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Alper Taner * , Yeşim Benal Öztekin and Hüseyin Duran

����������
�������

Citation: Taner, A.; Öztekin, Y.B.;

Duran, H. Performance Analysis of

Deep Learning CNN Models for

Variety Classification in Hazelnut.

Sustainability 2021, 13, 6527. https://

doi.org/10.3390/su13126527

Academic Editors: Eugenio Cavallo,

Niccolò Pampuro, Marcella Biddoccu

and José Manuel Mirás-Avalos

Received: 29 April 2021

Accepted: 28 May 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture,
Ondokuz Mayis University, Samsun 55139, Turkey; yurtlu@omu.edu.tr (Y.B.Ö.);
huseyin.duran@omu.edu.tr (H.D.)
* Correspondence: alper.taner@omu.edu.tr

Abstract: In evaluating agricultural products, knowing the specific product varieties is important for
the producer, the industrialist, and the consumer. Human labor is widely used in the classification
of varieties. It is generally performed by visual examination of each sample by experts, which is
very laborious and time-consuming with poor sensitivity. There is a need in commercial hazelnut
production for a rapid, non-destructive and reliable variety classification in order to obtain quality
nuts from the orchard to the consumer. In this study, a convolutional neural network, which is
one of the deep learning methods, was preferred due to its success in computer vision. A total of
17 widely grown hazelnut varieties were classified. The proposed model was evaluated by comparing
with pre-trained models. Accuracy, precision, recall, and F1-Score evaluation metrics were used to
determine the performance of classifiers. It was found that the proposed model showed a better
performance than pre-trained models in terms of performance evaluation criteria. The proposed
model was found to produce 98.63% accuracy in the test set, including 510 images. This result has
shown that the proposed model can be used practically in the classification of hazelnut varieties.

Keywords: hazelnut; image classification; artificial intelligence; machine learning; convolutional
neural network

1. Introduction

The world’s most important hazelnut producer, Turkey, has 73% of the world’s hazel-
nut production areas with approximately 734.409 ha of hazelnut planting area. Turkey’s
hazelnut production volume constitutes approximately 70% of world production [1].
Turkey exports 75% of the hazelnut produced. Product quality is an important determinant
of hazelnut export, and it affects export revenues directly. The commercial importance
of hazelnuts has increased the interest in variety standard and their characterization [2].
Characteristic features (Table 1) and a georeferenced map (Figure 1) of some hazelnut
varieties grown in Turkey are presented [3].

It is essential to develop highly accurate, non-destructive, fast, and objective evaluation
methods in post-harvest processes for safe production and marketing of agricultural
products. Examinations and controls made by the human workforce are still used in large
areas. For example, human labor is widely used in the separation and classification of
hazelnut in hazelnut processing factories in our country. This method is highly time-
consuming, tiring, tedious, low-sensitivity, and costly. For this reason, highly accurate,
effective, non-invasive, and safe alternative methods should be developed to determine
the varieties and quality of hazelnut.
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Table 1. Characteristic of some Turkish hazelnut varieties.

Cultivars Length
(mm)

Width
(mm)

Thickness
(mm)

Shape
Index

Nut
Weight

(g)

Shell
Weight

(g)

Shell
Thickness

(mm)

Kernel
Ratio
(%)

Acı 17.6 ± 0.3 14.6 ± 0.1 12.5 ± 0.2 1.3 1.3 0.8 1 43.8
Allahverdi 20.7 ± 0.1 18.1 ± 0.1 18.0 ± 0.1 1.15 1.8 0.79 0.89 48.8
Cavcava 18.8 ± 0.1 17.5 ± 0.1 16.1 ± 0.1 1.1 1.6 0.7 1 54.5
Çakıldak 19.1 ± 0.1 18.7 ± 0.1 17.0 ± 0.1 1.1 1.9 0.9 1.2 47.9

Foşa 17.2 ± 0.1 15.9 ± 0.1 13.9 ± 0.1 1.2 1.1 0.6 1 38.3
İncekara 22.0 ± 0.1 17.8 ± 0.1 16.2 ± 0.1 1.3 2 1 1.2 43.3

