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Abstract: The need for inexpensive and sustainable electricity has become an exciting adventure
due to the recent rise in the local population and the number of visitors visiting the Banana Islands.
Banana Islands is a grid-isolated environment with abundant renewable energy, establishing a
hybrid renewable energy-based power system may be a viable solution to the high cost of diesel
fuel. This paper describes a dual-flow optimization method for electrifying the Banana Islands,
a remote island in Sierra Leone. The study weighs the pros and cons of maintaining the current
diesel-based power setup versus introducing a hybrid renewable energy system that takes backup
component analysis into account. Hybrid Optimization of Multiple Energy Resources (HOMER)
software is used in the first optimization to optimally design the various system configurations
based on techno-economic and environmental characteristics. A Multi-Attribute Decision-Making
(MADM) Model that takes into account in the second optimization, the Combinative Distance-based
Assessment System (CODAS) algorithm, and various methods of assigning weights to the attributes
is used to rank the best configuration. The results show that the hybrid renewable energy system
is a better option for electrifying the Banana Islands than the current stand-alone system. The
Analytical Hierarchy Process (AHP) method of weight assignment was found to be superior to the
Entropy method. Biogas generator-assisted hybrid configurations outperformed diesel generator-
assisted hybrid configurations. With an optimum design of 101 kW PV, 1 wind turbine, 50 kW
biogas, 86 batteries, and a 37.8 kW converter, the PV-wind-biogas-battery system is rated as the best
configuration. It has a net present cost (NPC) of $487,247, a cost of energy (COE) of $0.211/kWh, and
CO2 emission of 17.5 kg/year. Sensitivity analyses reveal that changes in the rate of inflation and the
cost of storage have a significant effect on the overall cost of the configuration.

Keywords: hybrid systems; techno-economic-environmental analysis; off-grid; multi-attributes
decision-making; weight assignment

1. Introduction

Power system engineers have found that designing and preparing the configuration
of power systems for grid-isolated settlements has become a major bottleneck. Obtaining a
cost-effective and long-lasting power configuration will help to boost economic growth.
This is much more difficult in settlements that do not have access to electricity, as the
authors in [1] demonstrate. According to [2], about 55% of Africa’s rural population does
not have access to electricity. Sierra Leone, like many other developing countries, has been

Sustainability 2021, 13, 5615. https://doi.org/10.3390/su13105615 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-7517-2171
https://orcid.org/0000-0002-6695-2851
https://orcid.org/0000-0003-0382-8666
https://orcid.org/0000-0001-8192-9660
https://orcid.org/0000-0003-4494-6773
https://www.mdpi.com/article/10.3390/su13105615?type=check_update&version=1
https://doi.org/10.3390/su13105615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13105615
https://www.mdpi.com/journal/sustainability


Sustainability 2021, 13, 5615 2 of 22

adopting recent energy policies to electrify rural communities [3]. The authors of [4] listed
a number of approaches focused on a collection of indicators that the government might
use to incorporate hybrid mini-grid operations for rural electrification. Sierra Leone is one
of the best countries in West Africa for tourism, with many coastal settlements, according
to [5]. A large exodus of tourists visits these coastal settlements, but most of their activities
are distorted by poor electricity access. Many of these settlements are located away from
grid networks and are surrounded by dense jungles and rough terrain, which makes grid
extension difficult. These communities rely on kerosene lamps and stand-alone diesel gen-
erators to provide electricity, according to [6]. The high operating costs of diesel generators,
combined with serious environmental pollution, make it impossible to provide affordable,
continuous, and sustainable electricity to rural communities, as cited in [7,8]. Alternatives
to standalone diesel generators have arisen in the form of renewable energy power systems.
Sierra Leone has enormous renewable energy potential in the form of biomass from agri-
cultural wastes, hydro, wind, and solar, but little effort has been made to investigate these
resources. According to [9], hydropower is the largest renewable energy potential in Sierra
Leone with an estimated capacity of 5000 MW covering 300 sites nationwide. Average
solar radiation ranges between 4.1–5.2 kWh/m3/day. Wind speeds vary from 3–5 m/s,
with gusts up to 8 m/s in mountainous areas. These renewable energy sources, however,
cause major disruptions due to their intermittent existence, as demonstrated by [10–14].
As a result, hybrid renewable energy sources with complementary features must be built
in order to sustain a stable or efficient power system. In the following literature [15–18],
the techno-economic advantages of hybrid renewable energy systems are compared to
diesel-based power systems.

