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Abstract: A sustainable process for valorization of onion waste would need to entail preliminary
sorting out of exhausted or suboptimal material as part of decision-making. In the present study,
an approach for monitoring red onion skin (OS) phenolic composition was investigated through
Visible Near-Short-Wave infrared (VNIR-SWIR) (350–2500 nm) and Fourier-Transform-Mid-Infrared
(FT-MIR) (4000–600 cm−1) spectral analyses and Machine-Learning (ML) methods. Our stepwise
approach consisted of: (i) chemical analyses to obtain reference values for Total Phenolic Content
(TPC) and Total Monomeric Anthocyanin Content (TAC); (ii) spectroscopic analysis and creation of
OS spectral libraries; (iii) generation of calibration and validation datasets; (iv) spectral exploratory
analysis and regression modeling via several ML algorithms; and (v) model performance evaluation.
Among all, the k-nearest neighbors model from 1st derivative VNIR-SWIR spectra at 350–2500 nm
resulted promising for the prediction of TAC (R2 = 0.82, RMSE = 0.52 and RPIQ = 3.56). The 2nd
derivative FT-MIR spectral fingerprint among 600–900 and 1500–1600 cm−1 proved more informative
about the inherent phenolic composition of OS. Overall, the diagnostic value and predictive accuracy
of our spectral data support the perspective of employing non-destructive spectroscopic tools in
real-time quality control of onion waste.

Keywords: VNIR-SWIR; FT-MIR; chemometrics; onion solid waste; natural colorant

1. Introduction

Huge amounts of onion (Allium cepa L) waste, consisting mainly of the skin and
inedible outer scales of the bulb, are generated throughout their supply chain from the farm
to retail stores and the households. In 2000, more than 450 000 tonnes of onion solid waste
(OSW) were produced in Europe [1]; the tonnage is expected to be much higher today with
increasing production [2]. OSW can be considered as an environmental problem because it
is not suitable for use as organic fertilizer due to the rapid development of phytopathogenic
agents, or as a fodder because of its aroma [3].

A possible solution could be the development of a sustainable process to convert this
food waste into a raw material for the food industry [1,4]. Regardless of the season, cultivar,
or ripening stage, OSW can be a potential source of fibers, fructooligosaccharides, the
alk(en)yl cysteine sulfoxides and certain health-promoting phenolic compounds, especially
flavonoids [3]. Onion flavonoids are found especially in the skin and outer layers [5],
mainly in the form of quercetin aglycone. At least two major types (including quercetin-
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3,4’-O-diglucoside (3,4’-Qdg) and quercetin-4’-O-glucoside (4’-Qmg) [3]) conjugate with
glucose.

OSW from red-skinned onions is also rich in anthocyanins [6]. Even though antho-
cyanins comprise a small percentage of onion bulb flavonoids, they are heavily concentrated
in the skin and in a single layer of cells in the epidermal tissue, mainly in the form of cyani-
din glucosides, esterified with malonic acid [6]. Red onion dry outer layers could, therefore,
be a source of natural colorants that can be extracted with green extraction techniques and
used as a replacement of synthetic counterparts like carmine [7].

Several novel technological solutions have been proposed to recover these valuable in-
gredients from OSW [8]. Many studies focus on improving the incorporation of the extracts
into novel, biofunctional food products or in the formulation of food supplements [9,10].
The overall cost/sustainability of the biorefinery processes depend on various factors [1,11]
that must comply with rational strategies for waste management, such as stabilization
and quality. Standards for preliminary sorting to exclude exhausted or sub-optimal waste
would be of great value.

Onsite diagnostic assessment of the onion waste content in phenolic compounds is
quite challenging. Complexity of supply chains, multi-scaled production, and heterogene-
ity of the waste composition hinder large-scale operational investigations. Electrochemical
sensors are already used in the food industry as sensitive tools for monitoring polyphenol
content in certain commodities [12]. Studies show that non-destructive spectroscopic tech-
niques in the visible-near-short-wave and mid-infrared regions combined with powerful
chemometric methods may offer cost-effective, rapid, and versatile tools for monitoring the
chemical composition of foods. In this context, the use of VNIR-SWIR and FT-MIR spec-
trometers at all relevant stages across the onion supply chains along with implementation
for quality control of thousands of OSW samples generated would inform decision-making
about further waste management processes (re-use, re-cycle, valorization etc.). Whether
such technology is mature enough for application to routine analysis of OSW is open to
question. Artificial intelligence through machine learning (ML) algorithms has revolu-
tionized the predictive performance of current chemometric methods used in the food
sector [13]. In the case of onions, a partial least square regression (PLSR) model for the
assessment of total phenolic content and total antioxidant activity of phenolic-rich extracts
of onion bulbs has been reported to fit well with data extracted from FT-IR spectral fea-
tures [14]. However, systematic exploitation of spectral analysis and ML algorithms in
OSW lags greatly behind. Some years ago, Vincke et al. [15] utilized NIR spectroscopy
along with a Partial Least-Squares Discriminant Analysis (PLS-DA) to automatically sort
different parts of onion bulbs produced during specific industrial processes. At that time,
Wang and Gitaitis [16] highlighted that light-scattering properties of different onion parts
in the VNIR region may be further exploited for non-destructive inspection of diseased
onions, but they did not employ chemometric tools in their investigation.

