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Abstract: Climate change and the extreme weather have a negative impact on road traffic safety,
resulting in severe road traffic accidents. In this study, a negative binomial model and a log-change
model are proposed to analyse the impact of various factors on fatal traffic accidents. The dataset used
in this study includes the fatal traffic accident frequency, social development indicators and climate
indicators in California and Arizona. The results show that both models can provide accurate fitting
results. Climate variables (i.e., average temperature and standard precipitation 24) can significantly
affect the frequency of fatal traffic accidents. Non-climate variables (i.e., beer consumption, rural
Vehicle miles travelled ratio, and vehicle performance) also have a significant impact. The modelling
results can provide decision-making guidelines for the transportation management agencies to
improve road traffic safety.

Keywords: climate change; fatal traffic accident; regression analysis

1. Introduction

Traffic accidents can result in considerable losses to individuals and society. According
to the World Health Organization (WHO), globally road traffic accidents cause approximately
1.35 million deaths annually and cost $518 billion USD. Without suitable improvement
strategies, road traffic injuries are expected to become the fifth leading cause of death by 2030.
Thus, it is necessary to analyse the influential factors affecting traffic accidents in order to
improve the traffic safety. There are a large number of factors affecting road traffic accidents
in the existing literature, such as economy, climate, and traffic safety laws.

Some research shows that economic growth is significantly related to the increase of
road traffic accidents [1–4]. Among the economic factors, the impact of GDP and residents’
income are more significant. The increase of GDP and per capita income result in higher
traffic accident mortality. Some studies [5–7] have examined the impact of fuel prices and
fuel taxes on traffic accidents. In addition, studies [8–10] have investigated the relationship
between various social development indicators and road traffic accidents. It has been
observed that the Gini index, average household income and road network distribution
have impacts on road traffic accident mortality. The reduction of traffic volume, young
drivers and drunk driving can significantly reduce the number of traffic deaths. Moreover,
the proportion of high capacity roads, unemployment rate, and motorization rate can
reduce the number of traffic deaths and serious injuries.

Some studies have examined the impact of weather factors on traffic accidents [11–19],
but there are few studies focused on the impact of climate factors on fatal traffic accidents
from the macro perspective. Climate change can influence road environment and driving
behaviour, which in turn affect the risk of road traffic accidents [20–23]. The climatic factors
affecting the traffic accident include temperature, precipitation and wind. Temperature
has an influence on the risk level of road traffic accidents, especially the extreme low
temperature conditions and the hot weather [24–29]. Extreme cold weather and icy roads
will significantly increase the frequency of traffic accidents, especially those accidents
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caused by vehicle skidding. Also, rainfall and other characteristics can affect the risk of
traffic accidents [30–34]. The road traffic accident rate in rainy days is significantly higher
than that in sunny days. Rainfall can also increase the rate of traffic accident casualties, and
the impact of rainy weather changes with the amount of rainfall. In addition, the impact
of windy weather on road traffic accidents cannot be ignored. The occurrence of windy
weather will increase the risk of traffic accidents [35,36]. In stormy weather, when the
gust speed is higher than a certain threshold, the probability of traffic accidents increases
accordingly. Strong winds increase the frequency of rollovers, sideslip and spin, especially
rollovers [37].

The existing traffic safety law studies mainly consider Driving Under the Influence (DUI),
safety belts, helmets (for motocyclists) and so on. Revision of DUI laws and the increase of
the legal drinking age can reduce traffic accidents and casualties [38,39]. The improvement of
DUI law can significantly reduce the incidence of alcohol related traffic accidents. Moreover,
the increase of legal drinking age can also reduce the frequency of drunk driving, thereby
reducing road traffic accidents. There are also some studies focusing on the possible impact
of safety belt and helmet use laws, which show that relevant laws can have a certain impact
on motor vehicle traffic accidents [40–42].The results show that the abolition of safety belt law
may lead to a significant increase in the number of traffic casualties.

Two issues have not been adequately addressed in the previous research. First, these
studies fail to comprehensively investigate the influence of economy, climate and law so
that they ignore the overall effect. The second point is that most studies adopt simple
mathematical statistical methods in analyzing the impact of climate or law, which cannot
accurately explore the sensitivity of influencing factors to traffic accidents. The objective
of this paper is to comprehensively explore the impact of climate and other factors on
fatal traffic accident from a macroscopic perspective. And the influence of these factors
on the frequency of fatal traffic accidents can be quantified, especially the climate factors.
Furthermore, this paper explains the influence mechanism of these factors on fatal traffic
accidents.