Kalınkara 19.8 ± 0.1 18.2 ± 0.2 15.7 ± 0.1 1.2 2.3 0.9 1.4 32.2
Kan 17.9 ± 0.2 15.8 ± 0.1 14.4 ± 0.1 1.2 1.6 0.9 1 51.2

Karafındık 18.8 ± 0.1 16.9 ± 0.1 13.7 ± 0.1 1.2 1.7 0.8 1.2 33.9
Kargalak 20.4 ± 0.1 25.9 ± 0.1 23.4 ± 0.1 0.8 3.8 2.1 1.4 45.5

Kuş 19.3 ± 0.1 16.6 ± 0.1 15.1 ± 0.1 1.2 1.8 1 1.3 49.7
Palaz 16.9 ± 0.1 19.5 ± 0.1 17.1 ± 0.1 0.9 1.9 1 1.3 47.3
Sivri 20.7 ± 0.1 16.1 ± 0.1 14.4 ± 0.1 1.4 1.8 0.9 1.2 47.6

Tombul 18.2 ± 0.1 17.6 ± 0.1 15.8 ± 0.1 1.1 1.9 0.9 1.2 49.9
Uzunmusa 18.1 ± 0.1 18.1 ± 0.1 16.4 ± 0.1 1.1 1.8 0.8 0.9 55.7

Yassı Badem 25.6 ± 0.1 17.5 ± 0.1 12.8 ± 0.1 1.7 2.5 1.4 1.5 45.5
YuvarlakBadem 24.3 ± 0.1 15.2 ± 0.1 13.4 ± 0.1 1.7 1.7 0.8 0.9 48.6

Figure 1. The georeferenced map of the different Turkish hazelnut varieties [3].

Different methods have been put forward to classify the varieties of hazelnuts. Gi-
raudo et al. automatically identified defective hazelnuts with multivariate analysis methods
in RGB images and then used them to create classification models [4]. Solak and Altınısık
succeeded in classifying hazelnut varieties using image processing and the mean-based,
k-mean clustering technique [5]. Menesatti et al. demonstrated the potential use and effec-
tiveness of shaped techniques to distinguish hazelnut varieties [6]. Güvenç et al. classified
the partial shell-removed hazelnut kernel, shell removed, and rotten hazelnut kernels using
a computer vision approach [7]. Koc et al. performed the classification of hazelnut types
DL4J and ensemble learning algorithms [8]. DNA-based studies have also been carried out
to classify hazelnuts, but this is laborious and expensive work [9,10]. No study on deep
learning could be found in the classification of hazelnut varieties.

In this context, we come across many different practices in which artificial intelli-
gence is used to process and evaluate data. The main difficulty in using artificial in-
telligence is solving tasks that people solve intuitively but are challenging to perform
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numerically [11–14]. Machine learning, which is a sub-branch of artificial intelligence,
enables researchers to handle real problems numerically. Machine learning creates algo-
rithms to recognize the patterns in data and make predictions accordingly [15–17]. Machine
learning-based methods are applied in many areas, such as ecology, mining, urban plan-
ning, defense, space research, and especially agriculture [18–20]. Of these methods, deep
learning is one of the most commonly used, and its most important feature is that it has
the ability to learn relevant features from images automatically. Features can be learned in
depth by different deep learning architectures, and they can be extracted as the input of
classification models.

Moreover, deep learning is very effective for big data analysis [21–27]. In particular,
the convolutional neural network (CNN), one of the deep learning models, has come to the
forefront due to its success in computer vision in application areas. CNNs are a type of
artificial neural network that use convolution processes in at least one of the layers [28].

One of the deep learning models, CNNs, includes several layers called convolutional,
pooling and fully connected (Figure 2). The function of convolutional layers is feature
extractions, while pooling layers function as compressors, and fully connected layers
make the classification. Image features are extracted, and a convolutional layer learns
representations of image features. Several filters are a given stride used to perform a 3-D
convolution and produce feature maps from the input image. At the output of the layer,
each feature map represents features extracted from locations of the input image with the
help of one set of shared weights. A pooling layer is used to modify the output results of
the convolutional layer. The low-level feature representation could be transformed into
high-level feature representation, which is approximately invariant to small translations
of the input by using pooling function, reducing the dimensionality of each feature map
but retaining the essential information. The fully connected layer consists of the weights,
biases, and neurons and connects the neurons between two different layers. These layers
are usually placed before the output layer [29].

