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Abstract: In planning and managing water resources, the implementation of optimization techniques
in the operation of reservoirs has become an important focus. An optimal reservoir operating policy
should take into consideration the uncertainty associated with uncontrolled reservoir inflows. The
charged system search (CSS) algorithm model is developed in the present study to achieve optimum
operating policy for the current reservoir. The aim of the model is to minimize the cost of system
performance, which is the sum of square deviations from the distinction between the release of
the target and the actual demand. The decision variable is the release of a reservoir with an initial
volume of storage, reservoir inflow, and final volume of storage for a given period. Historical rainfall
data is used to approximate the inflow volume. The charged system search (CSS) is developed by
utilizing a spreadsheet model to simulate and perform optimization. The model gives the steady-state
probabilities of reservoir storage as output. The model is applied to the reservoir of Klang Gates for
the development of an optimal reservoir operating policy. The steady-state optimal operating system
is used in this model.

Keywords: charged system search (CSS); reservoir operation; Klang Gates dam; Malaysia

1. Introduction

Dams are classified according to construction type and materials, such as gravity, arch,
buttress, and embankment. The first three are usually of concrete construction. For stability,
a gravity dam relies on its weight and is generally straight in plane, although often slightly
curved. Arch dams transmit most of the water’s horizontal thrust behind them through
arch action to the abutments and have thinner cross-sections than comparable gravity
dams. The simplest of the many types of support dams is the slab form, which consists of
sloping concrete slabs backed by buttresses at intervals. Embankment dams are built of
soil and/or rock with vertical control provision using an impermeable core or upstream
cover. A single structure may include more than one type of dam [1–3].

Dams are among the main components of water supply networks. Water managed
by and stored in dams is essential in many places to meet the development goals of water
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supply, agriculture (i.e., irrigation and livestock), manufacturing, energy production, and
other sectors [4]. Dams are a dividing barrier to waters. Dams typically serve the primary
function of water control, whereas other systems such as floodgates, levees, and dikes are
used to prevent water from flowing into different regions of the country [5–11].

Greater desire for flood control and water supply follows rapid economic and pop-
ulation growth in Malaysia. Additionally, the flow requirements for wildlife protection,
fish, and the preservation of freshwater flows into the reservoir have gained attention re-
cently. Moreover, the state’s climate is characterized by intense floods; therefore, the highly
variable streamflow is controlled and utilized by reservoirs. However, building an addi-
tional new reservoir project is now much more complicated than in the past. Therefore, the
optimization of the beneficial usage of current reservoirs is becoming more relevant [12–14].

Until construction, reservoirs’ storage capacity and operating policies are commonly
established and remain unchanged afterward. Nevertheless, the operation of existing reser-
voirs is influenced by new reservoirs and other similar forms, such as conveyance systems
and flood control levees. The objectives of public interests and various factors influencing
the productivity of reservoirs change dramatically over time. The increasing need to make
the limited storage capacity as effective as possible warrants periodic re-evaluations of
operating policies. Technological developments in hydrological data collection, streamflow
prediction, system modeling, and interpretation give opportunities to optimize operational
procedures [15,16].

The optimal operation of multireservoir and multipurpose reservoirs has attracted
growing attention among water management planners over the last three decades. Various
mathematical techniques have been developed and implemented, with long-term goals
and real-time operation of these reservoirs [17]. In general, the proper functioning of the
reservoir is not a simple task due to the high uncertainty involved in hydrology and the
contradictions between its uses. Such conflicts can arise, for instance, between conservation
purposes and flood control or conservation purposes themselves. In addition, they may
occur in the same beneficial use, such as the distribution of water storage. Therefore, the
operating cycle of the reservoir should be seen as a complex stochastic control problem [18].

One of the earlier methods used by Christensen and Soliman [19] was integrating the
multi-reservoir hydro-plant into a single complex equivalent reservoir and solution by
SDP. They stated that such a depiction of the reservoir could not take all local reservoir
material constraints, water flows, and hydro-plant generation into account. For systems
where reservoirs and inflow characteristics are ‘identical’ enough to justify integration into
a hydro-plant model and single reservoir only, this method can be used satisfactorily.