Many studies have looked at diesel and biogas generators as backup components
when other renewable energy sources, especially solar and wind resources, are unavail-
able [19–21]. In [22], the authors compared the feasibility of nine different system configu-
rations for an off-grid system in southern Cameroon to improve sustainable power supply.
The PV/diesel/small hydro/battery system was considered the optimum configuration
with COE $0.443/kWh. The hybrid system was found to be a better choice for stability
and reliability than a 100% renewable energy design, which is vulnerable to high uncer-
tainties.. Kiflom et al. [23] optimized a cost-benefit analysis on a hybrid energy system
to electrify a rural Ethiopian village. The hybrid PV-Wind-Diesel-Battery system had the
lowest system cost and CO2 emission of 37.3 tons/year as compared to the diesel only sys-
tem. Ali et al. [24] evaluated various hybrid energy systems to supply electricity to a rural
village in Iraq, taking into account techno-economic and environmental factors. The hy-
brid PV/hydro/diesel/battery system proved to be the most cost-effective and reliable
choice for long-term electrification. Monowar et al. [25] assessed the efficiency of a hybrid
energy system to determine its ability to provide power to a Malaysian resort. A variety of
hybrid configurations were tested and compared to a standalone diesel generator. Results
showed that the optimum hybrid configuration reduced costs by 18.5% and CO2 by 52%
compared to the diesel-only system, validating the supremacy of hybrid energy systems to
a stand-alone diesel system. In Shibpur Campus, India, Tathagata et al. [26] used hybrid re-
newable energy sources to optimally size a smart microgrid. Since renewable energies have
high intermittencies, it is often preferable to use other reliable sources of energy to ensure
long-term access. The simulation results show that involving a biogas generator provided
the necessary energy with no loss of power supply probability. Wei et al. [27] carried out
an optimization process in South Khorasan, Iran, using a geographic information system
module and a hybrid optimization algorithm to find the best location and equipment
capacities. Simulation results confirmed that the hybrid PV-Diesel-Battery configuration
reduced costs and greenhouse gas by 22.2% and 59.6%, respectively. In addition, the use
of hybrid algorithm for the proposed framework was 14.1% more accurate compared to
individual applied algorithms. Abhishek et al. [28] used a computational modeling method
to determine the viability of a community hybrid energy system in two European cities:
the United Kingdom and Bulgaria. Biomass was chosen because of its potential to provide
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energy while also reducing household waste. While there was a significant difference in
solar and wind availability between the two cities, the research found that biomass genera-
tors had the greatest share due to the vast reliability of the raw materials. The authors of
Ref. [29] used four different optimization methods and three different battery technologies
to perform a techno-economic study on an off-grid hybrid PV-biomass system in Egypt.
The abundant biomass resource combined with the region’s solar availability made the
system optimum by ensuring a stable supply, according to the findings. In order to provide
sustainable electricity, a feasibility study was conducted on a hybrid off-grid system in
a remote location in Morocco. Various system configurations were studied in terms of
technology and cost, and the PV-wind-biomass system was found to be the most effective.
The results showed that biomass provided 48% of the electricity due to its consistent sup-
ply, resulting in the lowest greenhouse gas emissions [30]. Shakti et al. [31] proposed a
hybrid PV-wind-biomass energy system for Patiala, Punjab, India. Comparative analysis
of various algorithms was used in the simulations. The existence of a biogas generator,
combined with abundant available resources, ensured that the load was fulfilled without
constraint violations, according to a testing strategy that enabled one of the components,
the wind turbine, to fail.

Though hybrid renewable energy configurations have proven to be more reliable and
cost-effective than standalone diesel configurations, determining the best configuration
can be difficult and time-consuming, particularly when there are several factors to consider
(economic, technical, and environmental). Project planners are prone to prejudice, and they
can choose the best configuration based on personal desires rather than sustainability. This
necessitates the application of MADM. In [32], the authors conducted a state-of-the-art anal-
ysis of MADM strategies for making decisions in renewable energy systems applications.
These methods, according to them, have been used to evaluate energy policies, choose the
best renewable energy source for electricity generation, evaluate renewable energy sources,
find the best location for a renewable energy plant, and choose the best energy alternatives.
Our analysis will use the idea of choosing the best in this review. The assigning of weights
to the considered attributes is one of the key bottlenecks in MADM techniques. Weights
assignment has a significant effect on the decision result, so it must be given careful con-
sideration when choosing a methodology. Subjective, objective, and integrated [33] are
the three approaches for assigning weights. Where several parameters or characteristics
are considered, MADM techniques have been used in a number of studies to choose the
best energy system alternative. The authors of [34] used General Algebraic Modeling
System (GAMS) software to optimize the different scenarios before ranking them using
the ELimination Et Choix Traduisant la REalité (ELECTRE) MADM process. In Cameroon,
Benyon et al. [35] conducted a sustainable energy planning study using a combination of
the AHP and the Vlsekriterijumska Optimizacija I KOmpromisno Resenje system (VIKOR)
to find the best hybrid technology combination. The authors of [36] developed a two-stage
MADM analysis method for city-integrated hybrid mini-grid architecture. In the first step,
HOMER software was used. The second stage ranked the best energy alternative for a
mid-rise building in Egypt using AHP and Technique for Order Preference by Similarity to
an Ideal Solution (TOPSIS). Kotb et al. [37] used a decision-making model to determine
the best energy option for an Egyptian resort. The techno-economic characteristics of
the various alternatives were developed using HOMER software. To rank and choose
the best configuration, a combination of Fuzzy-AHP and Fuzzy-VIKOR multi-attributes
decision-making techniques were used.

Based on the literature reviewed above, it can be concluded that the majority of studies
focused on the economic features to determine and rank the best system. For those who
used MADM methods [38–40], no explanation was given as to why a particular approach
to weight assignment was used.

The contribution of this study can be stated as follows:

• Developing a dual-phase optimization approach among various power system op-
tions, including standalone generators, hybrid PV-Diesel-Wind-Battery, and hybrid
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PV-Biogas-Wind-Battery, in which HOMER is used in the first phase to optimally
design the various configurations, and an MADM technique is used in the second
phase to rank the optimal configuration.

• Using two separate approaches to assign weights to the selected attributes in order to
see how they affect the decision-making process.

• Comparing the efficiency of various backup components in order to achieve a secure
power supply strategy.

• Doing a sensitivity analysis on the optimum configuration to assess the effects of
changing input parameters.

