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Abstract: The development of advanced computational models for improving the accuracy of
streamflow forecasting could save time and cost for sustainable water resource management. In
this study, a locally weighted learning (LWL) algorithm is combined with the Additive Regression
(AR), Bagging (BG), Dagging (DG), Random Subspace (RS), and Rotation Forest (RF) ensemble
techniques for the streamflow forecasting in the Jhelum Catchment, Pakistan. To build the models,
we grouped the initial parameters into four different scenarios (M1–M4) of input data with a five-
fold cross-validation (I–V) approach. To evaluate the accuracy of the developed ensemble models,
previous lagged values of streamflow were used as inputs whereas the cross-validation technique and
periodicity input were used to examine prediction accuracy on the basis of root correlation coefficient
(R), root mean squared error (RMSE), mean absolute error (MAE), relative absolute error (RAE), and
root relative squared error (RRSE). The results showed that the incorporation of periodicity (i.e., MN)
as an additional input variable considerably improved both the training performance and predictive
performance of the models. A comparison between the results obtained from the input combinations
III and IV revealed a significant performance improvement. The cross-validation revealed that the
dataset M3 provided more accurate results compared to the other datasets. While all the ensemble
models successfully outperformed the standalone LWL model, the ensemble LWL-AR model was
identified as the best model. Our study demonstrated that the ensemble modeling approach is
a robust and promising alternative to the single forecasting of streamflow that should be further
investigated with different datasets from other regions around the world.

Keywords: ensemble modeling; additive regression; bagging; dagging; random subspace;
rotation forest

1. Introduction

To understand the current state, potential, and prospects of water availability, system-
atic studies on all aspects of basin hydrology (e.g., precipitation, surface, and sub-surface
water) and investigation of all indicators are required [1–3]. Streamflow is one such in-
dicator that has a direct influence on local drinking water supply and the quantity of
water available for irrigation, hydro-electricity generation, and other needs [4]. Indeed,
projections have shown that 20% of the river discharge is controlled by human interven-
tions [5]. Changes in land use and land cover over time, glaciers, snowfields, topographic
boundaries, dams, and reservoir management are some of the key factors influencing
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streamflow trends [6]. Streamflow data are a very valuable asset if available over a long
period of years. Advantages of streamflow forecasting include early flood warning and
mitigation, reservoir planning and management, quantification of available water resources
for water supply projects, etc. [7]. Accurate forecasting of streamflow is crucial for the
efficient management of water reservoir systems, such as dams, under competing demand
for water for irrigation, domestic use, and hydro-power generation activities while at the
same time maintaining an adequate environment in the river (or stream) system [8]. In
addition, both short-term and long-term streamflow forecasting is necessary pertaining to
the optimization of the hydrological components of water resource systems mainly during
flood or drought periods [9]. Early prediction of streamflow could provide an imminent
warning to disaster management organizations to prepare in response to floods quite early
thus preventing the costly socio-economic losses incurred from such extreme events [10].

Since streamflow is a derivative of a complex physical system, the predictions of
streamflow using physical-based models generally have significant, inherent uncertainty
caused by inaccurate or simple representation of hydrological processes, incomplete or
incorrect antecedent conditions, bias or errors in the input variables, or uncertainty in the
model parameters. In addition, the requirement for big data (n number of parameters)
to simulate the hydrological process also restricts the application of physical models [11].
The application of statistics-based time series models such as the autoregressive integrated
moving average (ARIMA) model and its derivatives such as periodic or seasonal ARIMA
models and more complex multivariate models such as transfer function-noise (TFN) mod-
els have been particularly widely used in forecasting monthly streamflow [12]. However,
these models are mostly built upon the assumption that the process follows a normal
distribution, however the streamflow process is generally non-linear and stochastic in na-
ture [13]. Machine learning (ML) models, which have been widely used in recent decades to
model many real-world problems [14–20], have the unique ability to identify the complex
non-linear relationships between the predictors (inputs) and targets (outputs) without
the need for the physical characterization of the system or the requirement of making
any underlying assumptions. Many hybrid ensemble ML models with the integration of
different data preprocessing techniques such as wavelet transformations, empirical mode
decomposition, etc. have very high efficiency in accurately forecasting the future stream-
flow using only antecedent streamflow time series data as input [12,21,22]. Examples of
the most recent works on streamflow forecasting can be found in Adnan, Liang, Heddam,
Zounemat-Kermani, Kisi and Li [2], Ferreira, et al. [23], Piazzi, et al. [24], Saraiva, et al. [25],
and Tyralis, et al. [26].