The next section introduces the data characteristics. The third section describes the
data process procedure and statistical analysis. The fourth section shows the modelling
results, and discussions. The last section provides the conclusions.

2. Data Description

The dataset used in this study integrates multi-source data [43–45] from California and
Arizona (USA) for time period 2001 to 2016. The original dataset may be divided into three
main categories: fatal traffic accidents, social development and climate characteristics. Social
development variables include economy, traffic, laws and regulations and other factors indi-
cating social conditions. Such factors usually affect residents’ activities and traffic conditions.
Climate characteristics include temperature, precipitation and humidity, meteorological dis-
asters, and other factors reflecting the regional climate characteristics. These factors usually
affect the driving environment and the physical and mental state of drivers.

2.1. Fatal Traffic Accident Data

The fatal traffic accident data used in this study are obtained from the Fatality Analysis
Reporting System (FARS) of the National Highway Traffic Safety Administration (NHTSA).
Figure 1 shows the trend of fatal traffic accidents in California and Arizona from 2001 to
2016 respectively. The time span of the collected traffic accident frequency is a year, and
the space span is a state.
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Figure 1. Fatal traffic accidents in California and Arizona.

The trend of fatal traffic accidents in California can be summarized into three periods.
First, the frequency of fatal traffic accidents shows a slow upward trend from 3543 in 2001 to
3839 in 2006. Second, the fatal traffic accident frequency shows a sharp downward trend from
3591 in 2007 to 2504 in 2010. Third, the frequency of fatal traffic accidents shows a significant
upward trend from 2617 in 2011 to 3357 in 2016, with an increase of about 28%. The change
trend of fatal traffic accidents in Arizona can be also divided into three periods. First, the
frequency of fatal traffic accidents shows an upward trend from 938 in 2001 to 1118 in 2006.
Second, the frequency of fatal traffic accidents shows a rapid decline from 2007 to 2010. Third,
the frequency of fatal traffic accidents shows an upward trend from 755 in 2011 to 865 in 2016.
Based on the trend analysis of fatal traffic accidents, it can be observed that the frequency of
fatal traffic accidents has different trends in different periods.

2.2. Social Development Data

The social development data adopted in this study mainly include society, economy,
roads, vehicles, laws and regulations. It should be noted that in the road and vehicle
category, Vehicle Miles Travelled (VMT) is used as an exposure with the collision risk
during modelling process. Table 1 provides the social development data used in this study.

Table 1. Description of the Social development data.

Category Data Name Description

Social and economic

GDP Gross domestic product per capita (in
$10,000)

An estimated value obtained by dividing
gross domestic product and state population.

Med Income Median household income (in
$10,000)

An estimated value obtained by averaging
two original values before and after the

current year.

Gas Price Gasoline price per gallon (in $) The price of regular grade gasoline plus the
fuel tax.

Youth Unemp Unemployment rate (%, between age
16 to 24) The legal driving age in US is at least 16.

Beer Consump Beer consumption per capita (in
gallon)

Beer is one of the most consumed alcoholic
drinks in US.

Rural Prop Proportion of rural VMT The proportion of rural VMT in the total
VMT.
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Table 1. Cont.

Category Data Name Description

Road and vehicle

Highway Cap Highway capital spending per mile
(in $1000)

Reflects the strength of highway
infrastructure construction.

Safety Cap Highway safety spending per mile (in
$1000)

Includes traffic law enforcement expenditure,
safety education and other aspects.

Veh Perform Proportion of vehicles manufactured
after 1991 in the fleet (%)

Reflects the overall safety performance of
vehicles to a certain extent.

VMT Vehicle Miles Travelled (million) /

Laws and
regulations

DUI_degree Regulation rigor degree of driving
under the influence

Reflects the strength of drunk driving law,
which may inhibit drunk driving behaviour.

Safety
Belt_degree Regulation rigor degree of safety belt Shows the strength of safety belt use law,

which urges more drivers to use safety belt.

Helmet_degree Regulation rigor degree of motorcycle
helmet

Shows the strength of the law on the use of
motorcycle helmets, which promotes more

motorcycle drivers to use helmets.