2. Research Methodology
2.1. Area Description, Load Demand, and Available Resources

The area under consideration is Banana Islands, a small coastal community in Sierra
Leone’s western region, situated southwest of the Freetown peninsula. The island is
geographically located at 8◦7.0′ N, 13◦12.7′ W as seen in Figure 1. Rickets, Dublin, and Mes-
Meheux are the three main islands that make up the archipelago. Ricket is known for its
forest, Dublin is known for its beaches, and Mes-Meheux is known for its adventurous
tourism [41]. The climate in the Banana Islands varies somewhat, but it is generally hot
throughout the year with little chance of rain. The temperature ranges from 25.6 ◦C (78 ◦F)
to 31 ◦C (87.8 ◦F) according to [42]. The island is powered by a 155 kW generator that
runs between the hours of 6:00 p.m. and 10:00 p.m. Since travelers must use paying
boats and ferries to move from and to the island, diesel is slightly more expensive than on
the mainland. In comparison to grid-connected regions, this raises the cost of electricity
significantly. For the four hours of electricity given, each household pays around $0.6
a day. The island has a total population of 900 people living in 200 households. Per
household’s average daily electric consumption is 2.45 kW-hours, resulting in a total daily
consumption of 490 kWh/day, with a peak load of 68.18 kW as seen in Figure 2. Peak load
is usually observed in the evenings around 6:00 p.m., when the majority of the residents
have returned from work. Owing to the Christmas and New Year’s holidays, visitors begin
to flock to the area from November to January. During this time, the load demand rises.
The resources used in this analysis are solar, wind, and biomass. The monthly average
temperature, solar radiation, and clearness index and wind speed were downloaded from
NASA’s website as shown in Figure 3A,B. The annual average solar radiation, wind speed,
and ambient temperature of the case study over a period of 22 years are 5.34 kWh/m2/day,
3.42 m/s, and 26.43 ◦C. The solar radiation and clearness index increases during the
dry season between January and April, with March being the peak month, as shown
in Figure 3A. It decreases during the rainy season, with the lowest solar production in
July and August. Wind, on the other hand, has been observed to increase from June to
September. Agricultural activities are carried out on the island especially in Ricket that is
surrounded by dense forest. Agriculture is practiced on the island, especially in Ricket,
which is surrounded by dense forest. Rice farming is the region’s primary source of income.
The biomass material for the biogas generator is rice husk. According to [6], a similar study
on rural electrification in Sierra Leone, the average amount of rice husk available per day
is 3.27 tonnes. Carbon content of the rice husk is 42.60%, gasification ratio is 39.21%, and
low heat value (LHV) is 14.12 MJ/kg.
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Figure 1. Map of Banana Islands [43].

Figure 2. Daily and seasonal load profile.

Figure 3. Average monthly: (A) solar radiation, temperature, and clearness index; (B) wind speed.
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2.2. System Component and Mathematical Modelling

This research looks at six different components: a diesel generator, a biogas generator,
a wind turbine, a photovoltaic module, a battery, and a converter. Figure 4 shows a detailed
component schematic. Table 1 establishes both the technical and economic parameters of
the various components. Table 2 shows the search space and HOMER optimizer parameters
for various components.

2.2.1. Modeling of Photovoltaic Module

The Sharp PV module was chosen for this study because it is readily available in
Sierra Leone and neighboring countries. During the day, from 7:00 a.m. to 6:00 p.m., the PV
generates energy directly from the sun. The power output of the PV module is measured
using Equation (1), which is referenced to [44], taking into account temperature effects on
the PV module:

ppv = Wpv fpv GT/Gs

[
1 + Kp(Tc − TSTC)

]
(1)

where Wpv is the peak power output (kW), fpv is the derating factor, GT is the solar radiation
on PV at a specific time (W/m2), Gs is the standard test irradiation (1000 W/m2), Kp is the
temperature coefficient of power (%/◦C), Tc is the PV module temperature at hour (◦C),
and TSTC is the PV module temperature under standard conditions (298 K).

For a PV to produce the desired output, the ambient temperature is critical. This
ambient temperature must not exceed the appropriate temperature, which can only be
accomplished by correctly aligning the PV panel with the sun’s rays. Both inadequate
and increased solar radiation have a significant impact on the PV panel’s derating factor.
In order to stay within a safe range, the equation for calculating the surface temperature of
the PV panel [45] is given in Equation (2):

Ts = Ta + Ts,n − Ta,n

(
GT

GT,n

)(
1− ηmp

βτ

)
(2)

where Ta is the ambient temperature (◦C), Ts,n is the cell’s nominal operating temperature
(◦C), Ta,n is ambient temperature in the NOCT condition (20◦), GT,n is the sun’s radiation
in NOCT condition, ηmp is the efficiency of the panel, τ is the solar transmittance, and β is
the solar panel absorption.

Figure 4. Component schematic.
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Table 1. Techno-economic characteristics of the various components.

Reference Description Specification

[8] PV system
PV type Sharp ND-250 QCS

Capital cost ($) 1300
Replacement cost ($) 1300

O&M cost ($/yr) 10
Lifetime (years) 25

[8] Converter
Capital cost ($) 600

Replacement cost ($) 600
O&M cost ($/yr) 10
Lifetime (years) 15

[2] Diesel Generator
Capital cost ($) 660

Replacement cost ($) 660
O&M cost ($/yr) 0.03
Lifetime (hours) 15,000

[8] Biogas Generator
Capital cost ($) 1500

Replacement cost ($) 1500
O&M cost ($/yr) 0.01
Lifetime (hours) 20,000

[37] Wind turbine
Turbine type Eocycle E025 Class 111

Capital cost ($) 40,000
Replacement cost ($) 36,000

O&M cost ($/yr) 500
Lifetime (years) 20
Hub height (m) 23

[2] Battery
Battery type Hoppecke 24 OPzS 3000

Capital cost ($) 1259
Replacement cost ($) 1000

O&M cost ($/yr) 10
Lifetime (years) 20

Nominal capacity (kWh) 7.15

Table 2. Search space and HOMER optimizer parameters.

PV Array
(kW)

Wind Turbine
(No. )

Biogas Genset
(kW)

Diesel Genset
(kW)

Battery
(kWh)

Converter
(kW)

0–400 1–5 0 0 0–300 0–150
30 30
50 50
75 75
100 100

2.2.2. Modeling of the Battery Storage System

Batteries aid in the promotion of power supply stability, efficiency, and reliability,
especially when renewable energy sources are unavailable. They can also be used to cut
down on fuel consumption. As seen in Equations (3) and (4), storage importance is linked
to the effectiveness of its charging and discharging abilities [45]
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Charging Process:

Ebi
(t) = Ebi

(t− 1)(1− σ) + {(Ebih(t)− Ebi l(t)/ηbj
× ηbb

} (3)

Discharging Process:

Ebi
(t) = Ebi

(t− 1)(1− σ)− (Ebih(t)/ηbj
− Ebi l(t)), (4)

where Ebi
is the net battery energy in time (t), Ebih is the total energy generated at a specific

time, Ebi l is the load demand in time (t), ηbj
is the converter efficiency, ηbb

is the charging
efficiency of the battery, and σ is the rate of self discharge. For a battery to retain enough
charge to support a designed system when PV powers are unavailable, the capacity must
be tailored by using Equation (5) which is referenced to [16].

