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Abstract: There has been renewed interest in the performance, functionality, and sustainability
of traditional small-scale storage interventions (check dams, farm bunds and tanks) used within
semi-arid regions for the improvement of local water security and landscape preservation. The
Central Groundwater Board of India is encouraging the construction of such interventions for the
alleviation of water scarcity and to improve groundwater recharge. It is important for water resource
management to understand the hydrological effect of these interventions at the basin scale. The
quantification of small-scale interventions in hydrological modelling is often neglected, especially
in large-scale modelling activities, as data availability is low and their hydrological functioning is
uncertain. A version of the Global Water Availability Assessment (GWAVA) water resources model
was developed to assess the impact of interventions on the water balance of the Cauvery Basin and
two smaller sub-catchments. Model results demonstrate that farm bunds appear to have a negligible
effect on the average annual simulated streamflow at the outlets of the two sub-catchments and the
basin, whereas tanks and check dams have a more significant and time varying effect. The open water
surface of the interventions contributed to an increase in evaporation losses across the catchment. The
change in simulated groundwater storage with the inclusion of interventions was not as significant as
catchment-scale literature and field studies suggest. The model adaption used in this study provides
a step-change in the conceptualisation and quantification of the consequences of small-scale storage
interventions in large- or basin-scale hydrological models.

Keywords: semi-arid hydrology; small-scale storage; check dams; tanks; farm bunds; Cauvery; GWAVA

1. Introduction

Water resources management is becoming increasingly challenging [1] with rapid
population growth [2], a changing climate [3], and increasing competition over limited
natural resources [4]. For centuries, local communities and municipalities have altered
the landscape and built informal structures to increase local water security. In semi-arid
regions of the world, people have relied on large-scale infrastructures, such as dams and
water transfer schemes, and small-scale infrastructures, such as check dams, farm bunds
(rainfall harvesting method used in agriculture fields consisting of a raised soil perimeter),
and tanks (small informal reservoirs with a catchment area of less than 34 hectares), to
provide and store water for urban and rural use. Detailed descriptions of these structures
can be found in Section 2.2.2.

In India, the shortfall in renewable water resources to meet the increasing demand has
resulted in aggressive abstraction of the deep groundwater storage and the construction of
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small surface-water storage structures [5]. The Government of India and State governments
have actively encouraged the construction of interventions, such as check dams, farm
bunds, and tanks, as the primary policy response for alleviating water scarcity [6]. There
are now millions of such structures across India [7] and, recently, there has been renewed
interest in their effectiveness for improving local water security. It is of critical importance
to understand the hydrological effect of these interventions at the local- and basin-scale to
inform sustainable water resource management.

In India and other semi-arid regions, interventions are generally constructed to assist
in the replenishment and maintenance of local groundwater resources [8]. The most prolific
types of interventions in Southern India are check dams, farm bunds, and tanks [9]. In
mountainous regions of the world, such interventions are commonly used to reduce the
velocity of streamflow and reduce the sediment loss from the catchment. However, in
India, these interventions are primarily used for the purpose of artificial groundwater
recharge [5]. There is limited knowledge of the hydrological dynamics and performance
of interventions [10], and little research has been undertaken to quantify the hydrological
effects of interventions at a basin-scale [11]. Some studies have modelled the local impact
of interventions on streamflow with different perspectives, including: the impact on the
water balance [10], as a possible use to treat wastewater [12], and the impact on river flows
in headwater catchments [13,14]. Additionally, many studies have focused on the effects of
interventions on sediment transport and local groundwater level [15–23]. The upscaling
of small-scale storage interventions is of high interest because it is becoming increasingly
popular for water resource management and planning approaches to focus on the basin as
an entity [24]. A basin-wide approach is important in semi-arid regions and particularly
pertinent in closed and closing basins, where water is a scarce commodity and upstream
interventions directly affect downstream water availability [24].

There are concerns regarding the effects and functionality of interventions in Peninsu-
lar India. The underlying fissured hard-rock geology of Peninsular India differs from the
alluvial deposits in Northern India, where most previous studies have been undertaken.
Fissured hard-rock has a medium to low permeability and contains aquifers with modest
water resources compared to porous, karst, and volcanic aquifers. These aquifer systems
are well-connected and have transitioned from a laterally to a vertically dominated flow
system due to high levels of abstraction. These aquifers have decreasing hydraulic con-
ductivity and storage with depth, resulting in the resource becoming depleted quickly
when low levels of pumping are reached. The aquifer systems are now regarded as either
depleted or highly variable resource due to the high levels of abstraction and seasonal
recharge. It is speculated that the abstraction from these aquifers is resulting in decreased
base flow into the river system [5].

The Cauvery Basin was chosen to be representative of many other basins in Peninsular
India. These basins are under pressures of urbanisation, population growth, and agriculture
intensification [24]. The Cauvery is additionally a contentious river with concern over
sharing of water between Karnataka and Tamil Nadu [25]. With water resources in the
Cauvery Basin under severe stress and the abundance of small-scale interventions, it is
important to understand the effect of interventions on the spatial and temporal hydrological
patterns [11]. There are constraints and uncertainty identified in the current modelling of
interventions at the basin scale:

• The hydrological functioning of each type of intervention is uncertain.
• Proxy values and parameter adjustments have been utilised in an attempt to quantify

the functioning of interventions.
• Data on the location and characteristics of interventions are scarce and not well

documented when available.

The impacts of such changes and interventions on local hydrological processes, such
as streamflow, groundwater recharge, and evapotranspiration, are poorly understood, and
knowledge of how these diverse local changes cumulatively affect water availability at the
broader basin-scale is very limited.
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Over recent decades, the hydrological regime of the Cauvery Basin has been signif-
icantly altered [26] across the four federal states in which it lies [27]. The basin is highly
water-stressed [28] and the current water use exceeds the renewable water resources within
the basin. A common technique throughout the four states is the use of small-scale storage
structures to assist in the alleviation of local water stress in non-monsoon periods [29].
All the water resources associated with a “normal” rainfall year are currently allocated
by tribunal [25], and surface water flows only reach the Bay of Bengal in years of strong
monsoons [30]. The agricultural activities across the basin require 90% of the total water
resources [31]. However, rapidly developing urban and industrial centres are creating
increased inter-sectorial and inter-state competition for limited renewable resources [32].
The four states have different water policies, traditional water harvesting techniques, water
use prioritisation, and value associated with the natural environment [33].

Several hydrological modelling exercises have already been carried out in the Cauvery
Basin or its sub-catchments. The Auto-regressive moving average time series (ARIMA)
model [34], an artificial neuron network (ANN) model [34], support vector regression
(SVR) model [34], and the Soil and Water Assessment Tool (SWAT) model [35] have been
utilised in various sub-catchments of the Cauvery Basin. At the basin scale, SWAT [36–39],
Soil Conservation Service Curve Number (SCS-CN) [40,41], and the coupled mesoscale
hydrologic model with the Variable Infiltration Capacity model (VIC-MHM) [42] have been
used to simulate streamflow. However, none of these previous studies have considered the
inclusion of small-scale interventions.