The overarching objective of this study was to examine whether chemometric mod-
elling of VNIR-SWIR spectral data of red OS powder, according to their actual content
in monomeric anthocyanins, can feasibly be used for predictive purposes. Reference
Ultraviolet-visible (UV-Vis) based chemical assays were employed as a first step to assess
the content in total phenols and monomeric anthocyanins. Having specified how the
spectral signatures in the VNIR-SWIR were to be recorded under standard acquisition
protocols, a series of state-of-the-art ML algorithms for regression analysis were deployed
using the whole or sub-regions of the VNIR-SWIR spectra as variable inputs. Whether
the diagnostic spectral region for anthocyanins might be extended to the mid-infrared
spectrum by employing FT-MIR spectroscopy (in attenuated total reflectance (ATR) mode)
was also investigated. In that case, an unsupervised ML-based exploratory approach was
used to search for interpretable patterns among the OS spectra.

The focus of this study was to document the steps, driven by the current findings, to
turn infrared spectroscopy into an operational tool for the assessment of the anthocyanins
present in OSW.
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2. Materials and Methods

The methodological approach consists of five discrete steps: (i) chemical analysis to
obtain reference values for Total Phenolic Content (TPC) and Total monomeric anthocyanins
(TAC); (ii) spectroscopic analysis (VNIR-SWIR/ATR-FT-MIR), which includes the creation
of the dry OS spectral libraries; iii) generation of calibration and validation datasets; (iv)
spectral exploratory analysis and regression modeling of VNIR-SWIR spectra where several
ML algorithms were evaluated to predict the content of anthocyanins; and (v) evaluation
of the performance metrics obtained by ML algorithms. The overall data processing and
analysis workflow is illustrated in Figure 1 and detailed descriptions of the different steps
are provided in the sections below.
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Figure 1. Flowchart of the proposed workflow for the onion skin spectral analysis.

2.1. Onion Samples (OS)

The bulbs of the Allium cepa L. were supplied from various local markets in Greece
during the autumn-winter season of 2019 to represent three different retail product lines:
one originating from the Netherlands (n = 25) and two from major producing regions in
Greece (Thiva, Evritania, n = 13).

The onion skin (OS) test samples were prepared as follows. The bulbs of the red
onions were peeled using a sharp blade to remove the outer dry layers and the apical
trimmings, which are considered as waste material. Different layers of each sample (dry
outer, first inner) were separated. The dry outer and first inner layer skins of each bulb
were washed twice in deionized water. The resulting materials were dried at 65 ◦C for 48 h,
ground using a domestic blender (KENWOOD, Havant, UK), powdered in a laboratory
mill and then sieved through a 0.5 mm mesh. The material was then mixed to represent 38
test samples of distinct origin. Random combinations of 6 out 38 samples were produced
(n = 8) to enhance color variance. The inner and outer layers of 15 individual bulbs from
the Netherlands batch were also treated separately (n = 26). In total, 72 OS test samples
were used in this study.
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2.2. Chemical Characterization of the OS Extract
2.2.1. Chemicals

All solvents or analytical standards, such as Folin–Ciocalteu reagent, gallic acid,
and sodium chloride (Na2CO3), were purchased from Sigma-Aldrich, Chemie GmbH
(Taufkirchen, Germany).

2.2.2. Preparation of OS Extract

OS powder was mixed with solvent (liquid-to-solid ratio of 10 mL/g), composed of
(70% v/v) ethanol in water, at pH = 1. The material was subjected to extraction at 25 ◦C
for 15 min in an Ultrasons-H ultrasonic bath (J.P. Selecta Barcelona, Spain). Following
extraction, the samples were filtered through a 0.45 µm nylon membrane filters (BGB, USA).
The clear supernatant was stored at −20 ◦C until used for further analysis.

2.2.3. Determination of Total Phenolic Content (TPC)

In brief, 30 µL of all dissolved extracts were mixed, separately, with 2370 µL of
deionized water and 150 µL undiluted Folin Ciocalteu’s reagent. After one minute, 450 µL
Na2CO3 (20%, w/v) was added. The mixture was incubated for 120 min and absorbance of
the resulting mixture was measured spectrophotometrically at 750 nm. Gallic acid was used
as a reference standard and the results were expressed as milligram gallic acid equivalents
(mg GAE)/g of extract.

2.2.4. Determination of Total Monomeric Anthocyanin Content (TAC)

TAC was determined according to [17] using the pH-differential method. Briefly,
absorbance readings at 510 nm and 700 nm were made after dilution of extract in buffers
solution, with pH values of 1.0 and 4.5, against distilled water. The calculation was based
on Equations (1) and (2), respectively:

A = (Aλmax − A700)pH 1.0 − (Aλmax − A700)pH 4.5 (1)

where Aλmax is the absorbance of the sample extract at 510 nm

Total monomeric anthocyanins
(

mg
100g

)
= A × Mw × D f × 1000

ε × l
(2)

where Mw (molecular weight) = 449.2 g/mole for cyanidin-3-glucoside; Df = dilution
factor; l = pathlength in cm; ε = 26,900 molar extinction coefficient in L × mole−1 × cm−1

for cyanidin-3-glucoside; 103 = conversion of g to mg. The results are expressed as mg
cyanidin-3-glucoside per 100 g of onion dry matter. All analyses were performed in
triplicate and the median values were calculated. The summary statistics of the chemical
analyses are presented in Table 1. In the table below, Q1, Q2, and Q3 denote the quartiles.
Q1 corresponds to the lowest 25% of numbers, Q2 ranges between 25.1% and 50% (up to
the median), and Q3 corresponds to the range 50.1% to 75% (above the median).