Although several ML-derived models have been suggested and used to forecast
streamflow, there is no model that can forecast streamflow without any biases or with
utmost certainty based on the time series of antecedent streamflow values. While literature
shows evidence that some single and hybrid ML models, such as OSELM, BGWO-RELM,
MLR—KNN, RMGM-BP, RBF-ANN, and MARS-DE, are very effective in forecasting
streamflow in river basins across the world, none of these models have been proven to
forecast streamflow without any biases or with utmost certainty based on the time series of
antecedent streamflow values [2,9,12,24,27]. Hence, the development and application of
novel and sophisticated machine learning algorithms for streamflow forecasting are critical
to overcoming such limitations in favor of improving the overall forecasting accuracy and
model performance. Locally Weighted Learning (LWL) is one such novel machine learning
algorithm that has proven efficient for modeling environmental problems. Recently LWL-
based ensemble models have been successfully used to model groundwater potential [28]
and forest fire susceptibility [29]. One unique advantage of LWL is that for each point of
interest a local model is created based on neighboring data of the query point instead of
building a whole global model for the entire functional space. Based on this strategy, data
points closer to the query point receive a higher weight that can control overprediction. In
this study, we combine the LWL algorithm with five ensemble learning techniques, that
is, Additive Regression (AR), Bagging (BG), Dagging (DG), Random Subspace (RS), and
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Rotation Forest (RF), to develop five ensemble models for a novel ensemble forecasting
of streamflow. We apply the models to the lagged streamflow time-series input derived
from the antecedent streamflow data. To the best of our knowledge, the LWL technique
has not yet been investigated for streamflow forecasting and this study is the first to use
and compare different versions of the LWL-based ensemble models for this purpose.

2. Case Study

For this study, the Jhelum Catchment located in the western Himalayas in the north
part of Pakistan was selected. This catchment originates from India and drains the southern
slope of the Greater Himalayas and the northern slope of the Pir Punjal Mountains. The
upstream side of the basin located in India is occupied with great glaciers. Due to climate
change in recent years, this transboundary river in Pakistan side is greatly affected by
glacier melt. Pakistan has a key reservoir (i.e., Mangla Reservoir) downstream of this
basin. This reservoir is the second biggest reservoir in Pakistan with an installed capacity
of 1000 MW and fulfills 6% of the electricity generation demand of the country. Therefore,
precise estimation of this key catchment is very crucial for the economy and sustainability
of water resources in Pakistan. This catchment mainly consists of two main sub-basins,
that is, the Naran and Neelum basins. The catchment covers a drainage area of 33,342 km2

up to Mangla Dam with an elevation variation of 200 m to 6248 m. For accurate estimation
of streamflow in this basin, the key hydraulic station, that is, Kohala station, at the main
river Jhelum streamline after the confluence of both key tributaries (Neelum and Naran)
was selected as shown in Figure 1. For model development, the monthly streamflow data
of the selected station were obtained from the Water and Power Development Authority
(WAPDA) of Pakistan for the duration of 1965 to 2012. For a robust data analysis with the
models, a cross-validation scheme was applied. Therefore, data were divided into four
equal datasets where each dataset was used for model testing whereas the other three
datasets were set aside for model training.
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3. Methods
3.1. Locally Weighted Learning (LWL) Algorithm

The locally weighted learning (LWL) algorithm is motivated by the classification of
example-based approaches [30]. In this algorithm, the regression model is not processed
unless the output value of the new vector is presented. This is required to correctly execute
all learning at the prediction moment. LWL is an advanced type of M5 method in a way that
suits both linear and non-linear regression in space for the unique fields of example [31].
Based on the weighted results, distance according to the questionnaire was used to allocate
the weights to the training datasets and a regression equation is produced. There is a wide
range of methods of distance-based weighting that can be used on the basis of the problem
preference in LWL [32]. The statistical model for basic linear regression and the linear
model of the multiple regression are presented, respectively, in Equations (1) and (2):

yi = β0 + β1xi + εi i = 1, 2, 3. . . . .n (1)

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi (2)

where y is the response (dependent variable), x is the predictor (independent variable), yi
and εi represent random variables, and xi is constant. The linear existence of the model is
due to β-parameters. The LWL objective function of squared error is expressed as follows:

Minimize F =
1

2N

N

∑
K=1

wk

(
∝K0 +

M

∑
n=1

∝kn xkn + εk − yk

)2

(3)

where F is the function of objective, w is the weight function matrix, M is total variables
number, εk is the random error, and ∝K0 . . . . . ∝kn are regression coefficients.

3.2. Bagging

Bagging or “Bootstrap Aggregating” is a method composed of two major steps for
getting more stable, robust, and precise models [33,34]. Bagging is one of the stable
ensemble learning techniques used for resampling the training dataset. The first phase
consists of bootstrapping the raw data samples that make up the various sets of training
data. From these training datasets, multiple models are created. Prediction is generated
from the continuous training processes for datasets and multiple models. The underlying
notion of the Bagging technique is straightforward. Instead of generating predictions from
a standalone model that is appropriate for the actual data, the relationship between the
input-output variables is defined by multiple models generated. Then using the weighted
average in the Bagged algorithm, various models are coupled to form a single output [35,36].
This strategy can effectively reduce the possible uncertainties in the modeling process.
Previous works prove that Bagging is a favorable choice for ensemble modeling of many
environmental problems [29].

3.3. Additive Regression

Additive Regression was first developed by Stone [37] as a nonparametric method to
approximate a multivariate function by using multiple unary functions. For the dependent
variable Y and the independent variables X1, X2, . . . , Xp, the nonparametric additive
model can be given by:

E(Y|X1. X2. . . . Xp = ∝ +
P

∑
i=1

fi(Xi) (4)

where fi (Xi) is a unary nonparametric function. To satisfy the identifiable conditions, it is
generally required that fi (Xi) = 0, i = 1, 2, . . . , p. Compared to traditional linear models, the
nonparametric regression model does not pre-suppose the relationship between variables
and the form of the regression function. Further, it is an adaptable and robust data-driven
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model that can yield a better approximation for nonlinear nonhomogeneous problems [38].
Given these advantages, many researchers applied this technique to study the linear and
nonlinear relationships in environmental problems [39].