The use of the GWAVA model in the Cauvery Basin provides the opportunity to
investigate the effect of interventions on basin scale hydrology by introducing check dams,
farm bunds, and tanks into the model structure. To investigate the effect of the interventions
on the hydrology of the Cauvery Basin, a version of the GWAVA model (GWAVA-GW)
made specifically for this user was developed. In GWAVA-GW, the groundwater module
was modified to better capture groundwater levels. The interventions were conceptualised
within the model structure using local knowledge, observed data, and adaptations of
existing reservoir representations. The effect of interventions on the hydrological regime
and water balance of the entire Cauvery Basin was studied, as well as a more in-depth
analysis of two relatively small sub-catchments contained within the basin.

2. Materials and Methods

The GWAVA model was used to understand the hydrological functioning and impacts
of interventions on the water balance of the Cauvery Basin.

2.1. Site Description

The Cauvery River basin is the fourth-largest basin in Peninsular India; it drains an
area of 81,155 km2 [43]. The Cauvery originates in the Western Ghats at Talakaveri in the
Kodagu district of Karnataka and the head waters of the basin form in the Nilgiri and
Anaimalai mountains. The Cauvery Basin is predominantly situated in the federal states
of Karnataka and Tamil Nadu, although it crosses into Kerala and Puducherry [27]. The
main river channel flows south-easterly through the states of Karnataka and Tamil Nadu
to outflow at the Bay of Bengal [44].

The Cauvery Basin is subjected to a large degree of heterogeneity not only in topogra-
phy and land use, but also in climate and economic development [45]. The landscape is
semi-arid with the majority of the basin’s water coming from the south-western monsoon
in the summer months. The basin experiences distinct intra-annual seasons, namely South-
Western (SW) monsoon in the spring, the North-Eastern (NE) monsoon in the autumn, and
post-monsoon conditions in the winter. The upper catchment receives rainfall from both
the SW and NE monsoons, whereas the lower catchment only receives rainfall from the NE
monsoon. The mean annual rainfall varies from 6000 mm in the upper reaches to 300 mm
on the eastern boundary [46]. The mean daily temperatures vary between 9 and 25 ◦C
throughout the catchment [26]. The Western Ghats form a rain-shadow along the western
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coastline, decreasing the precipitation gradient during the SW monsoon [47]. In addition to
difficult water resource management on the ground, high levels of heterogeneity across the
basin pose a challenge when undertaking spatial modelling activities, identifying feedbacks
and upscaling catchment processes.

The basin is highly anthropogenically influenced. Currently, there are over 100 im-
pounding reservoirs (Figure 1a) and approximately 20 major water transfer schemes within
the basin (Figure 1c), along with millions of small-scale interventions throughout the rural
and urban regions of the basin [26]. The four major reservoirs that are constructed within
the catchment are Kabini (440 MCM), Bhavanisagar (791 MCM), Krishna Raja Sagara (1016
MCM), and Mettur (2640 MCM). The releases from these major reservoirs regulate and
disrupt the seasonal trend of the streamflow downstream of their release points. The land
use of the basin comprises of 48% agriculture, 22% non-arable land, 19% forest, and 9%
urban (Figure 1b) [26]. Natural forests are under great stress due to increasing demand for
forest products and competition over land use. Across the basin, approximately 60% of
the total population rely on agriculture [26]. Agricultural crops are grown within irrigated
canal command areas or in rain-fed areas utilising farm bunding techniques. Paddy and
sugarcane, both water-intensive crops, are predominant within the irrigated and rain-fed
areas of basin and in the delta regions. The urban areas within the basin have expanded by
over 35% over the last decade and are expected to continue to increase with the expanse
of industry [48]. With the threat of rising surface temperatures, the competition for fresh
water resources between the agricultural sector and other water uses is likely to intensify.
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Figure 1. Physical characteristics of the Cauvery Basin. Presented are (a) the location of reservoirs within the basin, (b) the
land use of the basin, (c) the major reservoirs and the water transfer links constructed in the basin, and (d) the geological
domains within the basin.

Model-simulated streamflow, total evaporation, water table level, and base flow were
investigated at two sub-catchment outlets, located in Karnataka and Tamil Nadu, and the
furthest downstream gauging point (Musiri) (Figure 2) to determine the effects of the inter-
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ventions on the availability of simulated streamflow and the catchment water balance. The
two sub-catchments were selected based on a similar density of interventions but differing
underlying geology (Figure 1d). The base flow component (groundwater flowing into the
river channel from the aquifer) between the two sub-catchments is therefore different.
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sub-catchment boundaries, modelling grid, and the locations of the 14 calibration gauges (a–n) and 4 major reservoirs (1–4)
within the Cauvery Basin. S1 and S2 (Table 1) represent the points on the stream network where the effect of interventions
is investigated.

Table 1. The mean annual precipitation (MAP), catchment area (Area), flow characteristics, period of no observed streamflow
in main channel (Tnoflow-days of no streamflow), and underlying geology of two sub-catchments used in this study.

Sub-Catchment
Number MAP (mm) Area (km2) Rainfall Period Flow

Characteristics
Period of No Streamflow in

Main Channel (Days per Year)

S1 864 2660 March–January Non-Perennial 30 < Tnoflow < 60
S2 867 3120 March–January Perennial 0 < Tnoflow < 3

2.2. Model Development

The Global Water Availability Assessment Tool (GWAVA) is a large-scale, semi-
distributed gridded water resources model developed by the UK Centre for Ecology &
Hydrology [49]. The model incorporates natural processes (soils, land use, lakes, etc.) and
anthropogenic influences (crops, domestic and industrial demands, reservoir operations,
transfers, etc.). GWAVA estimates local runoff from each cell using a lumped conceptual
probability distribution model (PDM) [50]. The PDM requires a limited set of parameters,
with the model configuration comprising of three components, namely, the probability- dis-
tributed soil moisture storage, the surface storage, and the groundwater storage. GWAVA
utilises a combination of land use and soil types. There are four land use options (trees,
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shrubs, grass and bare soil) and seven soil type classifications (ranging from sandy to or-
ganic). The soil moisture characteristics for each combination are defined by rooting depths,
wilting points, field capacities, and saturation capacities. The evaporation is estimated
using the FAO-56 Hargreaves equation from both the natural vegetation and agricultural
crops, while the effective precipitation is determined using a two-parameter exponential
equation, as described by Calder [51]. The soil moisture and direct runoff are calculated
separately for each land use type and then summed to obtain a total direct runoff for each
grid cell. The total direct runoff is then routed through any existing engineering structures
within the grid cell using the Muskingum equation and the user-defined reservoir outflow
or transfer parameters. This is followed by a demand-driven routine to account for the
anthropogenic stresses on the system. GWAVA accounts for water demands from the
domestic (urban and rural), industrial, and agricultural sectors. Domestic, industrial, and
livestock demands are user defined and temporally static, but spatially dynamic. Irrigation
demand is temporally and spatially dynamic and is estimated via a user-defined crop type
and planting month [49]. For this study, two major model developments were undertaken;
the first was the inclusion of a demand-driven groundwater routine, and the second, the
inclusion of small scale interventions.