A water supply, irrigation, or hydroelectric project that draws water directly from
a stream may not meet its consumers’ demands during low flows. This stream, which
can hold little to no water during portions of the year, frequently becomes a raging river
after heavy rains and a threat to all activities along its banks. Storage or a reservoir can
retain this excess water for use during periods of drought from high flow periods. Aside
from conserving water for later use, floodwater storage can also reduce flood damage
under the reservoir. Whatever the size of the reservoir or the ultimate usage of water,
a reservoir’s primary purpose is to regulate water flow, either by controlling a varying
supply in a natural stream or by fulfilling a variable demand from the users. Since the
reservoir’s primary function is to provide water, storage capacity is its most important
physical characteristic. The efficiency of a standard-shape reservoir can be determined
with the formulae for substantial volumes. Topographic surveys usually determine the
reservoir’s capacity at natural sites [20].

The usual level of the pool is the average depth to which the surface of the reservoir
rises under ordinary operating conditions. The spillway crest level or the top of the
spillway gates is determined for most reservoirs as a normal lake. The minimum level
of the pool is the lowest elevation. The pool level should be controlled under the normal
conditions. This degree may be determined by raising the lowest outlet in the dam or, in
the case of hydroelectric reservoirs, by the operating conditions for the turbines. Storage
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between the minimum levels and normal levels of the pool is called useful storage. Dead
storage is water that is kept below the minimum depth of the tank. According to the
operating plan adopted for multipurpose reservoirs, the usable storage can be subdivided
into conservation storage and flood control storage [19].

The operation of reservoirs is an important factor for the planning and management
of water supplies [21]. It consists of several control variables that specify the operational
strategies to direct a sequence of releases to satisfy many stakeholders’ demands with
specific objectives, such as flood management, hydropower generation, and water distribu-
tion to different users. Conflicting and unequal goals are also a significant problem in the
operation of reservoirs. Therefore, optimizing reservoir operation is vital in determining
balanced solutions between the competing objectives [22].

Various optimization techniques have been used to optimize the policy of water
release [23]. Metaheuristic techniques proved to be more reliable for dam operation [24,25].
However, some of the developed optimization algorithms have some limitations, such as
a low rate of converging, and require extensive parameters for isolating and preventing
problems [26]. Hence, there is a need to investigate reliable optimization techniques,
overcoming the drawbacks of other optimization techniques, to ensure no overdraw from
dams occurs and improve flood control planning and design requirements for the respective
basins; optimizing operation release management strategies for dams must be achieved to
resolve the issue.

Therefore, the primary purpose of this study is to examine the robustness of a charged
system search (CSS) optimization model to obtain an optimal operating strategy for a
reservoir located in Malaysia, aiming at minimizing the water deficit and mitigating the
risk of flooding.

2. Material & Methods
2.1. Study Area and Data Acquisition

The Klang Gates Dam was designed to supply 168 million liters of raw water per day
since 1959 to the Bukit Nanas treatment plant only. However, a treatment plant was built
in Wangsa Maju during the 1998 water crisis, drawing 45 million liters of water per day
from the same dam. This overdrawing has resulted in the dam drying up fast. Rather than
blaming the environment, the authorities should carry out a thorough analysis of dams’
safe yields and ensure that water is not overdrawn from these dams beyond the revised
safe yields [27].

Malaysia also has an equatorial climate, with consistently high temperatures and high
relative humidity. For Peninsular Malaysia, the average annual rainfall is 2420 mm. Flood
reports suggest that flood events are a seasonal phenomenon. These storms produce short
but hefty rainfall, which overloads drainage systems heavily and causes localized flooding.
For example, devastating flooding occurred in the Federal Capital of Kuala Lumpur in 1971,
the worst flooding event in Malaysia in recent times. The Klang Gates Dam is an example
of a dam built to supply water and as a flood mitigation dam [28]. Figure 1 shows the Klang
Gates Dam and Klang River location, and Table 1 represents the physical characteristic of
the Klang Gates Dam.

The data are collected from the Department of Drainage and Irrigation (DID) located
in Kuala Lumpur, Malaysia. The data include rainfall data and the dam level record for
the past 21 years 1987 to 2007 and storage data for the year 2002. The collected data were
the following:

i. History, profile, and introduction of Klang Dam;
ii. Data on the water demand/supply of Klang Dam;

iii. Data on the inflow of Klang Gates Dam;
iv. Data on the outflow of Klang Gates Dam;
v. Soil moisture in the irrigated area.



Sustainability 2021, 13, 5900 4 of 19

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 19 
 

 

 

 

Table 1. The physical characteristics of Klang Gates Dam. 