3.4. Random Subspace (RS)

Random Subspace (RS) was developed by Ho [40] as a new ensemble learning tech-
nique for resolving real-world problems. The numerous classifiers of this technique are
combined and trained on an altered feature space to generate multiple training subsets
for the classifiers, which are the training bases. RS applies multiple samples on func-
tion space, as opposed to the example space as in other ensemble models, as stated by
Havlíček, et al. [41]. This strategy takes advantage of bootstrapping and grouping. The RS
inputs are the training set (x), the base-classifier (w), and the subspaces number (L) [42].
It is strongly recommended by Pham, et al. [43] that this approach be used to prevent
over-fitting issues and to cope with the most unnecessary datasets.

3.5. Dagging

Ting and Witten [44] pioneered the Dagging algorithm as a resampling ensemble
technique that uses most votes to combine various classifiers to get improved prediction
accuracy for the base classifier. Dagging generates multiple different samples instead of
producing the bootstrap samples to acquire the base classifier. In recent years, it has been
considered a promising machine learning algorithm for classification problems. In the real
world, the Dagging ensemble technique has been applied to solve different classification
problems. The development of an M dataset can occur with a specific training dataset
containing N samples which may come from the existing training datasets [45,46]. There
are many n (n < N) samples in any dataset that are distinct from each other. In the particular
training datasets, the variables are not replaced and can be chosen as a part of the dataset
specified where the size of sample datasets is expanded. According to that, a base classifier
is installed on any sample dataset. Ultimately, depending on the training dataset, many
classifiers can be acquired. The capability of Dagging has been frequently proven for
obtaining improved predictive modeling of different classification problems [29,47].

3.6. Rotation Forest

Rotation Forest (RF) is an ensemble learning technique that independently trains L
decision trees using, for each tree, a different set of extracted features. Suppose the x = (x1,
. . . xn) T represents an example defined by n characteristics (attributes) and let X be an N ×
n matrix including examples of the training process. We assume that the actual class labels
of all instances of training are also given. Let go of D = {D1, . . . DL} is the set of classifiers
for L and F is the set of characteristics. The purpose of Rotation Forest is to create precise
and diverse classifiers. As in Bagging, bootstrap samples are taken as the training collection
for the individual classifiers. The key heuristic is to introduce extraction of features and
to recreate a complete feature set for each classifier in the ensemble afterward [48]. The
feature collection is randomly divided into K subsets to do this. The principal component
analysis (PCA) is run on each subset separately, and a new set of n linear extracted features
is constructed by pooling all main components. The data are translated into the new space
of the function linearly. With this data collection, classifier Di is educated. Multiple splits
of the collection of features will contribute to various extracted features, thereby leading to
the diversity of the bootstrap sampling implemented.

4. Ensemble Forecasting

Ensemble forecasting of the monthly streamflow was performed using the LWL
algorithm that was used as the base model and was combined with the Additive Regression
(AR), Bagging (BG), Dagging (DG), Random Subspace (RS), and Rotation Forest (RF)
ensemble techniques. This combination resulted in five ensemble models, namely the
ensemble LWL-AR, LWL-BG, LWL-DG, LWL-RS, and LWL-RF models. In each model, the



Sustainability 2021, 13, 5877 6 of 19

ensemble learning technique performs resampling of the training dataset to train the base
LWL algorithm. Table 1 details the summary of statistical characteristics of the data used in
this study. To build the models, we grouped the initial input parameters into four different
scenarios of input data. They include:

(i) Qt-1
(ii) Qt-1, Qt-2
(iii) Qt-1, Qt-2, Qt-3
(iv) Qt-1, Qt-2, Qt-3, MN

where Qt-1 is the streamflow at 1 previous month and vice versa and MN is the month
number of the streamflow.

Table 1. An overview of the statistical characteristics of the data used.

Statistics Whole Dataset
(m3/s) 1965 to 2012

M1 Dataset
(m3/s) 2001 to 2012

M2 Dataset
(m3/s) 1989 to 2000

M3 Dataset
(m3/s) 1977 to 1988

M4 Dataset
(m3/s) 1965 to 1976

Mean 772.9 794.0 783.7 835.8 678.0
Min. 110.7 112.3 134.9 127.0 110.7
Max. 2824 2824 2426 2773 2014

Skewness 0.886 0.931 0.716 0.845 0.888
Std. dev. 609.2 645.1 600.6 651.7 514.1
Variance 371,069 416,106 360,780 424,712 264,330

In a cross-validation approach, data were divided into four equal sets such that three
sets were used for model training and the remaining set was used for validation [49–51].
We used several performance metrics to measure the performance of the models during
both training and validation phases. These metrics include: correlation coefficient (R)
(Equation (5), root mean square error (RMSE) (Equation (6), mean absolute error (MAE)
(Equation (7), relative absolute error (RAE) (Equation (8), and root-relative square error
(RRSE) (Equation (9). A full description of these metrics can be found in the corresponding
literature [2,24,52–55].