2.2.1. Groundwater Routine

An improved groundwater module with additional groundwater processes was added
to GWAVA to necessitate the full coupling of the water abstractions. The improved ground-
water representation is a modified rendition of the AMBHAS-1D model [52]. The ground-
water storage for each grid cell comprises of a layered aquifer. The number of layers
and the depth of each layer is flexible, and the values for specific yield for each layer are
user-defined according to the local hydrogeology. The store is recharged from the soil
moisture, lakes and reservoirs, leaking water supply infrastructure, and artificial recharge
structures. The recharge to the aquifer from large water bodies is assumed to be at a con-
stant rate specific to each water body, while the recharge from water supply infrastructure
is determined by the user-defined recharge fraction of the conveyance loss. The percentage
conveyance loss from total demand is set by the user and varies between urban and rural
water demands to reflect the different infrastructures. The groundwater storage is routed
as base flow using a routing coefficient and a user-defined level of groundwater storage
below which there is no base flow. The groundwater storage is converted to an aquifer
level (meters below ground level) by dividing by the specific yield. Water can be directly
abstracted from the groundwater storage down to the user-defined maximum depth of the
aquifer. One limitation of this representation is the lack of lateral flow between groundwa-
ter storages. It was decided that neglecting lateral flow was an acceptable approximation
given the scale of the model.

2.2.2. Conceptualisation of Interventions

The typical characteristics and functioning of each small-scale structure were deter-
mined to conceptually represent them in the GWAVA model. Due to the abundance of
these small structures throughout the basin, the lack of spatially explicit data and the grid
resolution of GWAVA, it was deemed impossible to simulate the effect of each single struc-
ture. Instead, each type of intervention was aggregated for every 0.125◦ (approximately
12 km × 12 km in India) cell to form a single composite tank, check dam, and farm bund
within the cell. For this aggregation to be possible, the surface area of each intervention
in a cell was required to estimate the total storage capacity for each type of intervention
in that cell. The check dams utilised trapezoidal scaling while the tanks and farm bunds
utilised cuboidal scaling to determine the storage capacity.

As a result of the structures, the increased open water surface area increases evap-
oration losses within a grid cell. A constant open water evaporation (OWE) factor was
applied to all the interventions. The monthly average OWE was estimated from the
evaporation-control-in-reservoirs documentation [53].
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• Urban and Rural Tanks

For the purpose of this study, and referring to terminology used in India [12], small,
abundant reservoirs with less than 34 hectares of drainage area and built for the de-
centralised harvesting of runoff, particularly in the monsoon season, are referred to as
tanks [54]. These are typically constructed using a shallow dam across a river channel
and are unlined [14]. Tanks provide small-scale storage of rainfall and streamflow, control
flood waters, and increase recharge to groundwater in the immediate area [55]. Rural tank
storage is seasonal [56], and in many semi-arid regions, tanks provide the only means to
store rainwater and streamflow for irrigation [57]. Urban tanks are fundamental for city
drainage systems [14] used for the collection and recycling of wastewater.

For their conceptualisation within GWAVA, both urban and rural tanks were assumed
to have an inflow component comprising of daily rainfall, wastewater, and streamflow
within the cell, with spill contributing to the outflow (Figure 3). Furthermore, these tanks
are generally unlined in order to help groundwater recharge locally. Thus, a leakage rate of
13 mm d−1 [58] and 6 mm d−1 [59] was added for the rural and urban tanks, respectively.
The recharge from tanks is relatively low as these structures tend to be highly silted and
infiltration is limited through the fine particles lining the bottom. The recharge from rural
tanks was higher than from urban tanks under the assumption that tanks in rural areas
were constructed more recently and dredged more regularly. In the absence of detailed
tank bathymetry data, it was assumed that all tanks are cuboid in shape with a maximum
depth of 3.0 m deep at full capacity [60].
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• Check Dams

Check dams are small water conservation structures (<0.5 ha) built across a stream
using concrete, sandbags, or logs [18]. These are designed to reduce the velocity of stream-
flow through the catchment and to retain the floodwaters (monsoonal rainfall in the case
of India) [11]. The process of impounding water at a local scale is thought to increase the
groundwater recharge and soil water potential in the adjoining areas [61].

For the model representation of check dams, it was assumed that daily rainfall, local
runoff, and streamflow of the cell contribute to the inflow (Figure 3). From a field study
in the Upper Cauvery region, the leakage from the bottom of the structure was assumed
to be 100 mm d−1 across all the check dams in the catchment [62]. The outflows of the
check dams comprise of spills. For the purpose of this study and to simplify data collection
of thousands of structures, all check dams in the basin are assumed to have the same
dimensions and, thus, capacity. In the absence of comprehensive dimension data from
within the basin, assumptions have been made based on available literature. The depth
is assumed to be 1.5 m [58], the top width of the structure equal to 10 m, and the channel
slope to be 1% [62]. In the absence of data quantifying the number and spatial repartition
of check dams in the Cauvery Basin, a surrogate methodology to estimate these alongside
with their storage capacity was established. Based on discussions with stakeholders and
cited literature [7,63,64], it was assumed that an average check dam in the Cauvery Basin is
a 3D trapezoid with a profile that is 10 m in width at a distance of 70 m upstream of the
structure. Thus, the surface area of a check dam was assumed to be triangular and fixed
at 350 m2 (70 m multiplied by half the wall length) for every check dam included in the
model. The assumed average surface area was used solely in the determination of the total
surface area of check dams within a grid cell: The number of check dams (see Section 2.2.2)
within a cell was multiplied by 350 m2 to determine the surface area of check dams in each
cell. Within the model conceptualisation, the length of the conceptual aggregated check
dam was dependent on the surface area. The width and depth remained at 10 m and 1.5 m,
but the length was variable.

• Farm Bunds

Farm bunding is a traditional in-situ method for soil and water conservation [65].
Bunds are a raised perimeter at the foot slope of agricultural fields, constructed of soil or
stone, to increase the time of concentration of precipitation, allowing rainwater to percolate
into the soil [66]. Bunds are constructed to retard the movement of overland flow and
encourage infiltration within the field [67].

Farm bunds are assumed to be filled from daily rainfall and local runoff within the
cell. The saturated hydraulic conductivity of the soils [68] in the basin and the high diurnal
temperatures resulted in the water within the farm bunds infiltrating or evaporating
completely within a day. The open water evaporation constant was applied to the surface
area of the bunds while the infiltration rate differed with regards to soil type. To simulate
groundwater recharge from these structures, a rate relative to the saturated hydraulic
conductivity of the soil [68] of the area was selected. Once the water held in the bund was
at full capacity, excess water could flow over the structure and into the stream. Without
adequate field measurements, it was assumed from available literature that all bunds are
a maximum of 0.3 m deep [69,70] (Figure 3). The surface area of the farm bunds area is
derived in Section 2.2.2.