Item Description 

Location Taman Melawati, Hulu Kelang 

Function 

 Water supply by Wangsa Maju Water Treatment Plants and Pun-

cak Niaga (M) Sdn Bhd for Bukit Nanas 

 Flood mitigation by Drainage and Irrigation Department 

Year Operation 1959 

Type Arch gravity concrete 

Height 36.88 m 

Catchment Area 74.46 km2 

Impounded Area 2.70 km2 

Capacity 28,150 ML (6194 MG) 

Maximum Level 95.22 m ODL 

 

Figure 1. Location of Klang Gates Dam and Klang River [29] 

The data are collected from the Department of Drainage and Irrigation (DID) located 

in Kuala Lumpur, Malaysia. The data include rainfall data and the dam level record for 

the past 21 years 1987 to 2007 and storage data for the year 2002. The collected data were 

the following: 

i. History, profile, and introduction of Klang Dam; 

ii. Data on the water demand/supply of Klang Dam; 

iii. Data on the inflow of Klang Gates Dam; 

iv. Data on the outflow of Klang Gates Dam; 

v. Soil moisture in the irrigated area. 

The inflow volume of the Klang Gates reservoir is calculated as the following equa-

tion. 

𝐼𝑛𝑓𝑙𝑜𝑤 =  0.5 ×  𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 ×  𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎 𝑜𝑓𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟   (1) 

Rainfall in the catchment area does not necessarily go into the reservoir. In this case, 

it is considered that 50% of rainfall goes into the reservoir and catchment area of the res-

ervoir (74.46 km2). Based on the historical rainfall data from the year 1897 to the year 2007, 

the volume of inflows per month is shown in Figure 2. 

Figure 1. Location of Klang Gates Dam and Klang River [29].

Table 1. The physical characteristics of Klang Gates Dam.

Item Description

Location Taman Melawati, Hulu Kelang

Function
• Water supply by Wangsa Maju Water Treatment Plants and Puncak

Niaga (M) Sdn Bhd for Bukit Nanas
• Flood mitigation by Drainage and Irrigation Department

Year Operation 1959

Type Arch gravity concrete

Height 36.88 m

Catchment Area 74.46 km2

Impounded Area 2.70 km2

Capacity 28,150 ML (6194 MG)

Maximum Level 95.22 m ODL

The inflow volume of the Klang Gates reservoir is calculated as the following equation.

In f low = 0.5× Rain f all × Catchment Area o f Reservoir (1)

Rainfall in the catchment area does not necessarily go into the reservoir. In this case, it
is considered that 50% of rainfall goes into the reservoir and catchment area of the reservoir
(74.46 km2). Based on the historical rainfall data from the year 1897 to the year 2007, the
volume of inflows per month is shown in Figure 2.

Losses of the reservoir depend entirely on the reservoir volume of inflow. The higher
the value of the inflow, the more loss will be caused by the leak of groundwater of the dam
or by evaporation. Positive values for the loss mean that the leak of groundwater is more
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than the evaporation, and vice versa for a negative value for the loss. From these data, the
value of loss can be found by referring to the range of the inflow volume of the reservoir,
as shown in Table 2.
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Table 2. Range of inflow and value of the loss.

Inflow (MG) Loss (MG)

0 < I ≤ 500 740.199
500 < I ≤ 1000 −11.405

1000 < I ≤ 1500 −472.402
1500 < I ≤ 2000 −643.010
2000 < I ≤ 2500 −758.122
2500 < I ≤ 3000 −1327.168

I > 3000 −2186.554

From the 21-year data observed (1987 to 2007), the initial storage volumes were
discrete in five states per month. By having the minimum storage, Smin, and the maximum
storage, Smax of the reservoir, get the difference between these two storages and divide
it into an N-1 interval with N is the state option. Therefore, the storage discretization is
solved. The discrete values are used as target storage in the analysis of the simulation and
optimization model (Table 3).

Table 3. Storage options.

State Storage (MG)

1 6194.00
2 5057.67
3 3921.34
4 2785.00
5 1648.67
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In this study, the average of past eleven years of release data from 1897 to 2007 was
considered the demand of the reservoir (Table 4).