Table 1. Summary statistics of Total Phenolic (TPC) and Total Monomeric Anthocyanin Content
(TAC) values of the OS samples under study (n = 72).

Parameter Min Max Q1 Q2 Q3 Mean

TPC (mg GAE/g) 13 79 30 43 52 43
TAC (mg Cyanidin/g) 0.13 3.82 1.49 2.08 2.71 2.01

2.3. Spectroscopic Characterization of the Dry OS

In this section, we briefly present the methodological steps to develop an onion spectral
library that would be used for assessing the total anthocyanin content. The building of a
database for OS anthocyanins that utilizes their unique spectral signatures (combination of
infrared bands) in specific spectral regions is described.
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2.3.1. VNIR-SWIR Analysis

The VNIR-SWIR measurements of dry red OS powdered samples were performed
using a PSR +3500 spectrometer (Spectral Evolution Inc., Lawrence, Massachusetts, USA)
operating in the range 350 to 2500 nm. The measurements were performed using a contact
probe to eliminate the effects of light scattering. Five spectra per powdered sample were
recorded and averaged to obtain the corresponding reflectance spectral signatures. A
Spectralon®panel with 99% reflectance was used to calibrate the spectrometer before the
measurements.

Spectral Preprocessing Techniques

Widely employed scatter-corrective and spectral-derivatization preprocessing tech-
niques were applied to the VNIR-SWIR dataset to remove irrelevant information. In
brief, (i) the reflectance spectra (REF) were converted into (ii) pseudo-absorbance spectra
[log10(1/R)] (ABS), and (iii) transformed into a continuum removal method domain (CR).
The Standard Normal Variate (SNV) was then applied to both REF and ABS values resulting
to (iv) REF-SNV and (v) ABS-SNV datasets, respectively. The Savitzky–Golay method was
applied to remove unwanted background noise from the spectra (vi) by calculating the
first derivative (SG1), and in that case, (vii) combining with the SNV transformation (SG1-
SNV) and also (viii) by calculating the second derivative (SG2), 11 data points of interval.
Lastly, (ix) the detrend (DET) preprocessing method was used before data modelling. An
overview of these techniques is presented by Rinnan et al. [18]. In total, nine different
spectral datasets were produced.

Machine Learning Modeling

The Conditioned Latin hypercube method (cLHS) [19] was used to split the onion
VNIR-SWIR spectral data into calibration and validation datasets. According to the cLHS
algorithm, the method searches the data based on heuristic rules combined with an anneal-
ing schedule. The proposed method is considered to be an effective way of replicating the
distribution of the variables compared to a random sampling approach. The percentage of
the number of onion samples to be allocated for the calibration dataset was determined as
75% of total dataset (54 out of 72), while the rest (18) were included in the validation set.

Each dataset of preprocessed spectra was modelled against TAC values using the
following linear or non-linear regression algorithms, i.e., (i) partial least square regression
(PLS); (ii) Random Forest (RF); (iii) Cubist; (iv) elastic net (ENET); (v) k-nearest neighbors
(k-NN); and (vi) support vector machines for regression (SVM). In every method, a set of
hyperparameters was selected as follows. The classical PLS algorithm [20], widely applied
for multiple purposes in spectroscopic analysis, transforms the input factors’ matrix into
a series of latent variables (LVs) to maximize the covariance among the predictors and
dependent variables. The number of optimum LVs was selected to range from 10 to 30.
RF is an ensemble learning classifier [21] with good performance metrics in various spec-
troscopy studies. Tuning of hyperparameters included first the selection of a number of
variables that can be sampled in each split of the tree analysis (6, 24) and then the value of
the tree parameter (100, 250, 500, 1000, 1500). The rule-based Cubist algorithm [22] reduces
a set of rules derived by a decision tree to define a linear regression model. Then, multiple
rule-based models are combined (committees) and the final predictions are adjusted using
known errors on the training set with a small number of neighbors for each unknown sam-
ple. Thus, predefined values for the number of committees (1, 10, 50, 100) and of neighbors
(0, 1, 5, 9) were selected. The ENET method was also evaluated as an extension of linear
regression that adds regularization penalties to the loss function during training. Next,
the k-NN algorithm was used. This is an instance-based learning algorithm that utilizes
a distance metric from the calibration dataset and predicts a testing pattern depending
on a preselected number, k, of nearest neighbors. In our study, this value was optimized
in a range from 0 to 25 closest k neighbors. Lastly, SVM for regression, as introduced by
Drucker et al. [23], was evaluated. SVM is a non-parametric technique employing a kernel
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function to map the initial predictors into a higher dimensional space. In this study, a radial
basis function was utilized, while the C parameter values were optimized among (0.001,
0.01, 1, 10) to control the penalization of the residual errors.