R =
∑
(

Pi − P
)(

Ti − T
)√

∑
(

Pi − P
)2

∑
(
Ti − T

)2
(5)

RMSE =

√
∑n

i=1 (Pij − Tj)
2

N
(6)

MAE =
∑n

i=1
∣∣Pij − Tj

∣∣
N

(7)

RAE = |
Pij − Tj

Tj
| × 100 (8)

RRSE =

√√√√∑n
i=1 (Pij − Tj)

2

∑n
i=1 (Tj − T j)

2 (9)

where P is the value predicted, T is the target value, P and T are the mean predicted and
target values.

We developed the models using the open-source Weka software on an HP Laptop with
an Intel(R) Core (TM) i3-3110M CPU @ 2.40GHz, 4 GB of RAM, an x64-based processor,
and the Microsoft Windows 8.1 operating system. The optimum value for each model
parameter was identified via a trial-and-error process. To do so, we arbitrarily entered
different values until the best model performance was achieved [36,56]. Table 2 details the
optimum parameter setting of each model.
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Table 2. Optimum parameter setting of the models.

Parameter
Model

LWL AR BG DG RS RF

Debug False False False False False False

Search algorithm Linear NN
search - - - - -

Weighting kernel 0 - - - - -

Number of iterations - 14 12 10 10 11

Shrinkage - 0.1 - - - -

Bag size percent - - 100 - - -

Seed - - 1 1 1 1

Number of folds - - - 10 - -

Verbose - - - False - -

Number of boosting
iterations - 30 - - - -

Subspace size - - - - 0.5 -

Max group - - - - - 3

Min group - - - - - 3

Number of groups - - - - - False

Projection filter - - - - - PCA

Removed percentage - - - - - 50

5. Results

Table 3 shows the results of the single LWL model with different input combinations
and datasets. Given the mean values of each metric obtained from each input combina-
tion and dataset, the model with input combination IV performed the best and achieved
RMSE = 244.6 m3/s, MAE = 175 m3/s, RAE = 34.47 m3/s, RRSE = 40.90 m3/s, and
R = 0.834 in the training phase and RMSE = 274.8 m3/s, MAE = 199.2 m3/s,
RAE = 38.70 m3/s, RRSE = 44.08 m3/s, and R = 0.809 in the testing phase. Importing
periodicity (i.e., MN) as an additional input variable into the model considerably improved
both the training performance and prediction performance. A comparison between the
results obtained from the input combinations III and IV revealed a significant performance
improvement, that is, RMSE, MAE, RAE, and RRSE decreased up to 10.12, 14.59, 15.41, and
10.69% in the training phase and 6.17, 9.41, 8.40, and 9.56% in the testing phase, respectively.
In terms of the R metric, the results showed 5.3 and 6.1% training and testing improvements
when we used input combination IV. Further, the results revealed that the best and worst
predictive performance (i.e., testing performance) was obtained with the datasets M3 and
M2, respectively.
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Table 3. Results of the single LWL model.

Metric
Data
Set

Training Testing

Input Combination Input Combination

I II III IV I II III IV

RMSE

M1 358.6 300.3 295.5 255.9 365.8 308.6 311.4 295.4
M2 358.7 303.7 275.5 242.1 397.0 370.2 369.5 328.0
M3 358.8 283.8 271.5 244.0 382.1 303 292.9 274.8
M4 362.3 306.5 300.4 252.3 397.9 342.2 312.4 277.7

Mean 359.6 298.6 285.7 248.6 385.7 331.0 321.6 294.0

MAE

M1 282.6 227.7 226.0 183.5 271.0 231.3 241.4 207.7
M2 279.9 227.0 210.1 178.8 306.9 263.9 265.0 222.2
M3 274.4 213.8 204.9 175.0 291.5 228.8 219.9 199.2
M4 281.5 230.8 229.0 183.5 309.8 257.2 240.9 200.0

Mean 279.6 224.8 217.5 180.2 294.8 245.3 241.8 207.3

RAE

M1 52.24 42.09 41.78 35.92 57.57 49.12 51.27 44.12
M2 55.67 44.14 41.39 35.57 56.68 48.74 48.95 41.03
M3 53.35 42.51 40.75 34.47 56.01 43.95 42.25 38.70
M4 55.47 45.47 44.53 33.67 57.56 47.79 44.75 38.16

Mean 54.18 43.55 42.11 34.91 56.96 47.40 46.81 40.50

RRSE

M1 58.80 47.42 46.64 39.94 65.81 57.8 58.32 55.32
M2 60.51 49.62 46.19 40.85 63.60 56.34 56.24 49.91
M3 58.63 47.88 45.80 40.90 60.42 50.43 48.74 44.08
M4 60.74 51.38 49.09 41.72 61.62 52.99 48.38 46.24

Mean 59.67 49.08 46.93 40.85 62.86 54.39 52.92 48.89

R

M1 0.659 0.776 0.783 0.841 0.594 0.672 0.676 0.746
M2 0.642 0.750 0.792 0.834 0.612 0.687 0.694 0.759
M3 0.658 0.773 0.792 0.834 0.629 0.746 0.762 0.809
M4 0.634 0.736 0.759 0.826 0.619 0.723 0.757 0.789

Mean 0.648 0.759 0.782 0.834 0.614 0.707 0.722 0.776
The best performance is shown in bold.