2.2. Optimization Model
2.2.1. Charged System Search (CSS)

The charged system search is developed following the laws governing electrostatics
in motion and Newtonian physics mechanics, as explained by Kaveh and Talatahari [30].
Charged particles (CPs) are various solution candidates or agents used in the CSS, and
every CP is known to be a charged sphere. Under Coulomb and Gauss’s electrostatics law,
the charged sphere can apply electric forces on other charged particles, as explained by
Precup et al. [31].

Table 4. The monthly demand of the reservoir.

Month Demand (MG)

January 1298.64
February 1083.09

March 1152.45
April 1173.00
May 1198.73
June 1271.73
July 1258.14

August 1206.41
September 1160.05

October 1204.14
November 1213.09
December 1290.59

The law of Newton is then used in calculating the value of acceleration influenced
by force reacting on each CP. Finally, using Newtonian mechanics, each CP’s position at
any time can be determined by its previous acceleration, velocity, and position in the quest
space [30]. Every CP can be regarded as a radius-a charged sphere, having a uniform
volume of load density (qi) equivalent to:

qi =
f it (i)− f itworst
f itbest− f itworst

, i = 1, 2, . . . , N (2)

N is the total number of CPs, fit (i) is particle i’s fitness, and fit worst and fit best
are the worst and best fitness values of all particles. The CPs’ initial position is allocated
randomly within limits determined by the problem in the search space. Zero is taken as
initial CP velocity.

In the quest space, the CPs are distributed, and electrical forces can be placed on
others. In or outside of the area, the strength of the CP force is calculated differently. The
electrical force produced is defined by the CP within or beyond the sphere:

Fi = qi ∑
i, i 6=j

(
qi
a3 riji1 +

qi
rij

2 i2

)
pij
(
Xi − Xj

) 〈 j = 1, 2, . . . , N
i1 = 1, i2 = 0⇐⇒ rij < a

i1 = 0, i2 = 1⇐⇒ rij ≥ a
(3)

where Fj is the resulting jth CP force. Rij is the degree to which the two particles
are separated:

rij =
‖Xi − Xj‖

‖Xi+Xj
2 − Xbest‖+ ε

(4)
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where Xi and Xj are the Ith and Jth CP co-ordinates and where Xbest is the best existing CP
location. The pij calculates the probability that every CP will enter the other as follows:

pij =

{
1 f it(i)− f itbest

f it(j)− f it (i) > randor f it(i) > f it(i)

0 otherwise
(5)

In Equation (3), the sphere’s force on a CP is proportional to the distance between
particles. However, the separation distance for CPs outside the sphere is inversely pro-
portional to the cube. Based on the output powers and the legislation on motion, the new
positions of the CPs are defined. At the present point, each CP travels to its new location
according to the resulting forces and its previous speed:

Xj,new = randj,1·ka·
Fj
mj
·∆t2

+randj2·kv·Vj,old·∆t + Xj,old
(6)

Vj,new =
Xj,new − Xj,old

∆t
(7)

where randj2 and randj1 are two random numbers uniformly distributed (0,1). mj here is the
CP jth mass, which resembles qj. The time phase is Dt and unification is to be established.
Ka is the acceleration coefficient; kv is the velocity coefficient that governs the preceding
speed effect, which can be held constant or differ in the following steps:

ka = α×
(

1 +
iter

itermax

)
, kv = β×

(
1− iter

itermax

)
(8)

where the itermax is the number of iters set for the algorithm to be run, and the iter is the
number of iterations currently performed. kv decreases linearly to zero, while ka rises
to 2α as the number of iterations increases, retaining the balance between discovery and
convergence [30]. Equation (8) parameters can be modified, and these parameters are
defined to decide the coefficients of acceleration and speed (ka and kv). The value of 0.5
was indicated for both parameters α and β in the CSS algorithm’s reference text by Kaveh
and Talatahari [30]. Substituting Equation (8), Equations (6) and (7) for ka and kv can be
rewritten as:

Xj,new = α× randj1·
(

1 + iter
itermax

)
·∑i,i 6=j

(
qt
a3 riji1 +

qt
rtj

2 i2

)
pij
(
Xi − Xj

)
+β× randj2·

(
1− iter

itermax

)
·Vj,old + Xj,old

(9)

Vj,new = Xj,new − Xj,old (10)

A memory, called charged memory (CM), is often recommended to store the best
output. As a CP leaves the search field, its positioning is probabilistically corrected by
the harmonic search-based handling mechanism by generating or selecting a new value
from the CM. It should be highly advised that the primary referencing be referred to in
paper [30] so that the CSS algorithm’s concepts and functions are better defined.