Considering inflation or deflation rate, the GDP per capita, median household income,
gasoline price, highway capital spending and highway safety spending are converted into
dollars in 2013 through Consumer Price Index (CPI).

2.3. Climatic Characteristic Data

The climate characteristic data considered in this study mainly include temperature,
precipitation, humidity, and meteorological disaster. Note that, the extreme weather
defined in this study refers to meteorological disaster events with low probability in
one year. Generally, these meteorological disaster events include but are not limited
to drought, extreme temperature, wind, tornado, hail, snowstorm, thunderstorm and
sandstorm. Among them, wind, tornado and hail are common meteorological disasters.
Therefore, these three meteorological disasters are considered as extreme weather in this
study. Previous studies show that temperature, precipitation and common disaster weather
are related to the occurrence and frequency of road traffic accidents. All climatic variables
collected at different time scales are aggregated as annual data. Table 2 provides the climatic
data used in this study.

Table 2. Description of the climatic data.

Category Data Name Description

Temperature

TAVG Annual average month
temperature (in ◦F) The mean value of the 12-month average temperature.

TMIN Average month minimum
temperature (in ◦F) Taken as the mean value rather than the minimum value.

Reflect the situation of the annual extreme temperature.
TMAX Average month maximum

temperature (in ◦F)

CDD Cooling degree days
(in ◦F·day)

When the daily average outdoor temperature of a day in a
year is higher or lower than the indoor reference

temperature, multiply the extra degrees by one day, and
then add up the product of each day.

HDD Heating degree days
(in ◦F·day)

Precipitation and
humidity

SPI Standard precipitation index
(I = 1,2,3,6,9,12,24)

The smaller the value is, the drier the climate is. Smaller I
(index) reflects recent precipitation and larger I reflects

long-term.

PCP Precipitation concentration
period

The percentage of precipitation in the summer flood
season. It reflects the concentration degree.

PDSI Palmer drought severity index

Can consider the current water supply, demand situation,
the influence of the previous conditions and their

duration on the current situation.

PHDI Palmer hydrological drought
index

PMDI Palmer modified drought
index

ZNDX Palmer Z-Index



Sustainability 2021, 13, 390 5 of 14

Table 2. Cont.

Category Data Name Description

Meteorological disasters
hail Annual count of hail weather Related to extreme cold weather, slippery or frozen road

surface.
torn Annual count of tornado Related to dust weather, vehicle overturning or deviation.
wind Annual count of wind Related to snowstorm, dust, vehicle skidding or rollover.

2.4. Data Summary

In order to display the numerical value scale of various data intuitively, the California
and Arizona data are averaged annually in Table 3. The mean values of the variables can
also be used for subsequent sensitivity analysis.

Table 3. Mean values of different variables over 16 years.

Variable California Arizona Variable California Arizona

GDP 6.45 4.85 HDD 554.25 512.50
MedIncome 6.10 5.20 SP01 −0.10 −0.14

GasPrice 3.19 2.90 SP02 −0.17 −0.21
YouthUnemp 14.99% 14.21% SP03 −0.19 −0.25
BeerConsump 1.02 1.28 SP06 −0.23 −0.32

RuralProp 18.03% 29.00% SP09 −0.27 −0.37
HighwayCap 65.66 70.54 SP12 −0.29 −0.40

SafetyCap 27.05 12.30 SP24 −0.46 −0.59
VehPerform 94.55% 94.55% PCP 20.60 11.12

VMT 326,425.03 59,378.86 PDSI −1.63 −2.12
DUI_degree 18.75 22.63 PHDI −1.67 −2.22

SafetyBelt_degree 4 1 PMDI −1.54 −1.89
Helmet_degree 4 2 ZNDX −0.52 −0.72

TAVG 59.16 61.23 hail 24.00 35.69
TMIN 33.29 28.63 torn 8.19 3.94
TMAX 92.22 96.06 wind 22.13 86.63
CDD 949.63 3077.00

3. Methodology

In this study, the Negative Binomial model and the log-change model are used to
analyse the relationship between various factors and the frequency of fatal traffic accidents.
Note that there is no zero value in the dependent variable. The Negative Binomial model
takes the frequency of fatal traffic accidents as the dependent variable, VMT as the exposure,
and various influencing factors as the independent variables. The log-change model takes
the logarithm of the change rate of accident frequency as the dependent variable and the
logarithm of the change of various factors as the independent variable. As a result, the
coefficients can reflect the change rate of the factors’ influence on traffic fatal accidents.