The results of the five ensemble models, that is, LWL-AR, LWL-BG, LWL-DG, LWL-RS,
and LWL-RF, are summed up in Tables 4–8. Similar to the single LWL model, the perfor-
mance of the ensembles models was predominantly influenced by the input combination
and dataset. For example, RMSE of the testing phase ranged from 223.9 m3/s (M3-IV)
to 407.8 m3/s (M2-I) for LWL-AR, from 255.3 m3/s (M3-IV) to 345.2 m3/s (M2-III) for
LWL-BG, from 233.5 m3/s (M3-IV) to 390.6 m3/s (M2-I) for LWL-DG, from 242.8 m3/s
(M3-IV) to 397.2 m3/s (M4-I) for LWL-RS, and from 229.4 m3/s (M3-IV) to 397 m3/s (M2-I)
for LWL-RF. Given these values and also the values of other performance metrics, it is
evident that the best performance of all models was achieved by the dataset M3 and the
input combination IV (i.e., M3-IV).

Table 4. Results of the ensemble LWL-AR model.

Metric Dataset

Training Testing

Input Combination Input Combination

I II III IV I II III IV

RMSE

M1 321.0 184.5 162.4 143.7 327.5 292.8 293.3 261.9
M2 310.0 183.8 170.3 128.3 407.8 334.4 315.2 273.5
M3 306.9 174.0 152.1 138.4 373.6 264.4 258.8 223.9
M4 314.2 193.3 169.1 139.1 377.6 294.6 284.2 242.9
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Table 4. Cont.

Metric Dataset

Training Testing

Input Combination Input Combination

I II III IV I II III IV

Mean 313.0 183.9 163.5 137.4 371.6 296.6 287.9 250.6

MAE

M1 248.1 135.8 115.8 97.47 247.2 199.8 195.9 171.1
M2 241.6 130.2 120 88.47 310.9 224.2 209.4 168.6
M3 232.2 125.1 104.8 95.72 292.1 191.7 183.8 150.7
M4 242.6 136.6 117.8 95.72 295.1 200.4 198.6 156.0

Mean 241.1 131.9 114.6 94.30 286.3 204.0 196.9 161.6

RAE

M1 45.87 25.11 21.43 17.70 52.51 42.44 41.61 33.90
M2 48.04 25.31 23.32 17.60 57.43 41.41 38.67 31.13
M3 45.15 24.87 20.83 18.95 56.11 36.82 35.31 28.95
M4 47.79 26.92 23.20 18.60 54.83 37.23 36.89 31.80

Mean 46.71 25.55 22.20 18.21 55.22 39.48 38.12 31.45

RRSE

M1 50.69 29.13 25.64 21.86 61.33 54.83 54.93 45.49
M2 52.29 30.03 27.83 21.64 62.06 50.90 47.96 41.62
M3 50.15 29.36 25.65 23.48 62.18 44.00 43.08 23.26
M4 52.67 32.4 28.34 23.31 58.47 45.63 44.02 40.57

Mean 51.45 30.23 26.87 22.57 61.01 48.84 47.50 37.74

R

M1 0.743 0.916 0.935 0.953 0.621 0.740 0.733 0.823
M2 0.728 0.910 0.924 0.953 0.612 0.743 0.773 0.828
M3 0.750 0.914 0.935 0.945 0.616 0.808 0.821 0.867
M4 0.723 0.903 0.922 0.947 0.658 0.794 0.806 0.835

Mean 0.736 0.911 0.929 0.950 0.627 0.771 0.783 0.838
The best performance is shown in bold.

Table 5. Results of the ensemble LWL-BG model.

Metric Dataset

Training Testing

Input Combination Input Combination

I II III IV I II III IV

RMSE

M1 363.6 290.0 272.9 240.9 345.5 294.0 274.3 261.2
M2 352.3 285.8 266.5 237.9 398.1 340.6 345.2 306.5
M3 336.6 262.0 250.7 229.4 359.4 292.8 276.1 255.3
M4 342.8 289.5 272.6 250.5 376.4 319.1 294.7 258.8

Mean 348.8 281.8 265.7 239.7 369.9 311.6 297.6 270.5

MAE

M1 284.4 224.2 212.6 177.4 269.0 226.6 218.5 187.7
M2 273.6 217.4 202.1 174.8 310.9 243.5 247.3 208.0
M3 265.9 202.0 191.0 169.8 279.4 223.6 209.5 191.7
M4 270.6 220.8 205.1 183.0 300.5 248.6 225.3 182.8

Mean 273.6 216.1 202.7 176.3 290.0 235.6 225.2 192.6

RAE

M1 52.58 41.45 39.31 32.90 57.13 48.14 46.40 38.83
M2 53.19 42.27 39.83 34.45 57.42 44.97 45.69 38.43
M3 52.88 40.16 37.98 33.77 53.68 42.95 40.24 34.88
M4 53.32 43.50 39.88 35.57 55.83 46.19 41.86 36.83

Mean 52.99 41.85 39.25 34.17 56.02 45.56 43.55 37.24

RRSE

M1 57.42 45.79 43.10 38.04 64.71 55.05 51.37 48.46
M2 57.56 46.71 44.67 39.88 60.58 51.83 52.54 46.65
M3 56.77 44.19 42.29 38.70 59.82 48.73 45.96 40.45
M4 57.47 48.53 44.54 40.94 58.30 49.42 45.64 42.48