Following the inclusion of the interventions within GWAVA, a sensitivity analysis, in
line with that of Wable et al. (2019) [62], was performed to assess the effect the number and di-
mensions of the interventions have on the simulated streamflow. A detailed description of the
scenarios can be found in Table A1 in Appendix A. For the purpose of this sensitivity analysis,
the scenarios presented have been run under natural conditions throughout the catchment to
isolate the effects of the dimensions and number of interventions on the streamflow.
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2.3. Model Application

For this application of the GWAVA model in the Cauvery Basin, a grid cell resolution
of 0.125◦ was chosen based on data availability for the region. The model version including
the improved groundwater module and interventions was utillised for this study. The
model was set up to include the natural vegetation, agricultural areas, urban areas, rural
areas, industrial areas, 5 major reservoirs, 49 minor reservoirs, 27 transfers, and a significant
number of interventions. The model was calibrated and validated utilising the availiable
uninterupted observed streamflow data of an adequte quality. A baseline period from
1986–2005 was utilised for the analysis presented within this manuscript. Five scenarios
were considered to analyse the effects of the interventions within the Cauvery Basin:

1. All interventions (tanks, check dams and farm bunds)
2. No interventions
3. Only tanks
4. Only check dams
5. Only farm bunds

2.4. Model Calibration and Validation

GWAVA is calibrated against observed streamflow data using the SIMPLEX auto-
calibration routine. This routine uses five parameters for calibration: a surface and ground-
water routing parameter, a PDM parameter that describes spatial variation in soil moisture
capacity, and a multiplier to adjust rooting depths and level of groundwater storage below
which there is no base flow.

GWAVA was calibrated and validated using observed streamflow gauge data from 14
different gauging stations across the basin (Figure 2). The calibration gauges were selected
from a set of 28 gauges across the basin based on completeness of the data, time-period of
the data, and size of the subcatchment. Data were deemed sufficient when more than 50%
of the data points were identified as ‘observed’ and not ‘calculated’, and had at least five
consecutive years available. However, this threshold may appear low, considering a higher
proportion of observed to calculated data left an insufficient number of gauges to choose
from. Additionally, subcatchments of fewer than four GWAVA grid cells were excluded.
The name of each gauging station and the years used for calibration and validation are
presented in Table A2 (Appendix B).

The automatic calibration was run across the 14 delineated subcatchments: It must be
noted that the parameters in the auto-calibration routine only affect the natural components
of the system. Due to the observed streamflow being highly influenced by the reservoir
outflows, a manual calibration was carried out for gauges downstream of reservoirs, by
re-running the autocalibration routine with a range of different reservoir parameters.

2.5. Data Acquisition

Input data were collected from several sources and extracted from global and regional
datasets (Table A3 in Appendix C). Data regarding the number and distribution of inter-
ventions in the Cauvery Basin are sparse. Extrapolation and estimation methods described
in this section were used to provide the necessary surface area data for input into GWAVA.

The surface areas of the rural and urban tanks were estimated by isolating the ‘tanks’
from the Cauvery Water Bodies dataset (Figure 4). This dataset consists of a shapefile
containing all the medium to large waterbodies (rivers, lakes, reservoirs, tanks, wetlands,
etc.) in the Cauvery Basin in 2019, derived using remote sensing techniques. The urban
tanks were identified as tanks that fell within urban centre boundaries. The tanks outside
of these boundaries were assumed to be rural. Check dams and field bunds are too small
to be detected by this methodology.
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Figure 4. The distribution of tanks [71] within the Cauvery Basin superimposed with the modelling
grid of 0.125 degree.

Data for the farm bunds and check dams were derived from district-wise Structural
Investment Report’s available for Karnataka from 2006 to 2012 (Figures 5 and 6). For each
district in Karnataka, the area covered by farm bunds and the number of check dams
was calculated from this financial data by dividing the total expenditure for each type of
intervention by the expenditure per hectare of bunding and of a check dam.
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in Karnataka.

In the absence of data for the state of Tamil Nadu, the data from Karnataka were
extrapolated. Plausible relationships between the number of check dams and the area of
bunding with soil type, rainfall, slope, population, land type, irrigation type, and geology in a
district were all investigated. None of these yielded any significance. Meaningful relationships,
however, were drawn between the number of check dams and the stream density, and the
area of bunding and the area of rainfed agriculture. These are described below.

Within the districts of Karnataka, a relationship was drawn between the area of farm
bunds and the area of rainfed cropland within each district (r2 = 0.91, Figure 5). Due to a
lack of data, it had to be assumed that this relationship was also evident in Tamil Nadu.

The regression (Equation (1)) was utilised to estimate the area of farm bunds within
each district of Tamil Nadu:

Ac = 2.75Ab + 338 (1)

where Ab is the area covered by bunding (ha), and Ac is the area of rainfed cropland (ha)
Additionally, a relationship was drawn between the log function of the stream density

(SD) of each district in Karnataka and the number of check dams (r2 = 0.93, Figure 6). The
stream density is characterised by Equation (2) [72].

Log (SD) = ∑
Length o f streams o f all orders

Area
(2)

As with the farm bunds, it is assumed that this relationship holds true into the districts
of Tamil Nadu.

A regression function (Equation (3)) was used to estimate the number of check dams
within each district in Tamil Nadu:

Log (SD) = 0.0017Ncd − 4.33 (3)

where SD is the stream density, and Ncd is the number of check dams.
The district-wise data was applied to the modelling grid using a weighting function

of the grid-wise crop area (Figure 7a) and stream density (Figure 7b), respectively. Across
the catchment, the surface area of the interventions within each grid cell ranged between
0.02 and 53 km2.
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Figure 7. The distribution of (a) farm bunds and (b) check dams as a percentage of the GWAVA modelling grid cell area
across the Cauvery Basin.

3. Results
3.1. Model Performance

The model performed well in the sub-catchments of the upper reaches, but struggled to
reliably simulate the flows downstream of the Mettur Dam (Figure 2). Across the calibrated
sub-catchments, the model underestimates the total volume of simulated streamflow. The
gridded precipitation data [73] produced by the Indian Meteorological Department (IMD)
underestimate the point measured rainfall in the region across the Western Ghats by an
excess of 50% (Figure 8). This could be the fundamental explanation for the consistent
underestimation of simulated streamflow by GWAVA. Inaccurate simulations of the total
volume of water within the system and reservoir releases undermine the value of the
model’s predictive ability as a water resources management tool.
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Figure 8. The cumulative rainfall (m) from available IMD gauge and gridded sources across Saklesphur and MH Halli
sub-catchments (Figure 2) in the headwaters of the Cauvery from 1979 until 2017 and 1979 until 2013 respectively.