A grid search on a five-fold cross-validation experiment for each analysis enabled
the selection of the optimal hyperparameter values for model consistency. Table 1 in
Appendix A shows the optimal hyperparameter values for each ML algorithm. In total,
54 calibration models were produced. In order to assess their performance for prediction
of TAC in dry red OS, the root-mean-square error (RMSE, Equation (3)), the coefficient
of determination (R2, Equation (4)), and the Ratio of Performance to Interquartile Range
(RPIQ; Equation (5)) values were compared. The equations used were as follows:

RMSE =

√
∑i=N

i=1 (yi − ŷi)
2

N
(3)

R2 = 1 − ∑i=N
i=1 (yi − ŷi)

2

∑i=N
i=1 (yi − y)2 (4)

RPIQ =
IQ

RMSE
(5)

where yi is the observed value and ŷi is the predicted value of sample i, N is the number of
observations (Equation (3)), y is the mean of the observed values (Equation (4)), and IQ is
the interquartile range (IQ = Q3 − Q1) of the observed values (Equation (5)). Q1 and Q3
denote the first and third quartile, respectively.

2.3.2. ATR-FT-MIR Analysis

ATR-FT-MIR spectra were acquired using a 6700 IR (Jasco, Essex, UK) spectrometer
equipped with a DLaTGS detector, a high-throughput Single Reflection ATR with diamond
crystal and complemented by the Spectra Manager software (Jasco, Essex, UK). For each
spectrum, eight scans were accumulated in the absorbance mode and recorded at 4 cm−1

resolution, covering a range from 4000 to 600 cm−1. The spectrum was collected against a
background obtained with a dry and clean cell and corrected by the ATR correction option
of the software. Three spectra per powdered sample were recorded and averaged to obtain
the corresponding spectrum before further preprocessing.

Spectral artifacts due to noise, baseline offset, and slope or light scattering were
removed by the multiplicative signal correction method (MSC) and second order derivati-
zation with the Savitzky–Golay method (11 data points of interval) [24]. The spectral data
were mean-centered and further processed via Principal Component Analysis (PCA). PCA
is an unsupervised technique that transforms a set of variables into a new set of composite
variables, the principal components (PCs). PCA attempts to simplify the distribution of
samples and identify the underlying factors that explain possible patterns of variable and
sample correlations. For exploratory purposes, only principal components with eigenvalue
>1.0 were considered useful, according to the Kaiser criterion [25].

2.4. Implementation

The statistical and regression analyses of the VNIR-SWIR datasets were performed
utilizing the R programming language [26], with the caret package [27]. The commercial
SIMCA 16.02 software (Umetrics, Sweden) was used for FT-MIR spectral analysis.

3. Results and Discussion
3.1. Chemical Analyses Data

The phenolic constituents of red onion skin are expected to exist primarily in bound
form [5]. Nevertheless, the TPC values of red OS samples that represent mainly free soluble
forms of phenolic compounds were found to range between 13 and 79 mg GAE/g. These
values fall within typical ranges for the outer layers of brown-skin onion bulbs that have
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previously been reported in literature [5,28], regardless of the geographical origin of the
bulb or the extraction method.

The soluble phenolic extracts of OS samples were found to be rich in anthocyanins.
In particular, the TAC values varied between 0.13 and 3.82 mg cyanidin per g. This result
agrees with the findings reported in [5] and its references. However, it was observed that
the samples originating from the Netherlands were far richer in monomeric anthocyanins
(114.8–369.1 mg/100 g DW) than those from domestic sources (13.3–146.0 mg/100 g DW).
A clear trend relating to geographical origin/retail chain was observed in the reference TAC
values but not in evidence in TPC values. Whether the VNIR-SWIR and/or ATR-FT-MIR
spectroscopic characterization of the samples would expose the same trend is intriguing.

3.2. VNIR-SWIR Exploratory Approach

It is accepted that bands at 1415–1512 nm, 1650–1750 nm, and 1955–2035 nm are
mainly due to phenolic structure, according to the findings of Dykes et al. [29]. Similarly,
in a research study about total anthocyanins in grape juice using NIR spectroscopy, it
was found that the spectral range for these phenolic compounds was 1000–1183 nm [30].
Such bands along with those at around 1450 nm and 1930 nm, corresponding possibly to
the O–H stretch and O–H band combination and the H–O–H deformation combination
overtones of hydroxyl groups (e.g., due to water or starch) [16,31] were also evident in the
near-infrared spectra of the dry OS samples under study.

As a general rule, the choice of an optimal preprocessing method depends on the
characteristics of the dataset and the goal of the analysis [24]. In our study, the VNIR-SWIR
spectra of OS samples as the original REF spectral values or as preprocessed spectra are
illustrated in Figure 2. Visual assessment of the spectral signatures revealed no significant
variation among the dry onion samples. Application of various preprocessing methods
resulted in new feature spectral spaces by pronouncing different regions in the VNIR-
SWIR spectrum and eliminating different effects. SG1 and SG2 emphasize the differences
in the visible range and are more prominent to the SWIR region possibly because of
greater overlapping of the bands. Similarly, the ABS (including also the SNV values)
indicated larger variations than the REF at the first edge of the spectrum in the visible
region (350–750 nm).

In a first exploratory approach to identify diagnostic patterns of sample distribution
in the VNIR-SWIR, first derivative of the initial reflectance spectra (SG1) was analyzed via
PCA. The analysis resulted in three PCs, the first of which (PC1) accounted for 82.8% of the
total variance, the second (PC2) for 10.3% and the third (PC3) for 9.6%. The corresponding
two-dimensional scoreplots verified that OS samples from domestic sources tended to
be clustered separately from those originating from the Netherlands, mainly because of
the higher PC2 score values of the latter (Appendix A, Figure A1). This result is quite
promising for further modelling of TAC values given our previous observations. No other
pattern could be recognized in the sample distribution among the 3-D scoreplot of the
PCA model.
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Figure 2. The original and preprocessed VNIR-SWIR spectra of OS samples. The abbreviations of the
spectral pre-treatments are described in Section Spectral preprocessing techniques.