CBAT =

[ Eload(t).DA(t)

ηcon.ηBAT .DOD(t)

]
(5)

where Eload is the average energy demand (kWh/day), DA is the days of autonomy, ηcon is
the efficiency of converter, ηBAT is the efficiency of battery, and DOD is the depth of charge
of the battery.

2.2.3. Modeling of Biogas Generator

However, there are two distinct ways to generate electricity from biomass: either by
thermochemical means such as gasification or combustion, or by a biochemical mechanism
such as fermentation [46]. This research considers the gasification process. Due to its
availability and the fact that agriculture is the primary occupation of the residents of the
case study settlement, rice husk is used as a biomass resource. Equation (6), which is cited
in [29], can be used to measure the output power from a biogas generator:

PBG(t) =
(

Ngas

F1

)[
ηgas × Ha × bio(t)

Hgas
− F0Pe

]
(6)

where F0 is intercept coefficient = 0.1 (kg/hr/kW) and F1 is the slope = 2 (kg/hr/kW) for a
100-kW generator. The size of the biogas generator used in the simulation process determines
the values of F0 and F1. The component’s range is 0–100 kW, according to Table 2. As a result,
the maximum component size is 100 kW, and the values of F0 and F1 are based on the biogas
generator’s maximum output capacity.

2.2.4. Modeling of Wind Turbine

The speed of a wind turbine at the hub height in the chosen region has a significant
impact on its power production. As a result, Equation (7) is used to measure speed at hub
height. Equation (8), which is referenced to [47], can then be used to measure the output
power of wind turbines:

Xhub = Xanem
ln( zhub

z0
)

ln( zanem
z0

)
(7)

PWTG = PWTG,STP

(
ρ

ρSTP

)
(8)

where Xhub is wind speed at hub height, zhub is the hub height of wind turbine, zanem is
the anemometer height, z0 is surface roughness length, PWTG is the power output of wind
turbine, PWTG,STP is the turbine power output at standard temperature and pressure, ρ is
the air density, and ρSTP is the air density at STP.
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2.2.5. Hybrid Configurations

In this study, six hybrid configurations were modeled. The study looked at two
types of backup generators: diesel and biogas generators. The hybrid PV-diesel-wind-
battery configuration yielded three hybrid configurations, while the PV-biogas-wind-
battery configuration also yielded three hybrid configurations. The aim of the separate
backup components is to see which of the two (diesel or biogas) is the better choice for
complementing the PV and wind resources’ intermittent existence. PV-Wind-Diesel-Battery
(PV+W+D+B), PV-Diesel-Battery (PV+D+B), Wind-Diesel-Battery (W+D+B), PV-Wind-
Biogas-Battery (PV+W+BG+B), PV-Biogas-Battery (PV+BG+B), and Wind-Biogas-Battery
(W+BG+B) are the different configurations.

2.3. System Optimization

The flowchart of the research methodology is shown in Figure 5. HOMER modeling
tool is used in the first phase of this study. It has been used to model hybrid energy
sources all over the world because it is effective in both technical and economic terms.
Its applications have been widely used in both off-grid and grid-connected systems to
properly plan, conduct feasibility studies, schedule, and evaluate system inputs in order
to provide the best solution for a sustainable energy climate [2]. The research’s goal is to
reduce the NPC, which is provided in Equation (9) and referenced in [47]:

Minimize(NPC) =
Cann,tot

CRF(i, Rp)
(9)

CRF
(
i, Rp

)
=

i(1 + i)n

(1 + i)n − 1
(10)

where Cann,tot is the total annualized cost ($/yr), CRF is the capital recovery factor as
calculated using Equation (10), i is the annual interest rate. An interest rate of 8% was
used in the simulation process. Rp is the project lifetime. The sizing, techno-economic, and
environmental results from HOMER software are used as the main inputs in the MADM
technique (CODAS algorithm).

In the second step, a MADM technique is used. They’ve been widely used in the
optimization of hybrid renewable energy systems, where there are several attributes to
consider in achieving a specific goal or set of goals, and hence they seem to clash. They’ve been
shown to be effective tools for deciding between a variety of competing options [48]. CODAS
is the key decision-making technique used in this study to rate the various configurations.
It’s a scoring-based MADM approach that’s used in the second phase of the optimization
process to rank the best configuration for a long-term, cost-effective power system. In order
to determine which strategy is best for choosing the optimum configuration, this study
considers two separate methods of assigning weights to the attributes. The subjective method
(AHP), introduced by Saaty [49], is the first method. The weights of the attributes are
determined using this approach, which is based on the decision maker’s experience and
preferences. The objective method (Entropy method) is the second method, which uses
mathematical applications to evaluate the weights of the attributes based on the objective
decision matrix details. Here, the decision maker has no role in determining the importance
of the attributes [33]. The attributes considered are divided into economic: NPC, COE, and
operation and maintenance cost (O&M); technical: Excess electricity and Renewable fraction
and environmental: Carbon dioxide (CO2 emissions). The various steps used in the execution
of the CODAS procedure are given in Algorithm 1. Algorithm 2 explains the procedures for
calculating the various weights using the AHP approach. Algorithm 3 explains the Entropy
weight calculation procedures.
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Algorithm 1: CODAS algorithm steps.
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Algorithm 1: CODAS algorithm steps.