3.1. Accident Count Model

In this model, VMT is considered as an offset term because there is a linear relationship
between VMT and fatal traffic accidents.

The accident count model could be described using Equation (1):

µ = VMT× eβ0+∑i βiXi (1)

where:

µ = the estimated frequency of fatal traffic accidents per year;
VMT = the number of vehicle miles travelled (million) per year;
Xi = independent variable i affecting the frequency of fatal traffic accidents, which is
mentioned in the second section;
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β0 = intercept;
βi = the estimated coefficient of variable i.

3.2. Log-Change Model

In the log-change model, VMT is no longer regarded as an exposure item. Change
rate of VMT is used as a variable to explain the change rate of accident frequency. In the
simplified form of the model, there is a linear relationship between the logarithm of the
fatal traffic accidents change rate and logarithm of the variables change rate.

The functional form is shown in Equation (2):

ln
yt

yt−1
= β0 + ∑

i
βiz′i (2)

where:

yt = the frequency of fatal traffic accidents in year t;
yt−1 = the frequency of fatal traffic accidents in year t − 1;
zi
′

= the logarithm of change rate of variable i;
β0 = intercept;
βi = the estimated coefficient of variable i.

The change rate of the independent variable in the current year is defined as a multiple
of the previous year, as shown in Equation (3):

zt =
xt

xt−1
(3)

where:

zt = the change rate of the independent variable in year t;
xt = the value of the independent variable in year t;

The independent variable in Equation (2) can be obtained by taking the logarithm of
the change rate of the variable in the current year, as shown in Equation (4):

z′t = ln zt (4)

When exponentiated, the coefficient can be converted to a multiple of the traffic
accidents frequency caused by the change of factors, as shown in Equation (5):

yt

yt−1
= eβ0∏

i
eβi zi (5)

4. Results and Discussion

This section mainly includes three aspects: variable selection, results and discussion.
Variable selection briefly introduces the filter methods and results. The results section
shows the estimated value of the variable coefficient of the count model and the log-change
model. The count model is used to analyse the sensitivity of independent variables and
relationship between influencing factors and the frequency of traffic accidents. Then the
log-change model is used to perform the change trend of traffic accidents, and the validity
of the log-change model can be verified. In the discussion, the influence of the independent
variables on the frequency of traffic accident is quantitatively described, and its influence
mechanism is also analysed.

4.1. Variable Selection

In addition to the exposure item VMT, influencing factors collected include 12 types
of social development data and 14 types of climate characteristic data. Among the climate
characteristic data, SPI has seven different values on different time scales, so there are 20
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climate characteristic variables. Then, factor analysis and correlation analysis are adopted in
this study to filter the various variables, in order to eliminate the collinearity between variables.

Kaiser-Meyer-Olkin (KMO) and Bartlett ball tests were conducted to verify the ap-
plicability of factor analysis. The results show that there is obvious collinearity between
the original variables. The eigenvalue of components and the matrix of score coefficient
after rotation in factor analysis are shown in Tables 4 and 5. Based on these two tables,
principal components and variables with high scores are selected in turn. Then according to
correlation matrix, further screening is carried out. Through factor analysis and correlation
analysis, four climate variables (Annual Average Month Temperature (TAVG), SP24, hail
and wind) are reserved. TAVG is related to several other temperature class variables, which
can represent the data of temperature category. SP24 has collinearity with other variables
such as other SPI. It can reflect the drought changes on a long-time scale and humidity
level. In the meteorological disaster data, the component coefficient scores of the three
variables are high, but tornado has a correlation with the other two variables. Therefore,
hail and wind are considered as the main meteorological disaster indicators.

Table 4. Eigenvalues of 20 components.

Component Eigenvalue Variance Percentage (%) Cumulative Percentage (%)

1 1 9.990 49.950 49.950
2 4.333 21.666 71.617
3 2.127 10.636 82.252
4 1.078 5.392 87.645
5 0.744 3.718 91.362
6 0.413 2.064 93.427
7 0.339 1.693 95.120
8 0.241 1.204 96.324
9 0.200 1.001 97.325
10 0.168 0.840 98.165
11 0.151 0.756 98.921
12 0.060 0.298 99.219
13 0.042 0.212 99.430
14 0.034 0.168 99.598
15 0.026 0.131 99.729
16 0.020 0.102 99.830
17 0.016 0.081 99.911
18 0.007 0.035 99.946
19 0.007 0.033 99.979
20 0.004 0.021 100.000

1 Bold font denotes eigenvalues >=1.

Table 5. Score coefficient matrix after rotation.