Mean 57.31 46.31 43.65 39.39 60.85 51.26 48.88 44.51

R

M1 0.672 0.794 0.817 0.859 0.590 0.694 0.743 0.781
M2 0.669 0.783 0.803 0.845 0.627 0.736 0.731 0.796
M3 0.679 0.808 0.824 0.854 0.646 0.762 0.789 0.845
M4 0.671 0.766 0.803 0.834 0.661 0.760 0.799 0.821

Mean 0.673 0.788 0.812 0.848 0.631 0.738 0.766 0.811
The best performance is shown in bold.
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Table 6. Results of the ensemble LWL-DG model.

Metric Dataset

Training Testing

Input Combination Input Combination

I II III IV I II III IV

RMSE

M1 369.2 310.1 279.1 241.0 320.3 274.1 259.0 249.4
M2 355.4 296.3 270.9 264.8 390.6 335.8 326.4 298.8
M3 338.3 285.6 262.6 234.5 349.6 288.2 253.9 233.5
M4 346.6 299.3 271.7 239.5 337.6 324.9 286.0 247.1

Mean 352.4 297.8 271.1 245.0 349.5 305.8 281.3 257.2

MAE

M1 286.0 236.6 211.7 171.3 248.0 217.4 206.0 191.1
M2 275.2 225.8 201.7 194.0 299.3 246.8 229.3 209.4
M3 262.2 220.1 200.1 166.9 274.3 227.2 197.8 181.3
M4 267.5 225.2 207.3 181.4 298.8 252.2 220.8 179.4

Mean 272.7 226.9 205.2 178.4 280.1 235.9 213.5 190.3

RAE

M1 52.87 43.75 39.14 31.67 52.67 46.18 43.76 39.85
M2 53.51 43.89 39.21 37.71 55.28 45.59 42.36 38.68
M3 52.15 43.77 39.80 32.89 52.69 43.66 37.99 33.34
M4 52.70 44.37 40.84 36.07 55.52 46.85 41.02 36.72

Mean 52.81 43.95 39.75 34.59 54.04 45.57 41.28 37.15

RRSE

M1 58.30 48.97 44.07 38.06 59.98 51.32 48.50 44.56
M2 58.07 48.42 44.27 43.28 59.44 51.10 49.67 45.48
M3 57.06 48.18 44.30 39.30 58.18 47.96 42.26 38.26
M4 58.09 50.18 45.54 40.40 58.64 50.32 44.29 41.52

Mean 57.88 48.94 44.55 40.26 59.06 50.18 46.18 42.46

R

M1 0.663 0.766 0.814 0.867 0.623 0.724 0.753 0.803
M2 0.663 0.771 0.806 0.815 0.643 0.753 0.778 0.797
M3 0.676 0.774 0.815 0.848 0.663 0.774 0.824 0.847
M4 0.663 0.753 0.797 0.841 0.659 0.764 0.821 0.828

Mean 0.666 0.766 0.808 0.843 0.647 0.754 0.794 0.819
The best performance is shown in bold.

Table 7. Results of the ensemble LWL-RS model.

Metric Dataset

Training Testing

Input Combination Input Combination

I II III IV I II III IV

RMSE

M1 371.3 329.9 287.0 270.4 351.4 302.1 274.1 248.7
M2 358.7 319.8 301.1 282.0 397.0 362.1 371.6 345.5
M3 359.8 317.2 279.3 268.2 382.1 326.8 302.7 242.8
M4 362.3 296.7 319.8 280.4 397.9 344.3 319.2 302.5

Mean 363.0 315.9 296.8 275.3 382.1 333.8 316.9 284.9

MAE

M1 282.6 261.1 225.2 200.3 271.0 248.1 221.8 192.7
M2 279.9 238.0 231.8 207.2 306.9 295.5 274.1 243.0
M3 274.4 245.1 215.7 205.9 291.5 263.8 238.5 191.4
M4 281.5 248.6 238.0 219.3 309.8 276.7 240.7 228.3

Mean 279.6 248.2 227.7 208.2 294.8 271.0 243.8 213.9

RAE

M1 52.25 46.76 41.64 37.09 57.56 52.68 47.11 40.66
M2 55.68 49.13 45.06 40.29 56.68 53.43 50.63 44.88
M3 53.35 50.64 42.51 40.57 56.01 51.27 45.81 37.03
M4 55.47 48.78 49.13 43.62 57.56 54.41 44.73 42.41

Mean 54.19 48.83 44.59 40.39 56.95 52.95 47.07 41.25

RRSE

M1 58.63 49.88 45.32 42.70 65.81 61.71 51.32 45.47
M2 60.51 55.97 49.20 46.08 60.42 58.54 56.56 52.58
M3 58.80 54.89 46.82 44.96 63.60 57.68 50.39 41.39
M4 60.74 54.83 55.97 47.30 61.62 57.72 49.43 46.86

Mean 59.67 53.89 49.33 45.26 62.86 58.91 51.93 46.58

R

M1 0.659 0.676 0.806 0.837 0.594 0.637 0.736 0.796
M2 0.642 0.714 0.769 0.814 0.629 0.659 0.702 0.773
M3 0.659 0.682 0.790 0.821 0.612 0.676 0.750 0.848
M4 0.634 0.679 0.714 0.792 0.619 0.671 0.769 0.815

Mean 0.649 0.688 0.770 0.816 0.614 0.661 0.739 0.808
The best performance is shown in bold.
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Table 8. Results of the ensemble LWL-RF model.

