63,742 0 93,162 112,775 93,162 24,516 4903 0
G Kamuning-A C Cubao 0 275,358 0 76,707 64,906 94,408 51,138 983 0
A C Cubao-Santolan A 0 74,151 0 28,837 148,303 177,139 74,151 8239 0
Santolan A-Ortigas A 0 63,442 1322 26,434 158,605 229,977 34,364 5287 0

Ortigas A-Shaw B 0 71,129 0 35,565 138,308 209,436 59,274 3953 0
Shaw B-Boni 0 93,141 0 37,256 193,732 230,989 67,061 0 0

Boni-Guadalupe 0 95,722 0 0 245,288 233,324 41,879 0 0
Guadalupe-Buendia 0 102,646 0 10,265 164,233 243,784 38,492 0 0

Buendia-Ayala 0 40,424 5775 21,174 94,322 115,496 32,724 0 0
Ayala-Magallanes 0 82,708 0 9543 89,071 213,133 22,268 9543 0
Magallanes-Taft A 3546 35,457 56,732 46,094 109,917 120,555 24,820 0 0

The largest shares of vehicle type by road segment are as follows. For southbound
EDSA, GMA Kamuning Station to Araneta Center-Cubao Station had a 36.2% share for
motorcycles, Magallanes Station to Taft Avenue Station had a 61.9% share for jeepneys;
North Avenue Station to Quezon Avenue Station had a 19% share for taxis; Ortigas Avenue
Station to Shaw Boulevard Station had a 12.7% share for cars; Shaw Boulevard Station to
Boni Avenue Station had a 13.5% share for utility vehicles; Ayala Station to Magallanes
Station had a 23.5% share for buses; and lastly, Magallanes Station to Taft Avenue Station
had a 32.4% share for light-duty trucks. For northbound EDSA, Magallanes Station to Taft
Avenue Station had the highest share of jeepneys at 73.6%. Moreover, it was the only road
segment that had tricycles. GMA Kamuning Station to Araneta Center-Cubao Station had
the highest share of motorcycles at 25.4%; Quezon Avenue Station to GMA Kamuning
Station had a 21.8% share for taxis; Boni Station to Guadalupe Station had a 14.7% share
for cars; Guadalupe Station to Buendia Station had an 11.2% share for utility vehicles;
Araneta Center-Cubao Station to Santolan-Annapolis Station had a 14.6% share for buses;
and finally, Ayala Station to Magallanes Station had a 24.1% share for light-duty trucks.

3.2. Estimation of Transport Emissions and Energy Use

The warming effect of greenhouse gases is based on a unit called carbon dioxide equiv-
alent (CO2eq) [66,67]. Therefore, the authors estimated global warming potential (GWP)
using the CO2eq of each road segment in EDSA for both northbound and southbound
directions. The different greenhouse gas emissions are converted to their CO2eq to measure
their heat trapping ability [68]. Shown in Figure 5 are the estimates of CO2eq emissions
in terms of tonnes for the month of June 2019 through the use of clustered heatmaps. In
consideration of the effects of air pollutant emissions to human health and environment [5],
estimations of fine particulate matter, particularly PM2.5 [69,70], were also done in the
present study. PM2.5 refers to the infinitesimal particles emitted in the air which measure
two and half microns or less in average diameter. Figure 6 shows PM2.5 emissions in terms
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of kilograms per road segment and vehicle type. The transport energy use in terms of
tonnes of oil equivalent (toe) is shown in Figure 7.

Figure 5. Clustered heatmap of the monthly tonnes of CO2eq in EDSA.

Figure 6. Clustered heatmap of the monthly kg of PM2.5 in EDSA.
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Figure 7. Clustered heatmap of monthly transport energy use in EDSA in terms of toe.

Summarized in Table 4 are the emission factors and energy consumption data which
were used in the case study. Firstly, the columns for tricycle and heavy truck in Figures 5–7
had the coolest color (i.e., with respect to the heat map). This is because none of these
vehicles pass through the majority of the road segments in EDSA, as indicated in Table 3.
For some road segments, jeepneys and light trucks also had none, due to a relatively
small number of vehicle count, thus resulting in plenty of green tiles on the heatmap.
Conversely, the majority of the motorcycle, car, utility vehicle, and bus tiles showed warm
colors, indicating substantial contributions to the emission load or energy usage of the
road segments.

Table 4. Summary of emission factors and energy consumption per vehicle type.