Variable
Principal Component Score

1 2 3 4

SP01 1 0.966 −0.113 0.086 0.060
SP02 0.966 −0.108 0.167 0.053
SP12 0.960 −0.111 0.101 0.031
SP03 0.946 −0.109 0.230 0.046

ZNDX 0.909 −0.141 0.269 0.083
SP06 0.860 −0.100 0.418 0.029
SP09 0.750 −0.098 0.573 0.017
PDSI 0.729 −0.162 0.605 0.067
PMDI 0.682 −0.151 0.672 0.078
PCP 0.548 0.376 0.193 −0.130
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Table 5. Cont.

Variable
Principal Component Score

1 2 3 4

TAVG −0.052 0.971 −0.025 0.114
TMIN −0.045 0.950 −0.122 −0.031
HDD 0.098 −0.931 0.173 0.016
CDD −0.104 0.871 −0.035 0.254

TMAX −0.296 0.766 −0.109 0.296
SP24 0.339 −0.140 0.845 0.014
PHDI 0.632 −0.150 0.730 0.069
hail 0.009 0.006 −0.016 0.925
torn 0.091 0.219 −0.035 0.874
wind 0.075 0.144 0.140 0.801

1 Bold font denotes score ≥0.700.

4.2. Results

After the above data pre-processing, the final variables used for California and Arizona
are shown in Table 6. The entire dataset can be divided into two categories, namely non-
climatic variables and climatic variables. The non-climatic variables include social and
economic category, road and vehicle category. The climatic variables include temperature
category, precipitation and humidity category and meteorological disaster category.

Table 6. Variables used for California and Arizona.

State Category Variable

California

Social and economic

GDP
MedIncome

BeerConsump
RuralProp

Road and vehicle
HighwayCap
VehPerform

Temperature TAVG
Precipitation and humidity SP24

Meteorological disaster hail
wind

Arizona

Social and economic

GDP
MedIncome

GasPrice
BeerConsump

Road and vehicle
HighwayCap
VehPerform

Temperature TAVG
Precipitation and humidity SP24

Meteorological disaster hail
wind

In this section, the accident count model and log-change model are used to analyse
fatal traffic accidents. Tables 7 and 8 show the variable coefficient results of the count model.
Figures 2 and 3 are used to demonstrate the change trend estimated by the log-change model.
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Table 7. Accident count model results in California.

Variable Estimate Standard Error Pr(>|z|) Exponentiated Value

Intercept −7.9741 0.6839 <0.0001
GDP 0.0952 0.0672 0.1565 1.0998

MedIncome 0.0418 0.0791 0.5975 1.0426
BeerConsump 1 2.5088 0.5060 <0.0001 12.2901

RuralProp −5.7379 1.7340 0.0009 0.0032
HighwayCap 0.0018 0.0006 0.0026 1.0018
VehPerform −0.0155 0.0048 0.0013 0.9846

TAVG 0.0393 0.0106 0.0002 1.0401
SP24 0.0943 0.0170 <0.0001 1.0988
hail 0.0017 0.0005 0.0012 1.0017

wind −0.0004 0.0009 0.6302 0.9996

AIC 194.31
MAD 36.50
MSPE 449.67

1 The variables in bold are statistically significant at the 95% confidence level.

Table 8. Accident count model results in Arizona.