3.3. Monomeric Anthocyanins Prediction Based on the VNIR-SWIR Spectral Datasets
3.3.1. Performance of the ML Models

We first assessed six different ML models in different spectral datasets derived from
the various pre-treatments to highlight the impact of the ML techniques in spectroscopic
modelling. Overall, the proposed models have a valuable predictive performance (R2

> 0.80, and RPIQ > 3). These findings are further illustrated in Figure 3. The results
showed that spectral pre-treatments have increased the performance for most of the ML
models, with the exception of the DET technique. Notably, modelling of the VNIR-SWIR
onion spectral library with the pre-treatment of SG1-SNV and SG2 allowed more accurate
predictions of TAC than other preprocessing techniques. A detailed comparison of the
model performance obtained with various preprocessing techniques is also provided in
Appendix B (Table A2).

We also tested the effectiveness of six ML models by comparing their performance
metrics, as shown in Figure 4. In general, better predictive performance was achieved
with more complex and supervised algorithms. The k-NN and RF algorithms were found
to attain the best performance across all properties. They have enabled more robust
predictions (R2 > 0.80, RMSE < 0.53 and RPIQ > = 3.50). The results of the various models
are reported graphically in Figure 4, in which we can visually compare their performances.
The difference with the PLSR algorithm, one of the most commonly applied algorithms in
food spectroscopy, is noticeable (R2 = 0.81 and RPIQ = 3.48), the last having a larger RMSE
(0.53). The Cubist and SVM results show lower predictive performance.



Sustainability 2021, 13, 6588 9 of 20
Sustainability 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

Figure 3. Comparison of the predictive performance metrics of the ML models using the various 

spectral sources. 

 

Figure 4. Independent validations set of the anthocyanins predictions from the ML models indicat-

ing the observed vs. the predicted values (black solid line represents the 1:1 line). 

Figure 3. Comparison of the predictive performance metrics of the ML models using the various
spectral sources.

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

Figure 3. Comparison of the predictive performance metrics of the ML models using the various 

spectral sources. 

 

Figure 4. Independent validations set of the anthocyanins predictions from the ML models indicat-

ing the observed vs. the predicted values (black solid line represents the 1:1 line). 
Figure 4. Independent validations set of the anthocyanins predictions from the ML models indicating
the observed vs. the predicted values (black solid line represents the 1:1 line).



Sustainability 2021, 13, 6588 10 of 20

It should be highlighted that the selection of the ML model for regression analysis
affects the prediction potential of VNIR-SWIR spectral data (Figures 3 and 4). The fact that
k-NN and RF models presented better performance with smaller prediction errors than well-
studied models in the domain of food spectroscopy (e.g., PLSR and SVM) may be a result
of the efficiency of those algorithms to generate subsets with similar characteristics derived
by different rules or the distance of the closest neighborhoods. Moreover, it was clearly
demonstrated that the various spectral preprocessing techniques result in complementary
information that enhances the predictive performance of the ML models compared to
those produced with the raw reflectance recordings. Therefore, smoothing (SG1) and/or
normalization of the dataset (SNV) should be prioritized in preprocessing steps.

An important aspect of the current study is the interpretability of the underlying
models. By visualizing the relative importance of each band across all model-preprocessing
combinations, it is possible to recognize those VNIR-SWIR spectral wavelengths that are
more prominent in model construction (Figure 5). It is clear that two discrete spectral
regions are important; the first one ranges from 400–1000 nm (VNIR), while the second
one is in the range 1200–2500 nm (SWIR). Across nearly all models, VNIR has roughly
two main spectral regions: one around 620–650 nm and the other at the beginning of the
spectrum (380–390 nm), depicting, respectively, the characteristic red and purple color
of the onion’s layers due to the presence of anthocyanins. The finding that the upper
SWIR part at 2100–2300 nm is practically related to aromatic C-H bonds provides valuable
information.
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datasets used are: SG1-SNV, Savintzky–Golay 1st derivative with standard normal variate, ABS-SNV standard normal
variate of absorbances, and SG1 1st derivative of reflectances. The ML algorithms are: ENET, elastic net; RF, random forest;
k-NN, k-nearest neighbors; SVM, support vector machines for regression; PLS, partial least squares regression and the
Cubist algorithm.

3.3.2. Exploring Shorter Diagnostic Regions in the VNIR-SWIR

New low-cost spectral devices available in the marketplace interest both researchers
and end users to explore the potential of shorter spectral regions for anthocyanin content
estimation. However, it is unclear if spectrometers operating solely at VNIR or SWIR could
provide sufficient prediction accuracy. Therefore, focus was given to the spectral regions
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between 400–1000 nm and 1350–2500 nm because they reflect more clearly spectral regions
(as derived from the variable importance analysis) wavelength analysis (see Figure 5).