Figure 2. Convolutional neural network structure.

The deep learning neural networks have shown a powerful and excellent performance
on several agricultural applications, such as fruit classification [30], plant identification [31],
crop classification [32], weed classification [33], quality evaluation [34], and field pest
classification [35].

CNNs gained great popularity as an effective method for classifying images in many
areas. Especially in agriculture, CNN-based approaches have been used for fruit classifica-
tion. Torres et al. developed a CNN model which classified three apple and three peach
varieties with 95.45% success [36]. Sakib et al. obtained two CNN models [37] for fruit
classification using Fruits-360 data set [38]. Mureşan and Oltean presented the evaluation
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of a basic CNN model, AlexNet, and GoogLeNet models for fruit recognition [39]. Wang
and Chen created a CNN model with eight layers, and they classified the 3600 images of
18 species of fruit with 95.67% success [40]. Zhu et al. used an AlexNet network model
to classify vegetable images. The authors trained CNN models on different data sets by
changing the number of vegetable images. The results of the classification showed that
accuracy decreased as the number of images decreased. In addition, they compared the
accuracy rates of the CNN-based method with the backpropagation neural network and
support vector machine (SVM) classifier [41]. A six-layer CNN was designed by Lu et al.
to classify fruit. The fruit dataset included 1800 images from 9 types of fruits taken by a
digital camera. The proposed CNN model was compared with voting-based-SVM (VB-
SVM), wavelet entropy (WE), and genetic algorithm (GA) [42]. A modified visual geometry
group (VGG) model was used by Zeng [43] to classify vegetables and fruit. A bottom-up
graph-based visual saliency model was used for fruit region segmentation, followed by a
CNN model learning image for the classification task.

CNNs are very effective for classification and recognition, and they decrease errors in
classification significantly [44]. Although CNNs have received much more attention than
other machine learning algorithms, they have not been used in hazelnut researches, and
not a single article using CNN has been reported on this topic.

The study area of our review is defined as the identification of fruit classification tasks
to determine class according to the specific type.

Based on the attention CNNs have received in recent years and the fact that CNN has
not been studied on hazelnuts before, we are presenting a review of the use of CNNs applied
to the fruit imaging process, especially in the fields of classification and determination. In
addition, our study is an example of practical application to be used in different samples
by providing an approach to researchers about CNNs.

2. Materials and Methods
2.1. Dataset

Seventeen hazelnut varieties commonly grown in Turkey were used in our study
(Figure 3). The hazelnuts were obtained from the Republic of Turkey Ministry of Agricul-
ture and Forestry Hazelnut Research Institute. A camera with a resolution of 14.1 megapix-
els was used in taking the images. All images were taken from the same distance (20 cm)
with a special setup. Light difference was taken into consideration while taking the images.
Two hundred fifty images were taken for each variety. The images were obtained in two
seasons as 2019 and 2020 to ensure variation.

Figure 3. Hazelnut varieties used in the study.
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The data set includes a total of 4250 images. This data set was grouped into training,
validation, and test sets. There were 3485 data in the training set, 255 data in the validation
set, and 510 data in the test set (Table 2).

Table 2. Hazelnut data set.

Varieties Training Validation Test

Acı 205 15 30
Allahverdi 205 15 30
Çakıldak 205 15 30
Cavcava 205 15 30

Foşa 205 15 30
İncekara 205 15 30

Kalınkara 205 15 30
Karafındık 205 15 30
Kargalak 205 15 30

Kuş 205 15 30
Okay28 205 15 30

Palaz 205 15 30
Sivri 205 15 30

Tombul 205 15 30
Uzunmusa 205 15 30
YassıBadem 205 15 30

YuvarlakBadem 205 15 30

Total 3485 255 510

2.2. Convolutional Neural Networks

The five CNN models were used in the study to classify 17 hazelnut varieties. These
models are Lprtnr1 and pre-trained (VGG16, VGG19, ResNet50, and InceptionV3) models.
Lprtnr1 model and pre-trained models were compared.

A CNN model named Lprtnr1 was designed by the authors (Figure 4). The Lprtnr1
model consists of an input layer, four convolutional layers, a flattening layer, a fully
connected layer, and an output layer. Codes of the Lprtnr1 model are given in Supplemen-
tary Materials.