Emission Factors Data (gemissions/km)
CO2

Equivalence
(gCO2eq/gemissions)

Types of
Emission Tricycle Motorcycle Jeepney Taxi Car Utility

Vehicle Bus Light
Truck

Heavy
Truck

PM2.5 0.0562 0.0336 0.8466 0.0011 0.0221 0.1430 0.7539 0.7519 0.6731 -
CH4 4.0906 2.3022 0.2357 0.3000 0.7408 0.3538 1.2873 0.3648 1.0238 30.0000
N2O 0.0021 0.0015 0.0316 0.0039 0.0099 0.0063 0.0222 0.0226 0.0247 265.0000
CO2 66.9747 60.0983 668.7415 41.9204 109.8958 92.4039 1406.2301 842.0852 1672.4363 1.0000

Energy Consumption Data (MJ/km)

Tricycle Motorcycle Jeepney Taxi Car Utility
Vehicle Bus Light

Truck
Heavy
Truck

Energy Con-
sumption 1.5285 1.1504 9.4130 1.3812 3.6924 3.7241 19.6944 11.8412 23.3813 -

In Figures 5–7, the columns or tiles for buses generally had the warmest colors in
comparison to the other vehicle types. However, the vehicle counts for buses based on
Table 3 are comparatively smaller compared to motorcycles, cars, and utility vehicles. This
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observation has something to do with the fact that buses, as indicated in Table 4, have a
significantly higher emission factor and energy consumption in comparison to the other
vehicle types. For comparison, the emission factors and energy consumption for utility
vehicles are 0.14, 0.01, 0.35, 0.01, 92.40 gemissions/km and 3.72 MJ/km for PM2.5, CH4, N2O,
CO2, and energy consumption, respectively. For buses, these are about 0.75, 0.05, 1.29, 0.02,
1406.23 gemissions/km and 19.69 MJ/km. The same effect was observed in taxis—despite
being greater in vehicle count than jeepneys and light trucks, the estimates of CO2eq,
PM2.5, and energy use were relatively lower. This observation was also due to the fact
that the emission factors and energy consumption for taxis were comparatively lower
than jeepneys and light trucks. It is also interesting to note that the road segments with
the warmest tiles under the bus column in Figures 5–7, namely Araneta Center-Cubao to
Santolan-Annapolis and Ayala-Magallanes, are where most provincial bus terminals and
major bus stops are located.

3.3. Data Validation

Table 5 shows the comparison between the annual average daily traffic (AADT)
reported by the Metropolitan Manila Development Authority (MMDA) in 2019 [71] and the
average daily vehicle count estimated using crowdsourced data from Google Maps. The
total number of vehicles from both sources were within close range. The MMDA reported
a total of 405,882 vehicles while the authors estimated 370,855 vehicles in total (i.e., 8.63%
error). Having said that, considerable discrepancies on the individual percentage share for
each vehicle type were observed especially in cars, utility vehicles, and buses. One possible
cause for the discrepancies in car and utility vehicle percentage shares is the assignment of
vehicle variants belonging to each type. This assumption might have been different with
how the MMDA did it in their actual survey. Note that if the vehicle shares of cars and
utility vehicles were to be aggregated in both reports, the percentage error will only be
4.63%. It is important to take note also that the PCEF values for cars and utility vehicles (see
Table 2) are the same. In fact, the two can theoretically be classified into one vehicle type in
as much as PCU count is concerned. Another possible reason for the discrepancies in the
percentage shares is the timing when data collection took place. It is important to note that
the Google Maps Street View feature does not specify the time of data collection. In this
regard, the authors assumed a constant PCU percentage share (modal share) throughout
the whole day. The same is true with the survey performed by MMDA—there was also no
information regarding the time of data collection in the survey report.

Table 5. Comparison of average daily vehicle counts from MMDA and the proposed method using
Google Maps data.