Variable Estimate Standard Error Pr(>|z|) Exponentiated Value

Intercept −7.4537 1.3645 0.0000
GDP 1 0.1951 0.0812 0.0163 1.2155

MedIncome 0.4001 0.0920 0.0000 1.4919
GasPrice 0.1858 0.0609 0.0023 1.2042

BeerConsump 0.4154 0.4334 0.3377 1.5150
HighwayCap 0.0052 0.0015 0.0004 1.0053
VehPerform −0.0370 0.0085 0.0000 0.9637

TAVG 0.0349 0.0166 0.0353 1.0355
SP24 0.0908 0.0351 0.0096 1.0951
hail −0.0044 0.0023 0.0585 0.9956

wind 0.0038 0.0013 0.0027 1.0038

AIC 178.63
MAD 24.60
MSPE 125.05

1 The variables in bold are statistically significant at the 95% confidence level.
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Tables 7 and 8 show the results of estimated coefficients in California and Arizona
respectively, and the significant variables are marked in bold in the tables. The exponen-
tiated values show the sensitivity of the fatal traffic accidents to the influencing factors.
Three indicators are used to evaluate the goodness of fit of the model in the table, namely
Akaike Information Criterion (AIC), Mean Absolute Deviation (MAD) and Mean Squared
Prediction Error (MSPE). AIC is based on the concept of entropy, which provides a criterion
of model fitting. MAD is the average of the absolute deviations of all individual observa-
tions from the arithmetic mean value. MSPE is the average of the square of the difference
between the estimated value and the actual value.

Figures 2 and 3 show the estimated traffic accidents based on the log-change model
in California and Arizona, respectively. The dotted lines in Figures 2 and 3 represent
the actual frequency of fatal traffic accidents. The solid line represents the frequency of
traffic accidents estimated by the log-change model. It can be observed that the log-change
model can accurately estimate the frequency of yearly fatal traffic accident data. Also,
the log-change model can correctly estimate change trend of fatal traffic accidents. Take
Figure 2 for example, in order to verify the correctness of change trend estimation, trend of
counts between two years need to be observed. The estimated count decreased slightly
from 2002 to 2003, and then increased slightly from 2003 to 2004, which is consistent with
the actual change of count. From Figures 2 and 3, it can be known the change trend of the
estimated value is very consistent with the actual value.

4.3. Discussion
4.3.1. California

For social and economic category, beer consumption and rural VMT proportion
are significantly related to the frequency of fatal traffic accidents. The increase of beer
consumption can increase the frequency of fatal traffic accidents. The average value of this
variable over the past 16 years can be obtained from Table 3, and it is 1.02 gallon per capita.
According to the results of the count model, 1.0% relative to the average increase in beer
consumption leads to a 2.6% increase in the frequency of traffic accidents. One possible
explanation is that the increase of beer consumption is related to the increase of drunk
driving to a certain extent. The decrease of rural VMT proportion can also increase the
frequency of fatal traffic accidents. Based on the result of the model, 1% decrease in the
rural VMT proportion is associated with 5.9% increase in the traffic accident frequency. This
may be due to the high level of concentrated urbanization in California. Traffic accidents
are more likely to occur with obvious centralization, so the level of ruralisation can reduce
the frequency of fatal traffic accidents.
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For road and vehicle category, highway capital spending and vehicle performance
index significantly affect the frequency of fatal traffic accidents. The improvement of
vehicle performance can reduce the frequency of fatal traffic accidents. This variable
describes the proportion of vehicles produced after 1991 in the fleet and it can also reflect
the performance of vehicles to a certain extent. The average value of the United States in
these 16 years is 94.55%. An increase of 1% in this index can reduce the frequency of traffic
accidents by 1.5%.

For the climate category, the average temperature, SP24, and the number of hail weather
have significant correlations with the frequency of fatal traffic accidents. The increase of
average temperature may increase the frequency of fatal traffic accidents. The average
temperature of California in these 16 years is 59.16 ◦F. For every 1 ◦F rise in temperature, the
frequency of traffic accidents increase by 4.0%. Due to the fact that the increase of temperature
may lead to the decline of vehicle performance and the change of driver’s physical and
mental conditions. So, the increase of this variable affect the probability and severity of traffic
accidents, thus increasing the frequency of fatal traffic accidents. The increase of SP24 may
increase the frequency of fatal traffic accidents. The SP24 index can usually reflect the long-
term precipitation trend of a certain region. When SP24 rises, it indicates that the precipitation
in this region has increased. During the 16 years, the average value of SP24 in California
is −0.46. According to the model results, for every 0.5 increase of SP24, the frequency of
traffic accidents increase by 4.8%. The increase of precipitation corresponds to the increase of
rain and snow weather. The occurrence of rainy and snowy weather deteriorates the driving
environment. The increase of hail weather may increase the frequency of fatal traffic accidents.
The frequency of traffic accidents increase by 0.2% when the hail is occurred. The occurrence
of hail weather is often accompanied by adverse weather, and the hail can result in slippery
roadway surface as well as low visibility.