Figure 4. The specific configurations of designed CNN (Lprtnr1) architecture.

A kernel was applied to the input image matrix with the convolution process in
the first convolutional layer. Then ReLu activation function was used. After passing
through the activation layer, the pooling layer was applied to reduce the image size and
processing power in the network on the feature map. The max-pooling method was used
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here. Similarly, the Lprtnr1 model had four convolutional layers and a pooling layer. The
number of kernels used in convolutional layers was 32, 64, 128, and 128, respectively.
Flattening was applied after passing from convolution layers, and a fully connected layer
was formed in the next process step. To prevent the overfitting of the network and to
increase model performance, dropout was performed. In the proposed model, a dropout
of 0.5 was applied to the ANN with one hidden layer. For the network to make an accurate
estimation, the cost function should automatically be reduced to the lowest value. The
“Adam” optimization algorithm was used to determine and update the weight values that
provide this. “Categorical Cross Entropy” cost function was preferred because multiple
classifications were made in our study. Softmax activation function was used because
17 different classifications would be made from the images of hazelnut varieties [45–48].
Some Mathematical Expressions about CNN are given in Supplementary Materials.

Pre-trained models were preferred because of their performance and ability to bring
out specific architectural innovations. The four different pre-trained models were included
in this study. These are VGG16, VGG19, ResNet50, and InceptionV3 models.

The VGG model was developed in 2014 by the Visual Graphics Group (VGG) at
Oxford. Many variations of the VGG were implemented, such as VGG16 and VGG19, and
these variations were different only in terms of the number of convolution layers used [49].

ResNet50, which was developed at Microsoft and described in 2015, uses a residual
model which involves shortcut connections. In this model, color images are expected to
have the square shape 224 × 224 [50].

The third version of the Inception networks family is InceptionV3, which was initially
developed for the GoogLeNet model. Unlike traditional CNNs, the main idea of Inception
architectures is to make multiple kernel filter sizes operate on the same level rather than
stacking them sequentially, which is known as making the networks wider instead of
deeper [51].

These models were used for feature extraction. To adapt the chosen models to the data
set in our study, the convolution layers in all of these models were frozen and kept in their
original form, while the last classification layer was removed. The number of varieties,
which is 17, was added in the last layer to classify the hazelnut varieties.

This study was conducted on the hazelnut data set consisting of 17 varieties. Because
the number of images in the data set was small, and to prevent overfitting, extensive data
augmentation was applied, including the techniques mentioned earlier. The data set was
grouped as 82% training, 6% validation, and 12% test. First, training and validation sets
were used to perform the training process and parameter selection.

It is important to make sure that we have the best possible training model in the study.
In this context, a technique called model checkpoint was applied. This model checkpoint
observes the changes during training. If there is a positive change in the validation loss, the
model checkpoint replaces the existing retained model with a new one in which validation
loss is better than the existing one. Thus, the best possible model was obtained at the end
of the training process. The results on the unknown data were evaluated by using the test
set with the best model obtained. These procedures were applied for each of the 5 models
used in the study. All parameters were used in the same way for each model.

2.3. Evaluation Metrics

Various evaluation metrics are used to find out the performance of the classifier. The
evaluation metrics used in the study are explained below [52].

A confusion matrix was used to express classification accuracy numerically. The
confusion matrix is one of the most commonly used techniques in machine learning, and it
includes information about the actual and predicted classes obtained by a classification
system. The confusion matrix has two dimensions: actual and predicted classes. While
each row represents an actual class example, each column represents the state of a predicted
class. In the confusion matrix, TP is the number of true positive, TN is the number of true
negative, FP is the number of false positive, and FN is the number of false negative.
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2.3.1. Accuracy

The accuracy of the classifier is quantified with this metric. The number of correctly
classified data is divided by the total number of the data to calculate accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

2.3.2. Precision

Precision shows how much of the data predicted as positive are predicted correctly. In
other words, high precision means fewer false positives.

Precision =
TP

TP + FP
(2)

2.3.3. Recall

The recall is the metric of determining the completeness of the classifier. Higher
recall indicates lower false negatives, while lower recall indicates higher false negatives.
Precision often decreases with an improvement in recall.