The k-NN model performance (see Figure 4) was tested in two shorter spectral ranges.
Then, new rounds of modelling analysis were performed on two sub-sets of the SG1-SNV
spectral dataset that corresponded to the selected regions. The results are shown in Table 2.
It is clear that accuracy of VNIR-based prediction at 400–1000 nm (R2 = 0.70, RMSE = 0.66,
and RPIQ = 2.80) was better than the SWIR-based prediction at 1350–2500 nm (R2 = 0.55,
RMSE = 0.75 and RPIQ = 2.49), but not as high as of that corresponding to the combined
spectral region (full spectrum).

Table 2. Predictive performance metrics of the best ML model using the full spectrum and limited
spectral regions in VNIR (400–100 nm) and SWIR (1350–2500 nm).

Spectral Range R2 RMSE RPIQ

Full spectrum 0.82 0.52 3.56
VNIR (400–1000 nm) 0.70 0.66 2.80
SWIR (1350–2500 nm) 0.55 0.75 2.49

Chemometric analysis of the VNIR-SWIR spectra (350 to 2500 nm) resulted in satisfac-
tory predictive performance of total anthocyanins content, selectively. The most important
features for this purpose were a series of characteristic bands in the visible region of the
spectra, mainly at 550–600 nm (at which these compounds mainly absorb), and in the
range close to SWIR (2000–2300 nm) (Figure 5). Future studies could focus on the employ-
ment of shorter-range spectroscopic sensors for total anthocyanins in OSW to enable fast,
low-cost analyses. This was also proposed recently regarding the evaluation of a Micro-
Electromechanical systems spectral sensors for soil properties [32]. To computationally
enhance the accuracy of prediction, more advanced chemometric approaches can also be
employed. They may be combined, (predictions from single ML models developed using
bootstrapped samples or the proposed ML algorithms developed via genetic stacking
algorithms or even various spectral datasets after pre-processing) instead of relying solely
on the best one via novel multi-input deep learning algorithms [33].

3.4. Identification of Phenolic-Group Diagnostic Bands in the MIR

The original FT-IR spectra and the accompanying spectral transformation (MSC,
second derivative) of OS samples are shown in Figure 6.

In our study of dry OS powder, the characteristic amide-stretching bands of proteins
(1550 and 1650 cm−1) were not clearly evidenced in the FT-IR spectra. This finding is in line
with earlier reports [34]. A weak valley at around 1560 cm−1 revealed in preprocessed spec-
tra signified a possible contribution from nucleic acid bases. Plant cell wall polysaccharides
and other types of carbohydrates that are abundant in OS samples (e.g., fructooligosaccha-
rides and pectic oligosaccharides) could be distinguished from some characteristic bands in
the region between 1200 and 950 cm−1 [35]. In addition, characteristic bands in the region
1800–1500 cm−1 that are often assigned to esteried and non-esteried carboxyl groups of
pectin molecules [34,35] were evidenced in the low frequency region.
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Figure 6. FT-MIR spectra of the dry onion skin samples under study (4000–600 cm−1); (a) spectra
without preprocessing; (b) 0th order curves after multi signal correction (MSC).

Table 3 provides an overview of the FT-IR spectral bands that were visually observed
as peaks in the original spectra (0th order, after MSC) or as corresponding valleys in the
2nd derivative spectra (2nd order), respectively. The original peaks are clearly much better
resolved after 2nd order derivatization of the spectra revealing a number of hidden bands
that may carry diagnostic information. This was particularly evidenced in the region below
1000 cm−1 but also between 1400 and 1600 cm−1.

Table 3. Major bands shown as peaks in the 0th order and valleys in the 2nd order derivative FT-MIR spectra of dry OS
samples and possible assignment.

Sample Code MIR Peaks MIR Valleys Functional Group
Vibrations Possible Identity

0th Order 2nd Order

entry 1 3299.7 v(O-H), v(N-H) carbohydrates, water, proteins
entry 2 2923.6 2917–2918 vas(C-H) -CH3 and –CH2- alkanes

2850.3 2848–2850 vas(C-H) CH3 or CH3 – Ar

1734.7 1734–1736 v (Ar-C = O) aryl carboxylic acid monomers, e.g., hydroxybenzoic
acids

1717–1718 v(Ar-C = O) aryl ketones, aldehydes

1637–8 1636–1642 v(Ar-C = O), δ(H-OH) aryl carboxylic acids and flavonoids, polygalacturonic
acid peptides (amide I), water

1600–2 v(C = C aromatic),
vas(COO-) flavonoids, polygalacturonic acid

1561–1562 flavonoids, nucleic acid ring base
1521 v(C = C aromatic) aryl carboxylic acids and flavonoids

1509 1503–1507 δ(C-H aromatic) flavonoids
1489 δ(C-H aromatic) flavonoids, e.g., quercetin and cyanidin glucosides

1465 1471, 1464 δ(C-H aromatic) aryl carboxylic acids and flavonoids

1423.2 1440, 1420 δ(C-H aromatic) &
vs(COO-) aryl carboxylic acids, polygalacturonic acid esters

1385 δ(O-H aromatic)
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Table 3. Cont.