The current location for each CP is determined after an iteration is finished just before
the new iteration starts. Ignoring this assumption, Kaveh and Talatahari [30] suggested the
enhanced CSS algorithm, in which all updating processes are conducted after evaluating
each CP. The new location of each agent will influence the related CP’s travel process,
using this updating method in the CSS algorithm, while no new positions will be used
in standard CSS before the iteration is complete. This modified algorithm improves the
algorithm’s performance by automatically using the data gathered by the CPs, although it
does not require additional computation time relative to the original CSS. However, the
original CSS retains information obtained by the agents for a pre-determined time, which
results in a break in the optimization process as the information about each agent’s current
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position is included in the improved CSS algorithm during the next search, which enhances
the optimization potential of the algorithm and increases convergence speeds [32].

2.2.2. Water Supply Optimization Model

The aim is to collect reservoir releases for the given inflow duration so that a pre-
defined pattern of requirements is met in a reservoir water supply operation. This ensures
that the released flow must meet the demand level as quickly as possible and that surplus
supplies from the reservoirs must be minimized. Therefore, the mathematically defined
optimum activity of the water reservoir is as follows [23]:

Minimize F =
NT

∑
t=1

(
D(t)− R(t)

Dmax

)2
(11)

Subject to equations of continuity at each stage:

S(t + 1) = S(t) + I(t)− R(t)− Loss(t) (12)

Smin ≤ S(t) ≤ Smax (13)

Rmin ≤ R(t) ≤ Rmax (14)

Loss(t) = Ev(t)× A(t)
1000

(15)

A(t) = x0 + x1 × S(t) + x2 × s(t)2 + x3 × S(t)3 (16)

where R(t) (reservoir release in MG), D(t) (demand in MG) for time, I(t) (inflow), and
S(t) (storage). Loss(t) is the cumulative loss and gain of a reservoir in time step t of the
evaporation and precipitation. During t, time phase, Ev(t) is the height of evaporation, and
the constant values x0, x1, x2, and x3. Loss(t) in cases where the loss of evaporation is not
taken into account in Equation (12) is omitted from the equation.

2.3. Reliability and Risk Analysis
2.3.1. Root Mean Square Error (RMSE)

RMSE is used to find the nearest release curve to demand for all types of the inflow.
RMSE can be expressed as Equation (17).

RMSE =

√
mean

(
(Ri − Di)

2
)

(17)

where, i is the state of storage, R is the release at storage i, and D is demand at storage i.

2.3.2. Reliability (Rv and Rp)

For a reservoir optimization process, the most crucial index for checking the model’s
performance to meet the goals is reliability. For this cause, the water scarcity level was
determined. The concept of volumetric (Rv) and periodic (Rp) reliability from [33] is
incorporated into Equations (18) and (19). Reliability is the key index of the efficiency check
of a model in order to meet the goals for a reservoir optimization model, as explained by
Zio [34]. The level of water deficiency was assessed for this reason. The idea of stability of
the volumetric (Rv) and periodic (Rp) from [29] is given as Equations (18) and (19).

Reliability, Rv = (v/V) × 100% (18)

Rp = (n/N) × 100% (19)

where v is water discharge volume (model output), V is the target demand volume and n
is the total time for satisfying the desired demand (months), and N is the total time period
(in months).
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2.3.3. Resilience (Rs)

For a reservoir optimization process, the most crucial index for checking the model’s
performance to meet the goals is reliability. For this cause, the water scarcity level was
determined. Then it incorporated into Equations (18) and (19) as the concept of volumetric
(Rv) and periodic (Rp) reliability [35].

Rs = NS/NT (20)

where NS is the amount of the (zero shortage) fulfilled time after the shortage and NT is
the cumulative deficiency period.D. VULNERABILITY (V)

Vulnerability tests the severity of a reservoir structure model’s malfunction parameters.
This is the highest likelihood of failure. According to Sandoval-Solis et al. [36], vulnerability
(V) can be calculated as Equation (21) from any simulation data.

V =
1
m
×

N

∑
t=1

[max(0, Dt − Rt)] (21)

2.3.4. Sustainability Index (SI)

The SI is suggested to measure the sustainability of water supply systems to promote
the measurement and evaluation of water management policies [21]. The SI is a sum-
mary index that measures water resource systems’ sustainability [36]. Differentiating the
various proposed water policies index can be implied to approximate water consumers’
sustainability and create an improvement in sustainability. The SI can be expressed as
Equation (22).