1: Select the required attributes
2: Build the decision matrix
3: Normalization of the decision matrix





Kij
maxiKij

i f jεNb

miniKi
Kij

i f jεNnb

(11)

where Nb is for beneficial attributes and Nnb is for non-beneficial attributes.
4: Determine the Euclidean (Ei) and Taxicab (Ti) distances

Ei =

√√√√j=1

∑
m

(
rij − nsj

)2, Ti =
j=1

∑
m

∣∣rij − nsj
∣∣ (12)

5: Estimate the weighted normalized matrix

rij = wjnij, 0 < wj < 1,
j

∑
n

wj = 1 (13)

6: Calculate the negative idea solution

ns =
[
nsj
]

1×m, nsj = minirij (14)

7: Determine the Euclidean (Ei) and Taxicab (Ti) distances

Ei =

√√√√j=1

∑
m

(
rij − nsj

)2, Ti =
j=1

∑
m

∣∣rij − nsj
∣∣ (15)

8: Construct the relative assessment matrix

Ra = [(Ei − Ek) + (ψ(Ei − Ek)× (Ti − Tk)), kε{1, 2...., n}] (16)

ψ(x) =
{

1 i f |x| ≥ τ
0 i f |x| < τ

(17)

where τ stands for the threshold value that is independent of every decision maker. It
lies in the range of
0.01 to 0.05. In this research, we used 0.02.

9: Calculate the assessment score

Hi =
k=1

∑
n

hik (18)

10: The various alternatives are ranked from highest to lowest value of the assessment
score. The best alternative is the one with the highest score.

Due to their low unmet loads, which range from 0.01% to 0.07%, all six hybrid con-
figurations are considered reliable options from a technical standpoint. The W+DG+B
configuration provides the least amount of excess electricity (9172 kWh/yr) and the second
least amount of unmet load (52.4 kWh/yr), but it has the lowest renewable fraction (27.3%).
The low excess electricity is due to the low renewable penetration, which stems from
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Algorithm 2: AHP procedures and mathematical relations for obtaining
the weights.

1: Build the hierarchy structure of the decision-making process

2: Create using an expert’s opinion a pairwise comparison matrix C, where

C = cij is defined as element of

decision matrix in i-th column and j-th row

3: Produce the average weighting factor for each attribute/criterion by taking the

average in j-th row

4: Calculate the consistency index (CI) and consistency ratio (CR) where

CI = (λmax − n)/(n− 1), CR = CI/RI;

of which RI is a random index that depends

on “n,” where “n” is the number of alternatives/configurations

Figure 5. Flowchart of research methodology.
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Algorithm 3: Entropy procedures and mathematical relations for obtaining
the weights.

1: Normalization of the decision matrix pij

Pij =
Xij

∑m
i=1 Xij

(19)

2: Compute the measure of the entropy

Ej = −K
m

∑
i=1

PijlnPij, K = 1/ln(m)) (20)

3: Define the objective weights based on the concept of entropy

wj =
1− Ej

∑n
j=1
(
1− Ej

) (21)

the wind turbine’s low contribution. Due to the increased renewable fraction (88.3%),
the PV+DG+B configuration generates the least unmet load (24.7 kWh/yr) but also pro-
duces the most excess electricity (43,393 kWh/yr). The PV+W+BG+B configuration is the
only one with a 100% renewable penetration while still producing a fair amount of excess
electricity (27,763 kWh/yr), but it falls short due to the high unmet load (132 kWh/yr).
When compared to diesel-backup configurations, biogas generator backup configurations
provided more unmet loads and excess electricity. This is due to a rise in the use of
renewable energy. We can now conclude that the PV+DG+B configuration is the most
efficient, with the lowest unmet load, despite having a higher excess electricity and a
modest renewable fraction.

3. Results and Discussion
3.1. Result of the First Optimization Approach

The results of the first phase of the study are shown in Table 3. It shows the component
sizing, technical, economic, and environmental characteristics of the current base case
as well as the six hybrid renewable energy configurations that used both diesel and
biogas generators as backup components to supplement the solar and wind resources’
inconsistencies. The optimization results show that a standalone diesel configuration is not
a good choice for providing electricity to the island 24 h a day, 7 days a week. Despite the
fact that it can handle the load, it is the least cost-effective and environmentally friendly
configuration. It has the highest COE ($0.598/kWh), NPC ($1,382,532), O&M ($254,801.35),
and CO2 emission (152,707 kg/yr). This design is not feasible for the island because the
primary goal of this study is to reduce overall system costs.

Due to their low unmet loads, which range from 0.01% to 0.07%, all six hybrid con-
figurations are considered reliable options from a technical standpoint. The W+DG+B
configuration provides the least amount of excess electricity (9172 kWh/yr) and the second
least amount of unmet load (52.4 kWh/yr), but it has the lowest renewable fraction (27.3%).
The low excess electricity is due to the low renewable penetration, which stems from
the wind turbine’s low contribution. Due to the increased renewable fraction (88.3%),
the PV+DG+B configuration generates the least unmet load (24.7 kWh/yr) but also pro-
duces the most excess electricity (43,393 kWh/yr). The PV+W+BG+B configuration is the
only one with a 100% renewable penetration while still producing a fair amount of excess
electricity (27,763 kWh/yr), but it falls short due to the high unmet load (132 kWh/yr).
When compared to diesel-backup configurations, biogas generator backup configurations
provided more unmet loads and excess electricity. This is due to a rise in the use of
renewable energy. We can now conclude that the PV+DG+B configuration is the most
efficient, with the lowest unmet load, despite having a higher excess electricity and a
modest renewable fraction.

The PV+W+BG+B configuration is the most cost-effective due to its low financial
records. The NPC is $487,247, and COE is $0.211/kWh. It also has the cheapest O&M of
$41,502.13. The low financial records are the result of smaller component sizes (1 wind
turbine, 101 kW of PV, 50 kW biogas generator, 86 batteries, and 37.6 kW converter ).
The W+DG+B configuration has the lowest initial capital cost of the hybrid configurations.
Among the different hybrid configurations, the W+BG+B configuration has the worst eco-
nomic records. This is because there are a lot of batteries (187 batteries) and wind turbines
(16 turbines) used. One of the drawbacks of using a larger number of wind turbines and
a biogas generator with longer operating hours is the high cost of operation and mainte-
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nance. The PV+W+BG+B configuration reduces the NPC by 64.7% and 59.6%, respectively,
as compared to the current standalone diesel configuration and the W+BG+B configuration.