Metric Dataset

Training Testing

Input Combination Input Combination

I II III IV I II III IV

RMSE

M1 371.3 259.9 261.7 225.4 351.4 289.8 278.3 232.4
M2 359.8 271.7 269.4 229.1 397.0 307.4 336.3 300.2
M3 358.7 242.9 253.0 213.8 382.1 265.6 266.3 229.4
M4 362.3 271.0 311.5 230.6 397.9 297.3 311.4 266.4

Mean 363.0 261.4 273.9 224.7 382.1 290.0 298.1 257.1

MAE

M1 282.6 196.2 200.0 167.4 271.0 218.0 212.8 195.7
M2 274.4 203.4 205.2 165.0 306.9 223.1 237.4 201.7
M3 279.9 184.2 193.0 160.0 291.5 195.5 195.6 173.0
M4 281.5 204.1 237.8 167.3 309.8 227.8 237.8 175.7

Mean 279.6 197.0 209.0 164.9 294.8 216.1 220.9 186.5

RAE

M1 52.25 36.27 36.97 30.96 57.57 46.30 45.19 37.31
M2 53.35 39.55 39.90 32.07 56.68 41.20 43.86 37.25
M3 55.68 36.62 38.38 31.36 56.01 37.56 37.57 33.23
M4 55.47 40.22 44.18 32.96 57.56 42.32 44.18 36.37

Mean 54.19 38.17 39.86 31.84 56.96 41.85 42.70 36.04

RRSE

M1 58.63 41.03 41.33 35.59 65.81 54.27 52.11 42.96
M2 58.80 44.41 44.03 37.44 60.42 46.78 51.17 45.68
M3 60.51 40.98 42.68 36.06 63.60 44.21 44.32 38.68
M4 60.74 45.42 48.24 38.66 61.62 46.04 48.24 41.26

Mean 59.67 42.96 44.07 36.94 62.86 47.83 48.96 42.15

R

M1 0.659 0.834 0.830 0.88 0.594 0.714 0.753 0.821
M2 0.659 0.805 0.806 0.869 0.629 0.787 0.750 0.806
M3 0.642 0.835 0.819 0.882 0.612 0.808 0.805 0.858
M4 0.634 0.796 0.771 0.856 0.619 0.799 0.771 0.846

Mean 0.649 0.818 0.807 0.872 0.614 0.777 0.770 0.833
The best performance is shown in bold.

A comparison between the results obtained from the single LWL model and its en-
sembles clearly indicates that the ensemble learning techniques considerably improved
the training and testing performances of the base LWL algorithm. The ensemble models
achieved greater training performance than the single LWL model by about 44.7, 44.7,
47.8, 44.7, and 13.9% in terms of the RMSE, MAE, RAE, RRSE, and R metrics, respectively.
In the case of the testing performance, LWL-AR showed 53.3, 54.5, 55, 53.8, and 22.4%
improvements. Similarly, testing performance improvements in the corresponding metrics
are 8, 7.1, 8, 9, and 4.5% by applying LWL-BG, 12.5, 8.2, 8.3, 13.2, and 5.5% by applying
LWL-DG, 3.1, 3.2, 1.9, 4.7, and 4.1% by applying LWL-RS, 12.6, 10, 11, 13.8, and 7.3% by
applying LWL-RF, respectively.

A comparison of the models’ outcomes also reveals that the ensemble LWL-AR model
performed better than the other models in both training and testing phases of the monthly
streamflow modeling. The LWL-DG and LWL-RF models showed similar performance and
ranked as the second-best models, followed by the LWL-RS model that was identified as
the least effective ensemble model.

To further compare the models’ performance, we used time variation, scatter plots, and
Taylor and violin diagrams to visualize the results obtained from the best input combination
(i.e., M3-IV). Figure 2 shows that LWL-AR predictions are much closer to the observed
values compared to the other models. Figure 3 reveals that the ensemble LWL-AR model
performed better compared to other models in catching the extreme streamflow values
(minimum and maximum), which is an important indicator in water resource management
and for the evaluation of extreme events such as drought and flood.
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Figure 4 compares the single LWL model with its ensemble models in low streamflow
(i.e., lower than 500 m3/s) prediction and clearly demonstrates the superiority of LWL-AR
in catching the minimums of streamflow. Figure 5 shows the scatter plots of the observed
and predicted monthly streamflow for the best input combination (i.e., M3-IV). While the
single LWL model resulted in a highly scattered prediction with R2 = 0.809, the LWL-AR
ensemble model produced a fit line equation (y = 0.9401x + 56.669) close to the exact line
(y = x) with the highest R2 value (0.867) compared to the other models.
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Figure 6 shows the Taylor diagram of the models and indicates how well the models
match each other in terms of their standard deviation and correlation difference. Among
the different models, LWL-AR achieved a closer standard deviation to the observed data
with the lowest square error and highest correlation, which is followed by the LWL-BG
and LWL-DG models. Figure 7 shows the violin graph of the models and indicates that
LWL-AR achieved a data distribution similar to the observed data, which is followed by
the LWL-DG model.