Within the model, the reservoir outflow parameters were adjusted within the full
range of possible values and combinations to provide the best possible fit to the daily
observed outflow data. The temporal signal of the Mettur Dam outflow is noticeable
through all the downstream gauges (Urachikottai and Kodumodi) to Musiri. Figure 9a
illustrates the ability of the model to better capture the temporal trend of the observed
streamflow upstream of Mettur. However, the model was unable to capture the intra- and
inter-annual reservoir operations from the Mettur Dam, and thus does not fully represent
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the timing of the observed streamflow at Urachikottai downstream of the dam (Figure 9b).
The GWAVA reservoir outflow routine is determined by the user-set parameters, as well as
the long-term average inflow. The observed reservoir outflows appear to be sporadic and
have very little correlation to the reservoir inflow, and thus the reservoir equation within
GWAVA does not represent sporadic outflows well.
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The inclusion of the interventions improves the model performance (presented here
as Kling-Gupta Efficiency- KGE). During the calibration and validation, the interventions
improved the model performance in nine and seven sub-catchments, respectively, but
did not affect the calibration or validation in three and five sub-catchments (Table A2
in Appendix B). The lower KGE in the validation period indicates that the better fitting
calibration results could have been obtained due to overfitting of parameters during the
calibration process, model equifinality [74], and where the model is not capturing the
catchment or reservoir processes correctly. The lack of reliable data pertaining to the Tamil
Nadu region and the automatic calibration and conceptual nature of the model could be
taking into account processes that are not included in the model structure through the
existing model parameterization.

Following calibration and validation of the model, streamflow, quick overland flow,
sub-surface flow (water flowing to the stream through the soil profile), base flow (water
flowing to the stream from the aquifer), groundwater levels, reservoir storage levels at
Mettur Dam, and evaporation for five scenarios were simulated.

3.2. Sensitivity Analysis of Interventions within GWAVA

A sensitivity analysis was conducted by altering the density and dimension of the
conceptualised interventions within GWAVA. The scenario list of the varying densities and
dimension utilised in this analysis can be found in Table A1 in Appendix A. The results
of the conceptual tank, check dam, and farm bund sensitivity analyses are presented in
Figures A1–A3, respectively in Appendix A.

3.2.1. Tanks

The Q10 flow is decreased with the increase in the density and depth of the tanks
conceptualised in GWAVA. The Q10 is affected by both the increase in depth and density.
The mean decreases when the density of tanks is 25 m3/ha, while the mean simulated
streamflow increased when increasing density of tanks from 75 to 200 m3/ha. The mean
flow is insignificantly affected by the increase in density or depth.

The Q90 flow is increased with increasing both the depth and density. As the tanks are
deeper than the check dams, the evaporative potential from the surface is less and thus the
recharge exceeds the evaporation and is able to contribute to the base flow. The Q10 flows
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are reduced due to the structural hinderance within the stream channel. When considering
the 25 m3/ha density, the Q10 is reduced by a greater percentage compared to the increase
in Q90, thus resulting in a reduction in the mean flow.

3.2.2. Check Dams

The Q10 flow is decreased with the increase in the density and the dimensions of the
check dams conceptualised in GWAVA. The Q10 is more sensitive to the increase in dimensions
rather than the increase in density. The mean and Q90 simulated streamflow is decreased when
the density of tanks is 25 m3/ha, while the mean simulated streamflow is increased when
increasing density of check dams from 75 to 200 m3/ha. The mean and Q90 flow is not highly
sensitive to the change in dimensions of the check dams. When the density of conceptualised
check dams is less than 25 m3/ha, the rate of evaporation is greater (small volume of stationary
water storage) than the rate of recharge and the compounded water is evaporated before
it is able to recharge and contribute to the base flow. Once the density of interventions has
exceeded 25 m3/ha, the rate of recharge is greater than the rate of evaporation (the volume to
surface area ratio is smaller), and thus more water within the check dam is able to recharge
and contribute to the base flow component.

3.2.3. Farm Bunds

The farm bunds did not have a significant impact on the flows. The changes between
the baseline and the four scenarios were less than 1%. Increasing the depth of the farm
bunds increased the flows; however, at the spatially scale of GWAVA, this is deemed
insignificant, and thus it is concluded that the bunds do not have a significant effect on
the flow. Although farm bunds are not constructed on the stream and do not significantly
affect the streamflow, they alter other components of the water balance within the basin.
The open water surface increases the evaporative potential across the field, and the pooling
water increases the soil water for the period following a rainfall event.

3.3. Effect of Interventions in the Cauvery

In this section, all observations are drawn from model simulations (i.e., simulated
streamflow, base flow, evaporation, and groundwater level). The effects of interventions on
simulated streamflow across the modelling period (1986–2005) were evaluated using the
mean flow (Q), the flow exceeded 90% of the time (Q90, quantification of low flows) and
the flow exceeded 10% of the time (Q10, representation of high flows). Additionally, the
effects of the interventions on the simulated streamflow and evaporation, in a wet (2005),
normal year (1998), and dry (2002), year at the catchment outlet of S1 and S2 and Musiri,
were investigated. These years were chosen by considering the lowest, highest, and mean
total annual precipitation across the catchments (Table 2).

Table 2. The total annual precipitation and the reduction in flows days with the inclusion of interventions for the selected
catchments S1, S2 (Figure 2), and Musiri (Figure 2) for wet, dry, and normal year.

Sub-Catchment
Total Annual Precipitation (mm) Reduction in Flows Days with the Inclusion of Interventions

Normal Year (1998) Dry Year (2002) Wet Year (2005) Normal Year (1998) Dry Year (2002) Wet Year (2005)

S1 507 382 668 14 25 3
S2 1874 656 2085 2 4 3

Musiri 1341 685 1413 0 0 0

In the non-perennial catchment (S1, Table 1 and Figure 2), the surface flow is the
dominant component of the simulated streamflow (Figure 10). The simulated streamflow
(Q10, Q and Q90) is reduced with the inclusion of interventions. However, it is the high
flows, Q10, that are more significantly reduced (Figure 11). The interventions have a greater
impact on the simulated streamflow in S1 than S2. The simulated streamflow is reduced
to the largest extent in the normal year (~10%, Figure 11a). The stormflow is intercepted
by the intervention and, thus, reduces the simulated streamflow in the wet season (Q10,
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Figure 11b). The dry season flows (Q90, Figure 11b) are reduced as any subsurface lateral
flow (from the soil store) entering the stream is impounded by the intervention. The
stormflow component is larger than the subsurface lateral flow and base flow components
in this catchment and, thus, the simulated streamflow is affected to a greater extent in the
wet season. The non-perennial streams dry out earlier with the inclusion of interventions
(Figure 12 and Table 2). The total evaporation across the sub-catchment is increased with the
inclusion of interventions with the greatest increase occurring in the wet year (Figure 11a)
as water is present in the interventions for a greater length of time. In this catchment, the
water table is increased in the wet season with the inclusion of interventions (Figure 13).
Despite the increase in simulated recharge, the water table does not reach a level where the
water in the groundwater will contribute significantly to simulated base flow.
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Figure 2) with and without the inclusion of interventions. There is no change to the aquifer level
in S2—this is illustrated by the S2 no interventions line (orange dash), which falls directly on S2 all
interventions line (orange line).