Table 3. Optimization results of the various hybrid configurations.

Disel-Based Renewable-Diesel Backup Renewable-Biogas Backup

Configuration Units PV+W+DG+B PV+DG+B W+DG+B PV+W+BG+B PV+BG+B W+BG+B

Optimal sizing
WTs No. - 2 - 2 1 - 16
PV kW - 109 143 - 101 141 -
DG kW 75 30 50 30 - - -
BG kW - - - 50 50 75

BAT No. 103 84 31 86 86 187
CON kW 48.1000 49.3000 31.8000 37.6000 37.6000 66.9000

Technical
Excess elect. kWh/yr 22,124 48,048 43,393 9172 27,763 50,998 378,363
Ren. fract. % 0 96.8000 88.3000 27.3000 100 100 100

Unmet load kWh/yr 0 101 24.70000 52.40000 132 121 143
Economic

NPC $ 1,382,532 545,436 588,211 702,897 487,247 530,857 1,280,000
COE $/kWh 0.598 0.2360 0.2540 0.3040 0.2110 0.2300 0.5520

Initial capital $ 49,500 400,359 354,749 157,884 376,701 408,781 1,003,000
O&M cost $ 254,801.3500 52,412.2900 60,844.7800 72,117.1700 41,502.1300 42,633.6700 140,367.3100

Environment
CO2 kg/yr 152,707 4200 15,763 88,059 17.5000 16.6000 9.2200

When compared to their diesel-backup counterparts, all configurations that used the
biogas generator as a backup component emitted low CO2 emissions. Despite the fact that
the W+BG+B configuration tends to be the worst in terms of techno-economic features, it is
the most environmentally friendly, emitting 9.22 kg CO2 per year, followed by PV+BG+B
(16.6 kg/yr) and PV+W+BG+B (17.5 kg/yr). The PV+W+BG+B configuration emits more
CO2 than the W+BG+B configuration due to the increased biogas activity to complement
the number of batteries. Among the hybrid configurations, the W+DG+B generates the
most CO2 emissions (88,059 kg/yr). The reason for this is that wind resources have strong
intermittencies. To compensate for the lack of wind, the diesel generator runs for longer
periods of time. This increased activity results in more poisonous gas emissions.

According to the above analyses, no single hybrid configuration outperforms the
others in terms of technical, economic, and environmental characteristics. The PV+DG+B
configuration provided the lowest unmet load, making it technically sound, but it falls short
in terms of economic and environmental features when compared to the PV+W+BG+B and
W+BG+B configurations. This makes choosing the best configuration extremely difficult.
It would be a biased decision to choose any of the configurations as the best, based on
the results of this first optimization. Since we are considering multiple attributes with
competing interests, multi-attribute decision-making could be a better strategy.

3.2. Result of the Second Optimization

Two separate weight assignment methods were considered in this phase. The first has to
do with the AHP weight assignment and the second considered Entropy weight assignment.
The steps involved in the various weights calculation are explained in Section 2.3.

3.2.1. AHP-CODAS Approach

The first optimization’s results were used as input data for the MADM operation.
Table 4 shows the different weights obtained using the AHP algorithm. It shows that, for
a developing country like Sierra Leone, COE and NPC had the highest priorities with
scores of 20.80% and 34.16%, respectively. The negative sign next to an attribute means
that it should be diminished, while the positive sign indicates that it should be maximized.
The higher the renewable fraction, the cleaner the system is for the atmosphere, while
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lowering the cost parameters increases the island’s socio-economic status. Considering
steps 1 and 2 of implementing the CODAS algorithm, the system attributes and initial
decision matrix are presented in Table 5. Results for the Normalized matrix of the CODAS
procedure are given in Table 6. Both the AHP and Entropy weight assignment strategies
would use it as an input to calculate the weighted normalized matrix. The AHP-CODAS
approach’s weighted normalized matrix is obtained by multiplying the different weights
with the normalized matrix. Table 7 displays this information. Calculations from negative
ideal solution and Euclidean and taxicab distances (steps 5 and 6) resulted in the formation
of the relative assessment matrix. The relative assessment matrix, assessment score, and
rank of the various configurations of the AHP-CODAS approach are presented in Table 8.
Because of the highest assessment score, the PV-W-BG-B configuration is ranked as the
best. Table 3 shows that this design has a 100% renewable fraction as well as the lowest
NPC ($487,247) and COE ($0.211/kWh). It has 1 wind turbine, 101 kW PV, 50 kW biogas
generator, 86 batteries, and a 37.6 kW converter in its system configuration. Despite having
the highest unmet load and NPC, the W-BG-B is ranked second. With an annual CO2
emission of 9.22 kg/yr, it is considered the most environmentally friendly configuration.
The first three rated configurations used biogas as a backup, recognizing the superiority
of using a biogas generator as a backup component compared to those that used diesel
as backup.

Table 4. Weights of AHP analysis.

Attribute Type Weight %

Cost of energy (COE) Non-beneficial (−) 0.2080 20.80
Net present cost (NPC) Non-beneficial (−) 0.3416 34.16
Renewable fraction (RF) Beneficial (+) 0.1401 14.01
Excess electricity (EXE) Non-beneficial (−) 0.1765 17.65

Carbon emission gases (CO2) Non-beneficial (−) 0.1338 13.38

Table 5. Attributes and initial decision matrix.