SI = [Rp× Rs× (1−V)]
1/3 (22)

where, Rp is the periodic reliability, Rs is the resilience, and V is the vulnerability.
The simulation was carried out for 12 months for 21 years of rainfall data, from

1987 to 2007. Figure 3 shows the simulation framework of the optimized approach for the
operation of a reservoir release curve, from data collection to the end process of the model
algorithm, charged system search (CSS).
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3. Results and Discussion
3.1. Release Curves

The optimum release options for the different storage have been determined using
the developed CSS algorithm as shown in Figure 4 for each month of the year. The main
aim is to develop a release curve depicting the best release policy based on the changes
in the inflow. The policy is seen as the operating policy of the steady state. The optimum
results in terms of reservoir storage volume and release are shown in the figures that aim
to minimize the expected device output. The graphs plotted with the initial storage of
reservoir versus the release per unit of demand for each month in different states are for a
high, medium, and low state.
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Figure 4a shows the optimal release policies for January. In the figure, the model
failed to meet the demand during high, medium, and low inflow at a low storage level,
1648.67 MG. The demand is then met when the storage level is 2785 MG for all inflow
categories. The release only failed to meet the demand at 1648.67 MG storage for all
inflow categories for January. For February, the optimal release policies are shown in
Figure 4b. The release only failed to meet the demand during the medium and low inflow
at 1648.67 MG storage from the figure. The rest of the figure shows that the release managed
to fulfill the demand needed.

Following the obtained results from Figure 4, it can be concluded that the developed
optimization technique proposed a reliable decision to release water to meet the demand
for the entire twelve months and during different inflow scenarios. However, during
high and medium inflow, the proposed model exhibits high performance in optimizing
the release of water to meet the demand downstream. With regards to low inflow, the
optimized release policy did not always meet the demand, especially during the initial
storage, which is naturally hard to supply water up to the demand level when there is
low storage.

To validate the reliability of the proposed model, a comparison between the findings
and the different optimization algorithms was carried out. Hossain and El-shafie [37]
developed different optimization techniques using the same current study area. Therefore,
the following section demonstrates the performance of the proposed SCC model with the
findings from the published study by Hossain and El-shafie [37].

In order to compare the RMSE of the release curve between the model algorithms,
an Equation was used to denote the release policy error for all inflow groups. Errors
are represented as a percentage of demand in Figure 5. The values of RMSE are taken
to measure the mean error of the release curves in terms of demand. The mean error is
defined in Equation (23).

RMSEavg =
∑12

t=1 RMSEt

∑12
t=1 Demandt

× 100% (23)
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Figure 5 shows the optimal operating policies from January to December. In this paper,
the inflow is categorized into high, medium, and low inflow types. This inflow is obtained
from average rainfall from the year 1987 to the year 2007. The inflow is measure using
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Equation (1) and calculated into monthly inflow for 12 months. For each inflow category,
five different states of reservoir storage level are applied for this model algorithm. The
model algorithm in this study is charged system search (CSS).

Overall, Figure 5 shows that the release only failed to meet the demand when the
storage level was low, at 1648.47 MG. Some of the inflow in high and medium categories
managed to fulfill the demand during low storage level; however, there are times when high
and medium inflow could not meet the demand, especially for a low category. Other than
that, the reservoir met the demand for the rest of the storage level for all inflow categories.

As a result, it indicates that the reservoir is able to fulfill the demand needed for all
inflow categories at a storage level of 2785 MG within the reservoir constraints.

Figure 5 shows the error of the release policies for all inflow categories. The charged
system search (CSS) algorithm has the lowest error in high inflow compared with ABC,
PSO, real coded GA, and binary GA algorithms. For medium inflow, CSS has the highest
error of release than other algorithms. The CSS algorithm has the third-lowest error rate,
while the real coded GA and ABC algorithm has lower error rates than CSS. It can be seen
that charged system search (CSS) is the most accurate model with the closest values to
demand for high inflow and the less accurate model for medium inflow.

3.2. Reliability and Risk Analysis

The simulation results were examined from different points of view in order to perform
risk analysis and model comparison. The following section provides information about the
root mean square error (RMSE), reliability, resilience, and vulnerability of each optimized
release policy according to the proposed model results compared with the other previously
published models.