In the perennial catchment (S2, Table 1 and Figure 2), the stormflow is dominant in the
wet season but the subsurface flow and base flow is dominant in the dry season (Figure 10).
The simulated streamflow (Q10, Q and Q90) is reduced, and the Q90 is more significantly
reduced with the inclusion of all interventions (Figure 11b). The interventions have a
similar effect on simulated streamflow in the dry and wet years (~5%, Figure 11a). In the
wet season, the simulated streamflow is reduced due to the in-situ impoundment, and
the low flows are maintained but reduced in the dry season. In the dry season, simulated
streamflow is reduced because the base flow and any subsurface lateral flows (from the soil
store) entering the stream are impounded by the intervention. The impounded water is
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subject to both evaporation and recharge. The total evaporation across the sub-catchment
increased with the inclusion of interventions with the greatest increase occurring in the
wet and normal years (Figure 11a) as there is water in the interventions for a greater length
of time. In this catchment, the groundwater level is minimally affected by the inclusion of
the interventions (Figure 13). The water table is above the level at which the groundwater
will flow as base flow. Base flow will continue to occur but simulated streamflow will be
reduced in the dry season as any simulated streamflow produced by the base flow above
the intervention will be impounded.

The responses of the S1 and S2 and Musiri exhibit opposite responses. The change
in simulated streamflow in S1 and S2 is greater than the change in evaporation while at
Musiri, the change in evaporation is greater than the change in simulated streamflow. At
Musiri, the simulated streamflow is dominated by the Mettur Dam releases (Figure 2).
The interventions do not have a significant effect on the simulated Mettur Dam release
flows. The minimal reduction in mean simulated streamflow (~3%) seen at Musiri can be
considered as the consequence of the interventions in the tributaries that join the main
Cauvery channel downstream of Mettur Dam. However, on analysis of the effect of
interventions on the inflow into Mettur Dam, it was found that the interventions reduced
the mean simulated streamflow (Q) by ~6% and the simulated streamflow in the wet
season (Q10) was reduced by ~26%. This demonstrates that the large reservoir has the
ability to nullify the impact of the interventions, however, their effect can be seen in the
reduction of simulated streamflow entering the reservoir. In this unique case, the effect
of the interventions on the Mettur Dam inflow is more representative of the effects of
interventions at a basin-scale than those shown at Musiri and corresponds more correctly
with the increase in total evaporation across the basin with the inclusion of interventions of
~10% (Figure 11a).

The majority of the flow into the Cauvery Basin is contributed to by sub-catchments [75]
along the western boundary (Figure A4 in Appendix D). However, most of the interventions
are constructed in semi-arid regions. The simulated Q90 flow in these humid catchments
is affected more by the interventions than in the semi-arid sub-catchments on the eastern
boundary (Figure A4 in Appendix D). Conversely, there is a greater effect of the interven-
tions on the simulated Q10 flow in the semi-arid sub-catchments (Figure A4 in Appendix D).
The effect on the Q10 flows is greater in the semi-arid sub-catchments because the mon-
soonal streamflow is required to fill these structures before they begin to spill. In the
humid catchments, the interventions do not have a great effect on the Q10 flow as it is
likely to be the presence of water within these structures before the monsoon and the
intervention immediately spills. Although the percent change in Q10 flows in the semi-arid
sub-catchments is higher, the volume of water impeded in these structures may be greater
in the humid sub-catchments. The Q90 flow is impacted more severely in the humid catch-
ments as these streams are fed during the dry season through base flow, whereas in the
semi-arid sub-catchments, the streams frequently run dry with or without interventions.
The implementation of interventions in these sub-catchments stores water further up in
the basin and essentially impedes the downstream flow. The reallocation of water by these
structures limits water, especially the monsoon flows, from entering the ocean unused,
and provides an inexpensive means of decentralised water management. Although these
structures allow available water to be utilised throughout the basin, there are subsequent
implications for users and environmental flows downstream when low flows are reduced.
A summary of the total changes in precipitation, simulated streamflow (with and without
interventions), simulated evaporation (with and without interventions), and aquifer levels
(with and without interventions) can be found in Table A4 in Appendix D.

4. Discussion

The model calibration was acceptable in the upper reaches of the basin, but the model
fit was weaker downstream of the Mettur Dam (Figure 2). The inclusion of interventions
improves the model performance. It provides a better account of the surface storage
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within the basin and better estimation of the time of concentration in the sub-catchments
without major reservoirs. The farm bunds were found to have little effect on the simulated
streamflow, as the high water demands of the rainfed crops cause the infiltrated water
from the farm bunds to be transpired quickly and there to be little difference in the water
converted to base flow or groundwater recharge with or without the bunds. Assuming the
relationship between the area of farm bunds and the area of rainfed cropland determined
for Karnataka holds into Tamil Nadu, the majority of the bunds were located within the
lower regions of the basin where there is a greater area of rainfed cropland. It is difficult to
distinguish the exact effects of the farm bunds in these regions as the river system is heavily
dominated by the Mettur Dam outflows. Farm bunding proves to be an effective method
of increasing soil water in areas of rain-fed agriculture and mitigating water allocation
challenges, and aggressive groundwater pumping associated with intensive irrigation,
without signicantly effecting the basin hydrology. However, conceptually, the model fills
the farm bunds followed by the tanks and then the check dams. In the simulations with all
the interventions included, this limits the water available for filling the tanks and check
dams. Although individually the bunds have little effect on the simulated streamflow,
when simulated with the tanks and check dams, the reduction in water available to fill tanks
and check dams is reflected in the lower impact on the simulated streamflow. Individually,
the tanks and check dams have a similar effect on the simulated streamflow (Figure 11b).

A significant challenge in large-scale hydrological modelling is quantifying and man-
aging the uncertainty in climate forcing and evaluation data. Uncertainty can arise from
observation gauge density, spatial and temporal interpolation methods, and general measure-
ment errors. The Western Ghats region in the NW of the basin is a known area of uncertainty
with the IMD precipitation data [73]. Each 0.5-degree grid cell contains numerous terrain
and gradient increments, and the grid cells fall over the basin boundary. This results in an
inaccurate representation of the distribution and total rainfall, as well as the distribution of
minimum and maximum temperature in this region of the basin [76]. There is a significant
source of uncertainty as this region acts as the headwaters for the larger Cauvery Basin
(Figure 8). At some gauging points in the basin, there is low confidence in the observed
streamflow data [77]. Eye-witness accounts and some literature [78] report the drying out
of streams in the dry season, which is not reflected in the observed data. Additionally, in
reality, rivers downstream of significant urban areas (Arkavathy downstream of Bangalore
and Eluthunimangalam downstream of Coimbatore and Tiruppur) are fed by a perennial
stream of sewage [78]. The model represents return flows from domestic demand, but this
may be underestimated compared to the volume of effluent being actually released into these
rivers. The analysis of the precipitation and the observed streamflow, used within this study,
showed temporal discrepancies. The temporal difference between rainfall events and the
hydrograph peak did not show a systematic error or a consistent lag time.