Recall =
TP

TP + FN
(3)

2.3.4. F1-Score

To obtain the F1-score, the product of recall and precision is divided by the sum of
recall and precision.

F1-Score = 2 × Recall × Precision
Recall + Precision

(4)

3. Results

CNN is used widely for image classification. In this study, the performance of different
CNN architectures was evaluated for the classification of hazelnut varieties, the classifica-
tion accuracy of the proposed CNN model (Lprttnr1) pre-trained models (VGG16, VGG19,
ResNet50, and InceptionV3) was compared. While the proposed model was trained from
scratch, pre-trained models were previously trained, and they were used as feature extrac-
tors. The same optimization algorithm was applied to each model, and the performances
of these models were observed.

Table 3 shows the evaluation metrics of both validation sets and test sets of 5 CNN
models. Here, the results are summarized for each model. The training process was carried
out using the same settings in each model to obtain results that can be compared. For this
purpose, the same input shape and batch size, the same training–validation–test split, the
same learning rate, and the same optimizer were used. As the complexity or depth of
the model increases, overfitting also increases even if data augmentation and dropout are
applied. This situation results from the fact that the data set used is not large enough.

For this reason, the results change depending on the depth of the CNN model, the
complexity of the classification, and the amount of data. The Lprtnr1 model (the proposed
CNN model) gave much better results because it is a much simpler model than the pre-
trained models. Because pre-trained models provided lower test accuracy/F1-score and
higher test loss, they were unsuitable models for classification. In the hazelnut classification
data set, the Lprtnr1 model was found to reach 98.63% accuracy.

To consider a model as the best model, it must have performed well in the training
data set and the validation data set [53]. In this sense, the Lprtnr1 model was found to be
the best model. Sensitivity analysis also indicated that the proposed model is the most
influential model to classify hazelnut varieties [54].
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Table 3. Average evaluation metrics of the five CNN models.

Data Set Evaluation
Metrics

CNN Models

Lprtnr1 VGG16 VGG19 InceptionV3 ResNet50

Validation

Loss 0.03491 9.1336 7.5501 5.4935 7.8169
Accuracy 0.9882 0.6941 0.6745 0.5843 0.7725

Recall 0.9894 0.7178 0.7247 0.6350 0.8019
Precision 0.9882 0.6941 0.6941 0.5843 0.7725
F1-Score 0.9888 0.7058 0.7091 0.6086 0.7870

Test

Loss 0.0443 7.1046 6.6648 5.4052 6.9467
Accuracy 0.9863 0.7314 0.7214 0.6118 0.8000

Recall 0.9867 0.7580 0.7580 0.6669 0.8240
Precision 0.9863 0.7255 0.7471 0.6118 0.8000
F1-Score 0.9865 0.7414 0.7525 0.6381 0.8118

Depth 6 16 19 159 168

In the Lprtnr1 model, the variation trend of training loss almost overlaps validation
loss (Figure 5). At the same time, the variation trend of training accuracy is also consistent
with that of validation accuracy (Figure 6). This situation shows that the model does
not have an overfitting problem with the parameters chosen during the training process.
These results show that the proposed network can distinguish the matched images in the
input well.

Figure 5. Training and validation loss of Lprtnr1 model during the model training for hazelnut
variety classification.

Figure 6. Training and validation accuracy of Lprtnr1 model during the model training for hazelnut
variety classification.
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Figure 7 shows the confusion matrix of the validation set for the Lprtnr1 model. In
the confusion matrix, while the diagonal axis number shows the number of accurate clas-
sifications, the others show the number of inaccurate classifications. The classification
accuracy rate of all varieties except for Foşa and Uzunmusa is 100%. Classification accuracy
rates were found as 93.33% and 86.66% for Foşa and Uzunmusa varieties, respectively.
The general classification accuracy rate of all variables for the validation set is 98.82%.
Figure 8 shows the confusion matrix of the test data set for the Lprtnr1 model. While the
classification accuracy rate of Allahverdi, Cavcava, Foşa, Kargalak, Palaz, Sivri, and Uzun-
musa varieties was 96.66%, that of the other variables was 100%. The general classification
accuracy rate of all varieties for the test data set is 98.63%.

Figure 7. Confusion matrix with the Lprtnr1 model of the validation dataset.