Configurations NPC COE RF EXE CO2

PV-W-DG-B 0.2360 545,436 96.8000 48,048 4200
PV-DG-B 0.2540 588,211 88.3000 43,393 15,763
W-DG-B 0.3040 702,897 27.3000 9172 88,059

PV-W-BG-B 0.2110 487,247 100 27,763 17.5
PV-BG-B 0.2300 530,857 100 50,998 16.6
W-BG-B 0.5520 1,280,000 100 378,363 9.22

Table 6. Normalized matrix of the CODAS Algorithm.

Configuration COE NPC RF EXE CO2

PV-W-DG-B 0.8941 0.8933 0.9680 0.1909 0.0022
PV-DG-B 0.8307 0.8284 0.8830 0.2114 0.0006
W-DG-B 0.6941 0.6932 0.2730 1.0000 0.0001

PV-W-BG-B 1.0000 1.0000 1.0000 0.3304 0.5269
PV-BG-B 0.9174 0.9178 1.0000 0.1799 0.5554
W-BG-B 0.3822 0.3807 1.0000 0.0242 1.0000
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Table 7. Weighted normalized matrix for the AHP-CODAS approach.

Configuration COE NPC RF EXE CO2

PV-W-DG-B 0.3054 0.1858 0.1356 0.0337 0.0003
PV-DG-B 0.2838 0.1723 0.1237 0.0373 0.0001
W-DG-B 0.2371 0.1442 0.0382 0.1765 0.0000

PV-W-BG-B 0.3416 0.2080 0.1401 0.0583 0.0705
PV-BG-B 0.3134 0.1909 0.1401 0.0317 0.0743
W-BG-B 0.1306 0.0792 0.1401 0.0043 0.1338

Table 8. Assessment matrix, score, and ranking of the configurations (AHP-CODAS approach).

Configurations COE NPC RF EXE CO2 Assessment Score Rank

PV-W-DG-B 0.0000 0.0120 0.0073 −0.0920 −0.0786 −0.1514 4
PV-DG-B −0.0120 0.0000 −0.0046 −0.1039 −0.0905 −0.2110 6
W-DG-B −0.0073 0.0046 0.0000 −0.0992 −0.0858 −0.1877 5

PV-W-BG-B 0.0926 0.1047 0.1001 0.0000 0.0136 0.3110 1
PV-BG-B 0.0789 0.0910 0.0864 −0.0135 0.0000 0.2427 3
W-BG-B 0.0913 0.1033 0.0987 −0.0007 0.0128 0.3053 2

3.2.2. ENTROPY-CODAS Approach

The attributes and initial decision matrix are presented in Table 5. Results of the
Normalized matrix of the CODAS procedure are given in Table 6. The weights obtained
from the Entropy calculations are given in Table 9. The highest weights were assigned to
the CO2 emissions and excess electricity. The weighted normalized matrix of the Entropy-
CODAS approach is presented in Table 10. The relative assessment matrix, assessment score,
and rank of the various configurations of the Entropy-CODAS approach are presented in
Table 11. The W-BG-B system is ranked as the best configuration because of the highest
assessment score. The PV-BG-B is ranked second and the PV-W-BG-B follows in third place.
The success of the W-BG-B configuration is due to the initial preference weight given to the
CO2 emission. This result also confirms the superiority of the configurations that used the
biogas generator as a backup component by order of ranking compared to those that used
diesel as a backup.

Table 9. Weights of entropy analysis.

Attribute Type Weight %

Cost of energy (COE) Non-beneficial (−) 0.0319 3.19
Net present cost (NPC) Non-beneficial (−) 0.0322 3.22
Renewable fraction (RF) Beneficial (+) 0.0292 2.92
Excess electricity (EXE) Non-beneficial (−) 0.3264 32.64

Carbon emission gases (CO2) Non-beneficial (−) 0.5803 58.03

Table 10. Weighted normalized matrix for the Entropy-CODAS approach.

Configuration COE NPC RF EXE CO2

PV-W-DG-B 0.0285 0.0285 0.0282 0.0623 0.0013
PV-DG-B 0.0265 0.0266 0.0257 0.0690 0.0003
W-DG-B 0.0221 0.0223 0.0079 0.3264 0.0001

PV-W-BG-B 0.0319 0.0321 0.0291 0.1078 0.3057
PV-BG-B 0.0293 0.0295 0.0291 0.0587 0.3223
W-BG-B 0.0122 0.0122 0.0291 0.0079 0.5803
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Table 11. Assessment matrix, score, and ranking of the configurations (Entropy-CODAS approach).

Configurations COE NPC RF EXE CO2 Assessment Score Rank

PV-W-DG-B 0.0000 0.0004 −0.0961 −0.3095 −0.3187 −0.7239 5
PV-DG-B −0.0004 0.0000 −0.0965 −0.3099 −0.3191 −0.7258 6
W-DG-B 0.0970 0.0973 0.0000 −0.2147 −0.2238 −0.2442 4

PV-W-BG-B 0.3140 0.3144 0.2158 0.0000 0.0090 0.8352 3
PV-BG-B 0.3228 0.3232 0.2246 −0.0090 0.0000 0.8796 2
W-BG-B 0.5812 0.5816 0.4816 −0.2645 0.2557 2.1647 1

3.2.3. Comparative Analysis of Weight Assignment Approaches

The AHP method of assigning weights is robust and superior to the Entropy method,
as shown by the results of the ranking of the different configurations in Tables 8 and 11.
The main goal of this study is to find a cost-effective and long-term power system design
for supplying electricity to Sierra Leone’s Banana Islands. The PV-W-BG-B configuration
is the most cost-effective, with the lowest NPC, COE, and O&M costs, while the W-BG-B
configuration is the least cost-effective. The PV-W-BG-B configuration has lower NPC, COE,
and O&M costs than the W-BG-B configuration by 61.9%, 61.7%, and 70.4%, respectively.
When opposed to the W-BG-B configuration, the PV-W-BG-B configuration generates 7.69%
less unmet load and 92.6% less excess electricity, making it more capable and effective.
When compared to the PV-W-BG-B configuration, the W-BG-B configuration emits 47.3%
less CO2 emissions. Since our objective is to get a configuration that is cost-effective and
sustainable, the PV-W-BG-B configuration is preferable. This proves that the AHP-weight
assignment method is superior to the Entropy-weight assignment method. The AHP
method of weight assignment is based on expert judgment, and is a trustworthy method
since it allows decisions based on the decision maker’s previous knowledge and growth
needs. The decision outcome is focused on the objective decision matrix knowledge using
mathematical applications, and there is no space for expertise in the Entropy analysis.