Sample Code MIR Peaks MIR Valleys Functional Group
Vibrations Possible Identity

0th Order 2nd Order

1368 1363–1371 δ(O-H aromatic) flavonoids, e.g., catechin, polysaccharides
1334 v(C-O), δ(C-H aromatic) phenol

1321 1316–1319 δsym (-CH3 ), v(C- H)
β(O-H) alkanes, alkenes, phenol or tertiary alcohol

1271
1200, 1230 v(Ar C-C-O), phenols, carbohydrates

1152.3 1159–1166 v(C-O)
v(C-CO-C)

C–O–C glycosidic linkages of oligosaccharides
aliphatic ketones

1101–1103 v (C-O), v (C-C), ring carbohydrates
1096 v(C-C) carbohydrates
1072 v(C-OH) oligosaccharides
1051 1049–1050

1008.6 v(C-O) C–O–C glycosidic linkages of oligosaccharides,
polysaccharides

987–988 985–986 ω( = C-H), δ( = C-H) polysaccharides, e.g., cellulose, aryl carboxylic acids,
flavanols,

972–973 ω( = C-H), δ( = C-H) polysaccharides, e.g., pectin, aryl carboxylic acids
954 951–952 carbohydrates, aryl carboxylic acids
892 891–894 ω( = C-H) substituted aromatic ring

863–865 ω( = C-H) substituted aromatic ring
831–833 832–833 ω( = C-H) substituted aromatic ring

756–758 γ(C-H) hydroxybenzoic acids
717–718 γ(C-H) flavonoids
706–710 γ(C-H) flavonoids, e.g., quercetin glycosides, epicatechin

665.3
641–649
627–632 flavonoids, e.g., anthocyanin diglycosides

1 Based on [14,36–38]. ν—stretching, as—asymmetric, s—symmetric, β—in_plane bending, γ—out-of-plane bending, δ—scissoring or
deformation, $—rocking,ω—wagging.

For phenolic compounds, the two aromatic ring-related bands at around 1600 and
1640 cm−1 were distinct in the spectra of dry OS powder [38]. These two bands were more
clearly defined than those at 1185 and 965 cm−1 possibly because of C-O-C and C-OH
vibrations of phenols [38]. Given the copresence of polysaccharides and oligosaccharides
in the test sample, straightforward assignment of the signals in the latter region is not
possible. In a recent study about the potential of FT-IR and PCA to identify individual
classes of phenols like flavonols, anthocyanins, and phenolic acids [39], the spectral bands
between 1755 and 1400 cm−1 and 1000 and 870 cm−1 were highlighted as the most im-
portant. Based on our data, we suggest that stretching vibrations of carboxylic groups
at around 1735 cm−1 are more likely assigned to hydroxy-benzoic acid moieties that are
present in OS as the major autoxidation products of quercetin. It has been reported that pro-
tocatechuic acid and 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3 (2H)-one are
formed during storage of the onions; during that period, enzymatic hydrolysis of quercetin
glucosides to release the aglycone form proceeds in parallel with quercetin decomposition
reactions [40]. Other conjugates formed due to auto-oxidation may also exist in relatively
high amounts [41].
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To examine further whether these tagged regions of the spectra have diagnostic value
related to the total phenolic compound content of OS samples, the spectra of a group of
totally 26 OS samples, representing the skin and the 1st inner layer of individual onion
bulbs, were acquired and imported to the original dataset. Principal Component Analysis
of the data from 0th and 2nd order derivative spectra in the regions 600–1800 cm−1 resulted
in 13 and 6 PCs, respectively. These PCs explained 99.2% and 75.7% of the total variance in
each case. The analysis of 0th order data extracted eight PCs with very low eigenvalues
(< 1) that explained almost 8% of total variance. This result verifies that a considerable
amount of variance in the 0th order data is unique or not systematic and is omitted upon
2nd order derivatization. Both rounds of PCA showed that the two groups of samples
could be distinguished on the PC1-PC3 scoreplot (Figure 7) on the basis of t3 score values.
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Different colors indicate outer and 1st inner layer samples from 15 bulbs.

The loading plots of the first and third PCs extracted from each round of PCA are
shown in Figure 8. Spectral in the lower frequency region, e.g., at 613, 832, 948, 980
(possibly due to the phenolic ring structure), at 1012–1050 cm−1 (sugars) along with that
in the region between 1462–1472, 1500–1520, and at 1734 cm−1 contributed more heavily
to the t1–t3 score distribution (p > ±0.6) of these OS samples. Special attention was given
to the observed variance between 600 and 1000 cm−1 and 1400–1800 cm−1 because it is
expected to reflect more clearly differences in the composition of flavonoids and phenolic
acid constituents [39]. New rounds of PCA on spectral data that corresponded only to
shorter infrared regions revealed that the abundance of carboxylic acid groups remained
a distinctive feature of the dry skin and first inner onion bulb layers (Figure 8). Further
exclusion of variables between 900 and 1000 cm−1 resulted in similar performance of the
PCA model and verified (through corresponding loading plots) that the observed sample
allocation is significantly affected by vibrations beyond that region (e.g., ether bonds in
carbohydrates). Moreover, it made it possible to highlight that flavonoid ring-related
bands around 600–650 cm−1 and 1500–1560 cm−1 are also important for the observed
pattern among OS samples. Closer inspection of the FT-MIR spectral curves after 2nd
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order derivatization revealed clear differences in the shape of the bands between 600 and
900 cm−1 that might be partially attributed to skeletal vibrations of different flavylium ring
substitution patterns. Considering that anthocyanins constitute a minor percentage of total
flavonoids in the skin and outer layers of red onions [6] and the fingerprint region of the
spectrum is dominated by highly overlapped signals, it is expected that these shorter-range
FT-MIR bands do not assist in quantitative analyses. The FT-MIR data in the specific
regions are promising for further exploratory evaluation considering mainly the potential
for monitoring oxidation phenomena or other major sources of variance in the phenolic
composition, but that is beyond the scope of this study.
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4. Conclusions