In the test set, general classification accuracy rates of VGG16, VGG19, InceptionV3,
and ResNet50 models were 73.14%, 72.14%, 61.18%, and 80.00%, respectively (Table 3). No
suitable method was found for the classification of hazelnut varieties from these pre-trained
models. It was found that the proposed Lprtnr1 model had sufficient potential to classify
the 17 hazelnut varieties.



Sustainability 2021, 13, 6527 10 of 13

Figure 8. Confusion matrix with the Lprtnr1 model of the test dataset.

4. Discussion

Because this study is the first attempt to classify hazelnut variables with 17 varieties,
it compared the proposed model with existing pre-trained models. Table 3 presents
the accuracy, precision, recall, and F1-score results produced by the proposed model,
VGG16, VGG19, InceptionV3, ResNet50, respectively. The proposed model obtained the
highest accuracy, precision, recall, and F1-score values and better performance than the
other models. Moreover, the table depicts that the InceptionV3 was the worst, while the
ResNet50 achieved the most acceptable accuracy results compared to other models except
the proposed model. The results described in Table 3 illustrate that the proposed model is
superior to the other models considered in this research work regarding precision, recall,
and F1-score. In addition, the results demonstrate that InceptionV3 was the worst in terms
of precision, recall, and F1-score. In [53], Gulzar et al. obtained similar results for the
proposed model.

“Own” models are widely used in fruit classification studies [42,55–57]. In these
models, approximately 99% classification success was achieved as in our “own” pro-
posed model.

Classification accuracy of the pre-trained models in the study was found to be low
in general. In the researchers’ models, 66.7% of the CNN approaches made for fruit
classification in the literature were much more successful [36]. In addition, it is thought
that the absence of hazelnut images in the data set in which pre-trained models were used
may have caused a negative effect on classification accuracy. Including hazelnut images in
the existing data sets will increase accuracy in future studies. Another possible solution
could be increasing training data or using more data-increasing techniques.

It should not be considered that pre-trained models are inaccurate. It would be more
suitable to evaluate that these models are suitable for more complex tasks and data [53].

Pre-trained models give better results than training networks from scratch [58]. How-
ever, it was not supported by the results of this study. It was found that further studies are
needed to examine this situation in more detail. Future work will also focus on improve-
ment of the model with complex hazelnut variety images.
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5. Conclusions

This article proposed an effective model to classify hazelnut varieties. The proposed
model was trained on a data set that included the images of 17 hazelnut varieties. This
model was compared with four pre-trained models, only the last layer of which were
changed. The model was fine tuned to improve the classification performance of each
model. The models were optimized and validated to increase the rate of accuracy and
decrease the rate of error. The accuracy of the proposed model was found as 98.63%.

The results showed that pre-trained models could not meet the requirement for the
classification of hazelnuts. Therefore, a new CNN architecture was proposed and used in
this study.

The classification performance of data sets regarding other nuts can be improved by
adapting the CNN model proposed in this study. Because it is not easy to obtain appropriate
advice from agriculturists for manual determination and classification of varieties, this
practice will help individuals with limited information about hazelnut varieties. At the
same time, it will provide an opportunity for highly accurate, fast, and reliable classification.
In the future, we aim to increase the amount of data and the number of varieties and to
further develop this research study by using different deep learning methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13126527/s1, Codes and Mathematical Expressions.

Author Contributions: Conceptualization, A.T. and Y.B.Ö.; methodology, A.T.; software, A.T.; val-
idation, A.T., Y.B.Ö. and H.D.; formal analysis, A.T.; investigation, Y.B.Ö.; resources, H.D.; data
curation, H.D.; writing-original draft preparation, A.T. and Y.B.Ö.; writing-review and editing, A.T.,
Y.B.Ö. and H.D.; visualization, H.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAOSTAT. Food and Agriculture Organization of the United Nations Classifications and Standards. 2019. Available online:

http://www.fao.org/faostat/en/#data (accessed on 28 December 2019).
2. Cristofori, V.; Ferramondo, S.; Bertazza, G.; Bignami, C. Nut and kernel traits and chemical composition of hazelnut (Corylus

avellana L.) cultivars. J. Sci. Food Agric. 2008, 88, 1091–1098. [CrossRef]
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