The scale of this study (0.125 degree) required the aggregation of the surface area
of each type of intervention in each cell. The simplification in the conceptualisation of
the interventions is a cause of uncertainty in this study [79]. The aggregation of the
interventions into one composite tank, check dam, and farm bund within the cell, skews
the surface area to capacity ratio. As intervention data were limited to surface area, if one
calculates the intervention capacity from the combined surface area, the capacity is greater
than calculating the capacity of each individual intervention and aggregating the capacity.
This causes the holding capacity of the conceptual interventions in each cell to be greater
than in reality. Subsequently, the larger conceptual intervention will not fill or spill as
frequently as many smaller interventions, and thus the estimation of the effect on simulated
streamflow of all the interventions is uncertain. Additionally, the evaporation could be
underestimated as a larger waterbody requires increased energy for evaporation and has a
larger lag time (due to heat storage) than a smaller one. This may also lead to the individual
smaller interventions being subjected to more evaporative losses than these estimated in the
model using the larger conceptual intervention. Conversely, the model structure allocates
water to the evaporative component first, and thus, the evaporative processes are favoured
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in times of water stress. This could, along with the use of the Hargreaves evaporation
estimation method, additionally be one of the fundamental reasons for the systematic
underestimation of simulated streamflow across the basin [80]. The aggregation of the
cascading tank systems into one large tank, and numerous check dams into one large check
dam, results in the true effects of the cascading system not being represented within the
model [10]. Numerous tanks and check dams on a river network can cause streamflow in
the river and the subsurface and base flow emerging into the stream to be obstructed by
the downstream check dams.

Due to a lack of data, the process of quantifying the distribution of the interventions
across the basin relies upon many assumptions and, thus, generates significant uncertainty.
The accuracy of the Structural Investment Report is unknown and the assumption of a fixed
cost per structure/hectare across Karnataka is unlikely to be accurate. Similarly, assuming
that the systems and behavioural patterns (agricultural practices, usage of infrastructure, etc.)
in the state of Karnataka and Tamil Nadu are identical is also unlikely. However, due to data
scarcity and lack of evidence to validate these assumptions, a pragmatic approach was used
to allow the inclusion of small-scale interventions in a large-scale hydrological model.

In the absence of data to formally validate a new concept introduced into a hydro-
logical model, it is important to measure results against exisiting literature. Despite the
uncertainty and pilot nature of this study, the trends identified within the Cauvery Basin
are in line with the findings from Garg et al. (2012) [13]. Garg et al. [13] altered a number
of parameters within SWAT (surface runoff, water holding capacity, available soil water,
groundwater recharge, and curve number) to reflect the potential influence of the check
dams and farm bunds in the basin, and found that the interventions have a slightly greater
effect on the simulated streamflow in wetter years. The study also found that the largest
portion of the water balance is the evaporatative component and the evaporative losses
increased with the inclusion of the interventions. This is in agreement with this study
(Figure 11b). Garg et al. (2012) [13] found that check dams reduced the annual simu-
lated streamflow at the basin outlet of the Kothapally catchment by 9%. This corresponds
with the GWAVA simulation, which estimated ~9% reduction in simulated streamflow
(Figure 11a) in S1 of similar MAP, soil type, and land use. In contrast, the groundwater
recharge from the individual interventions was significant in the Garg et al. (2012) [13] study.

There is also agreement between the results of S2 and the work of Xu et al. (2013) [11],
in which they concluded that check dams reduce the total runoff in the rainy season
(15%, Figure 13). Xu et al. (2013) [11] did not specifically include the characteristics of
the interventions, but rather attributed the difference between a period of observed and
simulated streamflow as the effect of the interventions. The decrease in mean annual
streamflow (14%) estimated by Xu et al. (2013) [11] and attributed to the effect of check
dams does correlate to the decrease in mean annual streamflow of S2 as a result of check
dams (15%, Figure 10). Sub-catchment S2 has a similar MAP and type of vegetation as
the catchment studied by Xu et al. (2013) [11]. This is an important correlation, with two
different approaches yielding similar results. In the absence of data pertaining to pre- and
post-intervention construction, conceptulising the structures within a model could provide
accuarate estimations of their influence.

The decrease in simulated streamflow by GWAVA in S1 and S2 due to tanks was 4% and
5%, respectively. These results differ significantly from those of Van Meter et al. (2015) [10],
where the simulated streamflow was found to decrease by 75% from a single cascading
tank system in a catchment with an MAP of 850 mm in Tamil Nadu. GWAVA conceptu-
alises the tank systems within a cell into one large hypothetical tank, and thus does not
capture the cascading characteristics of the tank systems. This could explain the differ-
ence in the observed streamflow reduction; alternatively, the tank system investigated by
Van Meter et al. (2015) [10] could be atypical.

GWAVA may not capture the sensitivity of hydrological fluxes at a local-scale as a
well as some catchment-scale models [10,11,13]. However, yielding similar results to that
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of published small-scale studies provides a good starting point for further refinement of
the conceptualisation within large-scale hydrological models.

5. Conclusions

The modified version of GWAVA provided a valuable tool to investigate the effects of
interventions at a sub-catchment and basin scale.

The main conclusions from this study are:

• Conceptualised interventions play an important part in the allocation and better
representation of simulated surface water within the basin.

• The effect of the conceptualised interventions within GWAVA is dependent on the hydro-
geology of the modelled sub-catchment, as well as the simulated groundwater level.

• The influence of the interventions is greater on the simulated streamflow in the wet
years and on estimated evaporation in the dry years.

• Farm bunds provide an effective method for reducing the pressure of canal irrigation
and groundwater pumping in agricultural areas.

The results of this study corresponded well with existing literature from small-scale
studies. However, at the sub-catchment and basin scale, groundwater levels appear less
impacted than in the cited literature or indigenous knowledge surrounding the use of
interventions for water security at a local scale, suggesting further investigation is required.
This study incorporated stakeholder and expert knowledge, as well as published literature
information in the conceptualisation of the interventions within the model. New and
creative approaches had to be utilised where data gaps existed to model the effects of
interventions at the basin scale. The approach outlined in this study can be applied in
different model applications in regions where interventions are prominent, if the source
code is available for adaption. This study had to rely on a pragmatic approach, and as a
consequence, many assumptions were made. It does, however, provide a step forward in
the conceptualisation, quantification, and implication of small-scale storage interventions
at the basin scale.
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Appendix A

Table A1. Description of scenarios utilised in the sensitivity.