4.3.2. Arizona

For social and economic factors, GDP, median income and gasoline price are signifi-
cantly related to the frequency of fatal traffic accidents. The increase of GDP and median
income results in more fatal traffic accidents. Refer to the results of the count model, if GDP
increases by 1.0% relative to the average, the frequency of traffic accidents increase by 1.0%.
If the median income increases by 1.0%, the frequency of traffic accidents increase by 2.1%.
Besides, the rise of gasoline price is also related to the increase of fatal traffic accidents. One
possible explanation is that growing economic and rising price reflect social development,
which is consistent with the growth of residents’ travel demand. This can have an impact
on exposure, so the frequency of fatal traffic accidents increase.

For road and vehicle category, two variables that have significant correlation with
the frequency of fatal traffic accidents. They are highway capital spending and vehicle
performance index. The increase of highway capital spending is related to the increase
of fatal traffic accidents. The overall improvement of vehicle performance reduce the
frequency of fatal traffic accidents. The possible explanation of these two variables is the
same as that of California.

For the climate category, average temperature, SP24 index, and the number of wind
weather have significant correlations with the frequency of fatal traffic accidents. The
increase of average temperature may increase the frequency of fatal traffic accidents. The
average temperature in Arizona in these 16 years is 61.23 ◦F. Through the model results,
if average temperature increases by 1 ◦F, the frequency of traffic accidents increase by
3.6%. The reason is that the increase of temperature may lead to the decline of vehicle
performance and the change of driver’s physical and mental conditions. Therefore, the
increase of this variable can affect the probability and severity of traffic accidents, thus
increases the frequency of fatal traffic accidents. The rise of SP24 may increase the frequency
of fatal traffic accidents. In the past 16 years, the average value of SP24 in Arizona is −0.59.
And for every 0.5 increase of SP24 value, the frequency of traffic accidents increase by 4.6%.
The increase in the number of winds may increase the frequency of fatal traffic accidents.
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In the past 16 years, there have been about 87 times of windy weather in Arizona every
year. The model results show that, the frequency of traffic accidents increase by 0.4% for
every wind in Arizona.

According to the analysis of the two states, the increase of highway capital spending
per miles, the improvement of vehicle performance, temperature, and precipitation have
significant influence on the frequency of traffic accidents. For climate factors, for every
1 ◦F of increase in average temperature, the frequency of traffic accidents increase by about
4%. For every 0.5 increase in SP24, the frequency of traffic accidents increases by about 5%.
Extreme weather also has a significant impact on traffic accidents. The impact of wind and
hail weather counts per unit on the frequency of traffic accidents is less than 0.5%.

5. Conclusions

This paper explores the possible indicators related to fatal traffic accidents in California
and Arizona in the USA using the accident count model and log-change model. Previous
studies have not comprehensively considered the impact of various social development and
climatic factors on the frequency of fatal traffic accidents from a macroscopic perspective,
especially the climatic factors.

In this study, the accident count model is adopted to analyse the impact of various factors
on fatal traffic accidents, which can provide accurate fitting performance and capture the
change trend of traffic accidents in different periods. For these two states, the improvement
of vehicle performance can reduce the frequency of fatal traffic accidents. Climate factors
have a significant impact on traffic accidents. If the average temperature increases by 1 ◦F,
the frequency of traffic accidents is predicted to increase by 4.0% in California and 3.6% in
Arizona. If the standard precipitation in 24 months value increases by 0.5, the number of fatal
traffic accidents will increase by 4.8% in California and 4.6% in Arizona. The frequency of
traffic accidents is less affected by hail, wind and other adverse weather.

In practice, the research methodologies in this paper can be used to explore the relevant
factors of traffic accidents in other areas. The modelling results can provide guidelines for
traffic management agencies to design roadway safety improvement strategies. Meanwhile,
the findings in this study can also provide basis for traffic control and improvement in
adverse weather according to the analysis results.

The conclusions can also be applied to other regions with similar climate conditions,
such as New Mexico. For future work, different data can be obtained from other regions
to further examine the impact of climatic conditions on fatal traffic accident. In addition,
the machine learning methods [46,47] and multi-source data [48,49] can be also applied to
analyse and predict fatal traffic accidents.
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