Given the heterogeneity of the OSW, which affects their chemical composition, the
creation of reference databases is the most essential condition for building robust predictive
models. Even though a relatively small OS sample set was used in the current study,
the variance in total phenol and total anthocyanin contents of these samples was in the
low-high ranges that are typically reported in literature. In the current study, we showed
that VNIR-SWIR and FT-IR spectroscopic techniques could be deployed in routine quality
control analyses of onion waste, especially in the evaluation of phenolic composition
and more particularly in the assessment of the total anthocyanin content. Chemometric
analyses of the data through various machine-learning techniques are indispensable for the
identification of diagnostic bands across the visible near-to short-wave and mid-infrared
regions. Above all, a k-NN model of 1st derivative spectra in the region of 350–2500 nm
was the most powerful for the prediction of the monomeric anthocyanin content in dry red
OS samples (R2 = 0.82, RMSE = 0.52, and RPIQ = 3.56). The performance of the predictive
model remained satisfactory when it was assessed in a shorter, more selective spectral
range. This result supports the perspective for the potential uses of low-cost spectroscopic
sensors in this field. The FT-IR spectral fingerprint was more informative about the inherent
quality characteristics of OSW as it enables structural assignments. Overall, we suggest
that non-destructive spectroscopic tools operating in the visible-near-short-wave and mid-
infrared regions can be employed in real-time quality control of OSW if the spectral data
are of high quality and well-demonstrated diagnostic value or predictive accuracy with
regard to the audit target, e.g., anthocyanins content. Updating the reference onion skin
spectral libraries and evaluation of the model performance are, thus, in progress.
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Appendix A

An appropriate tuning of hyperparameters ensures the ML models’ consistency. Thus,
a grid search on a five-fold cross-validation experiment was conducted to select the opti-
mal hyperparameters for ML model. The optimal set of hyper-parameters for each ML
algorithm is presented in Table 1.
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Table 1. Optimal hyper-parameters of ML models, selected by the grid search with the cross-validation approach.

Pre-Treatment Methods
PLS RF Cubist ENET k-NN SVM

LVs mtry ntree C n s λ2 k C sigma

ABS 3 9 200 50 0 0.75 0.010 8 1 0.001
ABS-SNV 2 4 250 10 0 0.75 0.010 12 1 0.001

CR 2 19 150 100 9 0.75 0.005 6 1 0.001
DET 2 3 150 100 0 0.50 0.005 8 1 0.001
REF 2 20 150 1 0 0.75 0.010 13 1 0.001

REF-SNV 3 17 200 10 0 0.50 0.010 5 1 0.001
SG1 2 13 250 10 5 0.50 0.010 6 1 0.001

SG1-SNV 2 2 150 50 0 0.50 0.010 3 1 0.001
SG2 2 20 150 1 5 0.50 0.010 3 1 0.001
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Figure A1. Scatter diagrams (a) of the first vs second principal components extracted from PCA
of VNIR-SWIR spectral data of dry onion skin indicating the source of supply; and (b) of the first
vs third principal components extracted from PCA of VNIR-SWIR spectral data of dry onion skin
indicating the layer under study.
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Appendix B

Table A2. Accuracy results between the predicted and observed anthocyanins content values as derived by the application of the proposed ML models, in conjunction with the various
pre-processing methods.

Pre-Processing
Techniques PLS RF CUBIST ENET K-NN SVM

R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

ABS 0.57 0.67 2.76 0.76 0.58 3.17 0.57 0.73 2.54 0.75 0.56 3.32 0.64 0.87 2.13 0.63 0.61 3.01
ABS-SNV 0.73 0.55 3.32 0.78 0.55 3.37 0.78 0.58 3.15 0.74 0.60 3.09 0.79 0.75 2.46 0.62 0.62 2.97

CR 0.76 0.53 3.48 0.76 0.57 3.21 0.74 0.57 3.24 0.75 0.59 3.14 0.69 0.56 3.27 0.38 0.84 2.19
DET 0.66 0.58 3.17 0.70 0.63 2.94 0.42 0.74 2.49 0.69 0.64 2.87 0.65 0.61 3.03 0.31 0.90 2.05
REF 0.69 0.60 3.06 0.78 0.57 3.20 0.46 0.91 2.02 0.75 0.60 3.07 0.77 0.57 3.20 0.48 0.82 2.25

REF-SNV 0.62 0.67 2.76 0.80 0.57 3.22 0.72 0.62 2.97 0.79 0.58 3.17 0.76 0.59 3.14 0.60 0.68 2.72
SG1 0.60 0.68 2.72 0.73 0.63 2.91 0.18 1.58 1.17 0.74 0.64 2.87 0.79 0.61 3.02 0.48 0.83 2.23

SG1-SNV 0.74 0.54 3.39 0.75 0.60 3.08 0.77 0.58 3.16 0.73 0.61 3.02 0.81 0.52 3.56 0.54 0.80 2.31
SG2 0.74 0.56 3.27 0.81 0.53 3.49 0.74 0.53 3.46 0.79 0.54 3.43 0.81 0.69 2.68 0.76 0.57 3.22
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