3.2.4. Performance Assessment of the Optimum Configuration

Figures 6 and 7 show the technical analyses in greater detail. The monthly electric
outputs of the PV, wind, and biogas components are shown in Figure 6. The PV panel
dominates electricity generation (70.3%), led by the wind turbine (15.6%) and the biogas
generator (14.1%). PV power generation increases in the dry season (November to April)
due to a high clearness index and decreases in the rainy season (June to September) due
to dark clouds and heavy rains, as observed. In July and August, when the wind speed
in the area rises, the wind contributes the most electricity. The biogas contribution is
highest in November and December which is when the island experiences the lowest wind
speed. To compensate for the wind’s inconsistencies, the biogas generator increases its
contribution. The battery efficiency is shown in Figure 7. The expected lifespan is 11.7 years,
with a 21.1-h autonomy. Discharge is most noticeable in the mornings, when solar energy
is scarce. The cost description of the different components is shown in Figure 8. The battery
is the most expensive component of the system, followed by PV, biogas, wind, and the
converter. As shown in Figure 9, the high battery cost is due to the fact that it is replaced
twice before the project life expires. Environmentally, the optimum system produces a
very low amount CO2 compared to the existing stand-alone diesel configuration as seen
in Table 12.
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Figure 6. Monthly electric production by components.

Figure 7. Batterystate of charge.

Figure 8. Cost analysis.
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Figure 9. Cash flow by components.

Table 12. Emission analysis.

Pollutant (kg/yr) PV-W-BG-B DG

Carbon dioxide 17.5000 152,707
Carbon monoxide 0.1940 790

Unburned hydrocarbons 0 41.9000
Particulate matter 0 6.7600

Sulfur dioxide 0 373
Nitrogen oxides 0.1210 151

3.3. Sensitivity Analysis on the Optimum System

Sensitivity analysis is usually used to assess the effect of selected parameters on the
system’s future behavior. The optimum configuration was subjected to a sensitivity analysis
in this review, which took into account the discount rate and the battery storage expense.
The battery is found to be the most expensive component of the overall system. An analysis
is being conducted to determine the effect of rising and decreasing storage costs by 50%.
In addition, the discount rate is affected by the country’s economic conditions. Sierra Leone’s
inflation rate is currently unstable. To determine the effect on both the COE and the NPC,
the discount rate was increased to 11% and then decreased to 5%. Figure 10 presents the
results of the sensitivity analyses of the discount rate with respect to NPC and COE. It can
be seen that the discount rate is inversely proportional to the NPC and directly proportional
to the COE. Decreasing the interest rate from 8% to 5% increases the NPC from $487,247 to
$529,186, which is a 7.9% increment and reduces the COE from $0.211/kWh to $0.169/kWh,
which is a 24.85% decrement. This can be verified in Figure 11. In addition, increasing the
interest rate to 11% increases the COE by 5.38% and decreases the NPC by 22.5%. A 50%
increment in the storage cost of the battery increases both the NPC and COE by 10.26%
while a 50% decrement reduces both by 14%. Before a decision is taken, the results of the
sensitivity analyses clearly give investors or the government an indication of the effect that
improvements in the inflation rate and storage cost would have on the financial output of
the project. The Banana islands draw a large number of visitors each year, and government
policies on green energy can have a significant effect on the profitability of developing
hybrid renewable energy power configurations.
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Figure 10. Sensitivity analysis: Relation of discount rate to NPC and COE.

Figure 11. Sensitivity analysis: Impact of increasing and decreasing the discount rate and storage cost on NPC and COE.

4. Conclusions

In conclusion:

• The results indicate that using the current diesel-based power system to provide
continuous electricity for the citizens of Banana Islands is neither cost-effective nor
environmentally friendly. This system has a COE of $0.598/kWh and a CO2 emission
of 152,707 kg/yr, which are respectively 64.7% and 99.9% higher than the proposed
optimum configuration.

• The AHP method of assigning weights is superior to the Entropy method. The opti-
mum configuration selected by the AHP-CODAS approach (PV-Wind-Biogas-battery)
is techno-economically superior but environmentally inferior to the configuration
selected (Wind-biogas-battery) by the Entropy-CODAS approach.
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• The first three ranked configurations using both weight assignment approaches are
those that used the biogas generator as backup components. Biomass hybrid configu-
rations tend to be economical and environmentally better than diesel-based backup
configurations although technically, diesel-based hybrid configurations are superior.
The decision of using either component as backup sources depends on the objectives
of the system designer.

• According to renewable energy data, the average wind speed in the region is very
low (3.42 m/s), compared to solar radiation of 5.34 kWh/m2/day. The wind speed
increases in July and August, while solar radiation is at its lowest in these months.
Operating a system based solely on wind or solar energy would not be cost-effective
or long-term.

• The effect of fluctuations in the inflation rate and storage cost on the total system cost
was confirmed by sensitivity analyses. These criteria, as well as government policies
against the establishment of hybrid renewable energy systems, must be considered
when making investment decisions.

The following suggestions can be considered for future studies:

• Employing an integrated weight assignment MADM process to select the optimum
configuration.

• Undertaking a comparative study between grid-extension to Banana Islands and the
use of hybrid renewable off-grid configuration.

• Establishing sensitivity analysis on the load growth and renewable energy resources
to know the cost repercussions in the near future.

• Since Banana Islands is a coastal community incorporating, the use of wave energy
converters or hydrokinetic turbines could be a future research approach.
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