Overall, our case study demonstrated that the ensemble models successfully outper-
formed the single LWL model and provided promising accuracy for streamflow forecasting.
Due to the non-linear nature of many environmental processes and phenomena (e.g.,
streamflow), hybrid ensemble models that benefit from the advantages of multiple meth-
ods/models can better capture the complexity of these phenomena and often yield more
accurate results than single simple models.
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Figure 5. Scatterplots of the observed and predicted streamflow by (a) LWL, (b) LWL-AR, (c) LWL-BG, (d) LWL-DG, (e)
LWL-RS, (f) LWL-RF ensemble models in the testing phase using the best input combination (M3-IV).
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6. Discussion

In all ensemble models, considering periodicity (i.e., MN) as an additional input
variable substantially improved both the training performance and predictive performance.
During the testing phase, for the LWL-AR model, the improvements in RMSE, MAE, RAE,
RRSE, and R were up to 13, 17.9, 17.5, 20.5, and 7%, respectively. For the LWL-BG model, the
metrics improved up to 9.1, 14.5, 14.5, 8.9, and 5.9%, respectively. For the LWL-DG model,
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the metrics improved up to 8.6, 10.9, 10, 8.1, and 3.1%, respectively. For the LWL-RS model,
the metrics improved up to 10.1, 12.3, 12.4, 10.3, and 9.3%, respectively. For the LWL-RF
model, the metrics improved up to 13.8, 15.6, 15.6, 13.9, and 8.2%, respectively. These results
are in agreement with the previous studies that reported on the improvement of predictive
accuracy using the periodicity variable. For example, Kişi [57] demonstrated the improved
performance of the three types of ANN models using the periodicity variable for the
prediction of monthly streamflow of the Canakdere and Goksudere rivers, Turkey. Adnan,
et al. [58] used the periodicity variable to improve the predictive capability of the FFNN,
RBNN, GRNN, and ANFIS models for the prediction of the monthly streamflow of the
Gilgit River, Pakistan. In a recent study, Adnan, Zounemat-Kermani, Kuriqi and Kisi [53]
achieved an improved performance of the long short-term memory (LSTM), extreme
learning machines (ELM), and random forest (RF) models for the monthly streamflow of
the Kohala and Garhi Habibullah stations in Pakistan. They showed that the inclusion of
the periodicity component (MN) decreased the RMSE of the optimal LSTM, ELM, and RF
models by 11.9%, 6.9%, and 1% for the Garhihabibullah Station and by 20.8%, 20.5%, and
3.7% for the Kohala Station, respectively.

A comparison of the models’ outcomes revealed that the ensemble LWL-AR model
performed better than the other models in both training and testing phases of the monthly
streamflow modeling. The LWL-DG and LWL-RF models showed similar performance and
ranked as the second-best models, followed by the LWL-RS model that was identified as the
least effective ensemble model. The results of other modeling studies support our findings
that the application of the ensemble learning techniques can considerably improve the
capability of the base models for modeling different environmental problems [26,29,47,59].
Overall, our case study demonstrated that the ensemble models successfully outperformed
the single LWL model and provided promising accuracy for streamflow forecasting. Due to
the non-linear nature of many environmental processes and phenomena (e.g., streamflow),
hybrid ensemble models that benefit from the advantages of multiple methods/models can
better capture the complexity of these phenomena and often yield more accurate results
than single simple models.

7. Conclusions

This study investigated the capability of five ensemble models, that is, LWL-AR,
LWL-BG, LWL-DG, LWL-RS, and LWL-RF, for monthly streamflow forecasting. The results
were validated using several performance metrics and compared to those of a single LWL
model. Based on the results obtained, we conclude that:

• The ensemble models are predominantly superior to the single LWL model for monthly
streamflow forecasting.

• Among the ensemble methods, the LWL-AR model surpasses the other models in
both training and testing performances.

• The most accurate models are developed when the periodicity variable (MN, month
number) is incorporated into the modeling process.

• Ensemble forecasting is a robust and promising alternative to the single forecasting of
streamflow.

Although the developed ensemble models were verified using a regional-scale dataset
from Pakistan, they are sufficiently general to be applied in any other region around
the world with minor adjustments in the variables relative to local conditions. Future
research can extend this ensemble forecasting approach by using other ensemble learning
techniques (e.g., AdaBoost, MultiBoost, LogitBoost, Decorate, etc.) and, perhaps even more
interesting, by testing various types of state-of-the-art machine learning methods as the
base classifier. The idea of coupling machine learning methods with ensemble learning
techniques with the aim of enhancing the computational performance and improving the
predictive accuracy can be extended beyond forecasting monthly streamflow to solve many
other complex geo-hydrology problems. In this study, previous streamflow values and
periodicity information were considered as inputs to the ensemble models. In future works,
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streamflow forecasting considering the flood mitigation capacity of Mangla Dam can be
investigated using ensemble models. Furthermore, by taking into account the landforms
(the digital terrain model) and the dimensions of the river basin as inputs, the implemented
methods may provide more accurate forecasting results.
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