Scenario Depth (m) Width (m) Intervention
Density (m3/ha) Scenario Depth (m) Width (m) Intervention

Density (m3/ha)

Tanks

T1 3 n/a 25 T7 5 n/a 125

T2 3 n/a 75 T8 5 n/a 200

T3 3 n/a 125 T9 10 n/a 25

T4 3 n/a 200 T10 10 n/a 75

T5 5 n/a 25 T11 10 n/a 125

T6 5 n/a 75 T12 10 n/a 200

Check Dams

C1 1 7 25 C7 1.5 10 125

C2 1 7 75 C8 1.5 10 200

C3 1 7 125 C9 2 15 25

C4 1 7 200 C10 2 15 75

C5 1.5 10 25 C11 2 15 125

C6 1.5 10 75 C12 2 14 200

Farm Bunds

B1 0.03 n/a 25 B5 0.06 n/a 25

B2 0.03 n/a 75 B6 0.06 n/a 75

B3 0.03 n/a 125 B7 0.06 n/a 125

B4 0.03 n/a 200 B8 0.06 n/a 200
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Appendix B

Table A2. Calibration and Validation monthly Kling-Gupta Efficiency (KGE) values when GWAVA was calibrated with and without the inclusions of interventions. The green shading
represents a better performance, the grey shading represents the same performance, and the orange shading represents a poorer performance with the inclusion of interventions.

Sub-Catchment
Calibration Validation

KGE without Interventions KGE with Interventions Period KGE without Interventions KGE with Interventions Period

a Saklesphur 0.53 0.66 2006–2010 0.37 0.38 2010–2013
b Thimmanahali 0.71 0.71 2005–2009 0.72 0.68 2010–2013
c KMVadi 0.25 0.24 1991–2000 0.16 0.16 2001–2011
d Kudige 0.48 0.59 1990–2000 0.55 0.59 2012–2014
e Munthankera 0.73 0.82 1990–2000 0.66 0.70 2001–2011
f Tbekuppe 0.41 0.32 1980–1990 −1.28 −1.27 2001–2003
g TKHali 0.52 0.71 1990–2000 0.69 0.67 2001–2008
h T Narasupiar 0.60 0.68 1988–1998 0.25 0.30 1999–2002
i Kollegal 0.56 0.58 2008–2011 0.50 0.54 2012–2013
j Bilingudulu 0.74 0.74 1990–2000 0.61 0.60 2001–2011
k Urachikottai 0.34 0.74 1990–2000 0.49 0.51 2001–2008
l Kodumodi 0.25 0.62 1990–2000 0.24 0.30 2005–2010
o Musiri 0.33 0.65 1990–2000 0.43 0.44 2006–2010
m Thengumarahada 0.57 0.50 1990–2000 0.39 0.44 2001–2008
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Appendix C

Table A3. Input data utilised in the GWAVA model setup.

Input Data Spatial Resolution Temporal Resolution Time Period Source

Precipitation 0.25 degree Daily 1951–2017 Indian Meteorological Department [73]
Maximum Temperature 0.25 degree Daily 1951–2016 Indian Meteorological Department [73]
Minimum Temperature 0.25 degree Daily 1951–2016 Indian Meteorological Department [73]
Open Water Evaporation India Monthly 1959–1968 Central Water Commission, Basin Planning & Management Organisation [53]
Streamflow gauged data Cauvery Basin Daily 1971–2014 India-WRIS
Reservoir inflow and outflow data Cauvery Basin Monthly 1974–2017 India-WRIS
Water transfers Cauvery Basin Ashoka Trust for Research in Ecology and the Environment (ATREE)
Tanks Cauvery Basin 2019 Waterbodies dataset [71]
Check dams Karnataka (District) 2006–2012 Structural Investment Report, Watershed Development Department
Farm bunds Karnataka (District) 2006–2012 Structural Investment Report, Watershed Development Department
Elevation 0.003 degree 2000 NASA Shuttle Radar Mission Global 1 arc second V003 [81]
Soil type 0.008 degree 1971–1981 Harmonized World Soil Database v1.2 [82]
Land Cover Land Use 0.001 degree 2005 Decadal land use and land cover across India 2005 [83]
Crops Cauvery Basin (Taluk *) 2000 National Remote Sensing Centre (NRSC)
Total Population Cauvery Basin (Village) 2011 Indian Decadal Census
Rural Population Cauvery Basin (Village) 2011 Indian Decadal Census
Livestock 0.05 degree 2005 CGIR Livestock of the World v2 [84]

* Taluk-a subdivision of a district consisting of a group of several villages organized for revenue purposes.
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Figure A4. (Left): the mean annual precipitation for each calibration catchment over the period 1986–2005; middle: the 
percentage reduction in Q10 flow for each calibration catchment over the period 1986–2005; (right): the percentage reduc-
tion on Q90 flow for each calibration catchment over the period 1986–2005. 

Table A4. The total annual (for 1998, 2002 and 2005) precipitation (P), simulated streamflow (Q), simulated total evapora-
tion (ET) and average annual aquifer level (Aq) below ground level with and without interventions. The change (∆) with 
the inclusion of interventions is presented as a percentage change. 

 Year P (mm) 
Q-int 
(mm) 

Q-no int 
(mm) ∆Q (%) 

ET-int 
(mm) 

ET-no int 
(mm) ∆ET (%) 

Aq-int 
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Aq-no 
int (m) ∆Aq (m) 

S1 
1998 507 118 130 −9.4 624 602 3.4 14.02 14.42 2.7 
2002 382 44 48 −8.8 436 421 3.4 12.46 12.86 3.1 
2005 668 68 75 −8.6 735 708 3.6 14.52 14.92 2.6 

Figure A4. (Left): the mean annual precipitation for each calibration catchment over the period 1986–2005; middle: the percentage reduction in Q10 flow for each calibration catchment
over the period 1986–2005; (right): the percentage reduction on Q90 flow for each calibration catchment over the period 1986–2005.

Table A4. The total annual (for 1998, 2002 and 2005) precipitation (P), simulated streamflow (Q), simulated total evaporation (ET) and average annual aquifer level (Aq) below ground
level with and without interventions. The change (∆) with the inclusion of interventions is presented as a percentage change.

Year P (mm) Q-int (mm) Q-no int (mm) ∆Q (%) ET-int (mm) ET-no int (mm) ∆ET (%) Aq-int (m) Aq-no int (m) ∆Aq (m)

S1
1998 507 118 130 −9.4 624 602 3.4 14.02 14.42 2.7
2002 382 44 48 −8.8 436 421 3.4 12.46 12.86 3.1
2005 668 68 75 −8.6 735 708 3.6 14.52 14.92 2.6

S2
1998 1874 977 1020 −4.2 1527 1485 2.7 12.61 12.61 0
2002 656 669 704 −5 489 477 2.5 12.64 12.64 0
2005 2085 802 840 −4.5 1301 1262 3 12.32 12.32 0

Outlet
1998 1341 325 334 −2.6 1030 928 9.9 8.97 9 0.2
2002 685 130 134 −2.6 521 469 9.9 8.97 8.99 0.3
2005 1413 432 446 −3.1 1067 962 9.8 8.95 8.96 0.1
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