Vehicle Type MMDA Percentage
Share Google Maps Percentage

Share

Tricycle 9 0% 118 0%
Motorcycle 110,167 27% 70,299 19%

Jeepney 2166 1% 3827 1%
Taxi 18,913 5% 29,745 8%
Car 255,732 63% 91,817 25%

Utility Vehicle 6285 2% 136,514 37%
Bus 11,313 3% 35,496 10%

Light Truck 1297 0% 3038 1%
Heavy Truck 0 0% 0 0%

Total 405,882 100% 370,854 100%

4. Limitations and Future Work

The study demonstrated a convenient and cost-effective way to estimate emission
load and energy use in road transport. One major advantage of using the proposed method
is the availability and accessibility of the data. Furthermore, it makes multi-regional or
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multi-locality studies for benchmarking purposes easier to do. For instance, researchers
can easily conduct studies on a city aside from their own. Most importantly, the gathering
of data according to the said method can be used as an alternative to conducting an actual
survey, which is more laborious and resource-intensive. It is important to take note that
the proposed methodology in this work provides an alternative only for vehicle data and
traffic flow collection. It is not meant to replace the whole emissions modeling approach,
as it is rather more complex than the simplified approach used in this study. If desired by
the modeler, the proposed approach to collect vehicle and traffic data in Google Maps can
be coupled to other more sophisticated emissions models for more accurate estimates.

Despite the advantages, there are also some disadvantages. Aside from the Google
Maps data, the methodology is also highly dependent on data from various references and
assumptions. Therefore, these can become sources of inaccuracies in the results. In some
countries, data concerning the transportation sector can be more accessible. Another major
assumption used in the current case study is the speed-flow curve adopted. In vehicle flow
analysis, speed-flow curves and PCEFs are derived based on the dynamic characteristics
and positions of vehicles for specific roads. The illustrative case study used a speed-flow
curve that had been modeled from a specific highway in India. On the other hand, the
PCEFs used, although relevant to Philippine roads, were taken from a feasibility study
published in 1987.

To address these limitations for the Philippines, the authors propose the following
for future work. First, research on speed-flow curve modeling, particularly for the major
thoroughfare, EDSA, is needed. Relevant literature in developing speed-flow curves in-
cludes [49,72,73]. Second, a future research study should develop updated values of PCEFs
considering the current traffic characteristics of Philippine highways. Relevant literature
in measuring PCEFs includes [55,74,75]. To reduce uncertainty in data, a probabilistic
analysis could be used to improve the robustness of the results. For example, a Monte
Carlo approach can be used to explore the robustness of the data collected from Google
Maps and Google Street View.

5. Conclusions

A novel method for estimating emissions and energy use in road transport using
crowdsourced data from Google Maps was introduced and demonstrated by the authors.
Two particular sets of data are utilized from Google Maps. The first is the travel time
and road length data which will be converted into bulk speed or the average speed of all
vehicles. Subsequently, the rate of vehicle flow in terms of PCU/hr is determined using
the calculated bulk speed. The second dataset collected from Google Maps is the classified
vehicle count using Google Street View. After establishing the rate of vehicle flows and
PCU mix, PCEF values are utilized to break down the PCU into different types of vehicles.
Finally, emissions and energy use in road transport are estimated by multiplying the vehicle
count with the assumed emission factors and energy consumption data.

An illustrative case study was performed to demonstrate the actual use of this method-
ology, which was also validated using government-reported daily traffic data (AADT). The
average daily vehicle count estimated using the proposed method had about an 8.63% error
when compared to the AADT survey conducted by MMDA in the same year. However,
this can be further reduced to 4.63% if cars and utility vehicles were combined. This
means that the proposed method can accurately estimate average traffic flow, given proper
assumptions on the data.

Furthermore, CO2eq, PM2.5, and energy use were estimated in the case study. The
results were illustrated through clustered heatmaps showing the share of each road segment
and vehicle type. Results indicated that buses, despite having less vehicle counts, had
the largest contributions to CO2eq, PM2.5, and energy use. On the contrary, taxis, despite
being greater in vehicle count than jeepneys and light-duty trucks, had one of the least
contributions to CO2eq, PM2.5, and energy use. Based on the average values in southbound
and northbound EDSA, buses produced 88.38 tonnes of CO2eq and 43.93 kg of PM2.5
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monthly per road segment while consuming 28.66 toe. Furthermore, taxis discharged
2.58 tonnes of CO2eq. and 0.06 kg of PM2.5 monthly per road segment while consuming
1.64 toe.

Since the novelty of this study is using crowdsourced data in Google Maps, this study
can give rise to future works which can improve the methodology in such a way that
possible inaccuracies and uncertainties can be mitigated and considered better. While
the proposed methodology demonstrated promising results in the illustrative case study,
this research is an evolving work that shows great potential to streamline methodologies
in estimating emission load and energy use in road transport. While much of the data
collection work was done manually in this paper, future research can easily automate
plenty of these steps.
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