The calculated RMSE values for every month are obtained by using Equation (17)
as shown in the methodology section. The RMSE values are calculated for three types of
inflows: high, medium, and low for CSS, ABC, PSO, real coded GA, and binary GA.

The RMSE values for each of the optimizers for the three pre-defined inflows can be
seen in Table 5. It can be seen that the lowest average RMSE value among all optimizers
was found to be associated with the proposed CSS model during high inflow events. Such
findings suggest that CSS can be more reliable in dealing with extreme events such as
heavy rainfall events, which is very common in Malaysia. Is also can be concluded that
the proposed algorithm outperformed all other models scientifically for the high inflow.
However, overall, all the models have similar performances during the three different
inflow classes combined, which is still acceptable.

Table 5. RMSE of the release curves (in MG) for KGD.

Months CSS ABC PSO Real Coded GA Binary GA

H
ig

h
In

flo
w

January 194.44 73.15 78.38 68.67 83.86
February 0.41 79.48 82.52 85.62 109.72

March 0.94 67.02 62.23 77.94 83.56
April 1.48 64.05 60.05 61.21 69.28
May 0.55 71.46 59.21 60.38 70.93
June 0.89 38.02 46.11 35.56 44.72
July 1.55 44.66 46.64 42.86 38.92

August 0.66 59.96 57.66 66.39 72.20
September 1.79 66.14 67.09 61.46 82.39

October 1.74 55.28 59.01 52.48 63.29
November 2.08 54.64 57.16 64.26 67.48
December 1.94 0.00 0.14 40.10 94.89

Total 208.47 673.86 676.20 716.94 881.24
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Table 5. Cont.

Months CSS ABC PSO Real Coded GA Binary GA

M
ed

iu
m

In
flo

w

January 245.61 95.56 97.33 102.11 118.60
February 237.48 57.16 61.46 67.16 63.49

March 66.71 70.65 62.91 63.67 75.56
April 1.33 46.90 56.12 58.47 80.26
May 24.58 62.36 56.75 40.65 101.96
June 173.96 51.77 57.15 68.58 41.41
July 126.22 65.17 56.19 66.07 96.61

August 91.66 53.97 54.98 55.84 68.21
September 0.29 0.00 0.14 8.19 50.81

October 0.68 0.00 1.81 20.48 44.48
November 3.81 0.00 0.47 17.75 49.48
December 137.45 0.00 1.88 16.49 56.61

Total 1109.78 503.53 507.20 585.46 847.48

Lo
w

In
flo

w

January 194.71 205.70 199.42 209.16 214.70
February 37.43 145.25 145.43 137.61 124.48

March 107.63 175.74 169.76 171.76 153.93
April 188.94 163.05 180.99 170.23 190.11
May 124.51 203.28 178.76 175.12 197.38
June 37.45 204.43 205.79 203.31 190.84
July 279.04 193.23 201.16 201.41 204.17

August 179.37 182.73 180.85 173.43 202.38
September 241.64 159.39 171.02 166.46 155.29

October 251.00 199.35 180.21 175.06 186.07
November 296.82 161.80 182.41 197.87 168.63
December 93.79 0.01 43.58 6.82 88.27

Total 2032.34 1993.95 2039.39 1988.24 2076.26
SUM 3350.59 3171.33 3222.79 3290.64 3804.98

Reliability indicates the frequency of a model’s success and failure, with regard to
meeting the demands. In the case of the KGD, in 12 months, five storage states and
three inflow types were considered as the total operational period. A total of 180 results
(release amounts) were obtained from each optimization model. The periodic reliability
was measured by using Equation (19).

The number of releases fulfilled the demand required for high, medium, and low
inflow, which each consist of five states of storage. Overall, the reservoir can meet the
demand of about 81.67% from 180 total releases in 12 months, as shown in Table 6. It can
be seen from the obtained results that the proposed model for low inflow met the demand
more than 80% and never exceeded the demand. For medium inflow, similar performance
was achieved when the proposed model met more than 80% of the water demand down-
stream of the reservoir. Similar robust performance was achieved during the high inflow
events. Such performance confirms the reliability of the proposed model for optimizing
the release policy to achieve the demand without violating any defined constraints.

Finally, we gauged the robustness of the proposed model using a different set of
measures. In this study, performance measurements were conducted to check the reliability,
resiliency, sustainability, and vulnerability of the model algorithm, charged system search
(CSS), for overall performance for KGD, as can be seen in Table 7. In terms of reliability,
the proposed model exhibits a high-reliability percentage for the three different inflow
scenarios, which ranges between 93.75% and 99.43%. In terms of resiliency, it can be seen
that the proposed release policy from the CSS model is capable of recovering from failure
during different inflow events. A low vulnerability indicator was found when the proposed
model was used to optimize the release policy in this case study. Finally, in terms of how
sustainable the proposed model is, a sustainability index measurement was calculated
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for the different defined inflow classes, which shows that the proposed model is reliable
in dealing with any inflow changes that occur and can be used as sustainable tools for
optimizing the release from the reservoir efficiently.

Table 6. Periodic reliability of the release curves (in MG) for KGD.

Inflow More than Demand Less than Demand Meet the Demand Total Release (12 Months)

Low
0.00% 20.00% 80.00%

60(0 times) (12 times) (48 times)

Medium
1.67% 16.67% 81.67%

60(1 times) (10 times) (49 times)

High 5.00% 11.67% 83.33%
60(3 times) (7 times) (50 times)

Total
2.22% 16.11% 81.67%

180(4 times) (29 times) (147 times)

Table 7. Performance checking measures (in MG) for KGD.

Inflow Reliability, Rv
(%)

Reliability, Rp
(%) Resiliency, Rs Resilience

(months)
Vulnerability,

Vul
Sustainability

Index, SI

High 99.43 88.33 0.1167 7 7.25 278.04
Medium 96.63 83.33 0.1667 10 9.15 305.75

Low 93.75 80.00 0.2000 12 7.26 319.98
Total 96.61 83.89 0.1611 29 7.89 301.26

In summary, based on the release curves, reliability, and risk analysis, charged system
search (CSS) proves to be applicable in optimizing the dam’s operation. Charged system
search generates the operating rule in monitoring the reservoir’s release in order to meet the
demand. The CSS algorithm resulted in lower error rates for release policies in high inflow
than ABC, PSO, real coded GA, and binary GA algorithms. By using charged system search
(CSS), about 81.67% of the demands are met in all inflow categories for 180 releases in
12 months. The reliability (Rv) and reliability (Rp) for the CSS algorithm are high, proving
that the algorithm has high stability. Overall, the charged system search (CSS) algorithm is
applicable in minimizing the release policy to obtain a minimum difference between target
release and actual demand.

Therefore, it can be concluded that the charged system search (CSS) algorithm can be
adopted as a reliable tool for operating the Klang Gates dam since it outperformed the pre-
viously developed algorithms. However, there is a need to investigate other optimization
techniques that were recently developed by other researchers and exhibit promising results.
For instance, the Jaya algorithm (JA) was recently proposed to optimize the operation
policy of a hydropower reservoir [24]. They found that the JA technique outperformed
other selected algorithms compared with searching for the best solution. In addition to that,
recently, different advanced optimization techniques are proposed as robust techniques
to be used in searching for the best solution in dealing with water resources issues [26].
For example, the waterdrop optimization technique [38], the whale optimization algo-
rithm [39], the ant lion optimization algorithm [40], the nomadic people optimization
algorithm [41], the Harris hawks optimization algorithm [42], and the grey wolf optimiza-
tion technique [27]. Therefore, future work could be carried out to develop these recent
optimization techniques and explore their performances in optimizing the release from the
reservoir to meet the downstream demand.



Sustainability 2021, 13, 5900 17 of 19

4. Conclusions

This study investigated the efficiency of the charged system search (CSS) algorithm
as an alternative tool to optimize the reservoir operation policy in order to minimize the
deficit of water at Klang Gates dam. The robustness of the proposed algorithm is validated
and compared with four different optimization algorithms. The study’s findings reveal that
the CSS algorithm is more accurate in simulating the release policy and outperformed other
algorithms in terms of reliability, resistance, and sustainability. Moreover, the results reveal
that the CSS algorithm is much faster in approaching the optimal state and less complicated
compared with other algorithms. In addition, the proposed algorithm exhibits a high level
of reliability in minimizing the deficit, especially during low flow season. However, future
work is needed to explore the reliability of more advanced optimization algorithms, such
as hybrid optimization techniques. In addition to that, more recent data could be included
to validate the robustness of these models, and the impact of future climate changes and
extreme weather events such as floods and droughts need to be considered.
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