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Abstract: This study aims to develop an automatic data correction system for correcting the public
construction data. The unstructured nature of the construction data presents challenges for its
management. The different user habits, time-consuming system operation, and long pretraining time
all make the data management system full of data in an inconsistent format or even incorrect data.
Processing the construction data into a machine-readable format is not only time-consuming but also
labor-intensive. Therefore, this study used Taiwan’s public construction data as an example case to
develop a natural language processing (NLP) and machine learning-based text classification system,
coined as automatic correction system (ACS). The developed system is designed to automatically
correct the public construction data, meanwhile improving the efficiency of manual data correction.
The ACS has two main features: data correction that converts unstructured data into structured
data; a recommendation function that provides users with a recommendation list for manual data
correction. For implementation, the developed system was used to correct the data in the public
construction cost estimation system (PCCES) in Taiwan. We expect that the ACS can improve the
accuracy of the data in the public construction database to increase the efficiency of the practitioners
in executing projects. The results show that the system can correct 18,511 data points with an accuracy
of 76%. Additionally, the system was also validated to reduce the system operation time by 51.69%.

Keywords: natural language processing; construction data management; machine learning

1. Introduction
1.1. Construction Data Management

Data management has been considered as one of the most vital tasks in the construc-
tion industry [1]. The unstructured nature (e.g., plain text) of the construction data presents
challenges for its management. Processing the construction data into a machine-readable
format is time-consuming and labor-intensive, as it requires lots of paperwork to struc-
turalize data from various sources. Nowadays, many popular tools and standards have
been developed by experts to help people manage construction data. Management tools,
such as Microsoft Project and Primavera, are prevalent. The MasterFormat and UniFor-
mat standards are common in the U.S. and Canada. However, engineers still need to
follow the rules and form formats provided by standards and tools to manually transform
unstructured data into structured data.

Even though many tools and standards are ready to follow, the quality of processed
data is not sufficient due to the various backgrounds of the related personnel. Engi-
neers from different fields may have their own interpretations of the standards, thus causing
inconsistency of the data format or even incorrect data. For instance, Taiwan government
provides a tool to its employees and contractors to manage public construction projects us-
ing a coding system similar to MasterFormat. However, due to the different interpretations
of the coding standard, the average data accuracy of 7592 public construction projects is
only 48%.
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With the advancement of information technology, the improvement of computer per-
formance, as well as large data storage, technologies such as artificial intelligence and
deep learning have flourished for solving complex data management problems. Such im-
provement of these technologies can automatically transform unstructured data into struc-
tured data.

1.2. Public Construction Cost Estimation System in Taiwan

In Taiwan, it is required by law that for public projects with bids over NTD 10 million,
the project documents need to be managed using the public construction cost estimation
system (PCCES). Additionally, as the PCCES is a coding system, the law also requires that
the accuracy rate of data encoded in the project documents should be at least 40%. However,
according to the statistics of the Public Construction Commission, Executive Yuan (PCC),
Taiwan, from 1 December 2016 to 30 June 2020, there were 422 public construction works
projects that needed to use the PCCES. Among the 422 cases, 215 projects had statistics on
the correct rate of coding, and the average correct rate was 37.47% [2].

The Taiwan government has been planning to make public construction work projects
more transparent since 1995. The solution to this issue is making its own coding standard
for the construction field. The Taiwan government imitated the MasterFormat coding
standard formulated by the Construction Specifications Institute (CSI) and formulated its
own coding standard [3]. According to the coding structure of MasterFormat, the PCCES
coding standard is divided into chapters 00 to 16, for a total of 17 chapters. Its organization
is arranged according to engineering practice and the experience of engineers. According to
the work breakdown structure (WBS) [4], it is also divided into five code and four layer
structures. The coding architecture is shown in Figure 1. In the first layer, the first and
the second codes are the numbers of the chapter. In the second layer, the third code is a
major category. In the third layer, the fourth code is the detailed classification code under
each major category. For the fourth layer, the fifth code is for the work item, which is
related to the third layer. Users can customize the code, but it should be recognized by the
engineering committee’s public engineering technology database control management.

Figure 1. The coding architecture of the public construction cost estimation system (PCCES) [3].

The PCCES code considers work items and resource items. Resource items include
materials, human resources, and machines. Work items are included in the composition of
materials, machinery, labor, and miscellaneous. The coding of work items and resource
items can be used differently. As there are many projects in public works, the scale of
these projects varies, ranging from airports, dams, and tunnels to planting sidewalk trees,
paving bricks on sidewalks, and dredging trenches, all within the scope of public works.
Each project requires the participation of many upstream and downstream manufacturers,
office staff, and government officials.

Due to different roles and divisions of labor, the perspectives of project management
vary. Projects of various sizes, workers from different sources, and different roles in the
project will cause these people to have a different understanding of the PCCES encoding
system when using it. These differences in understanding have resulted in non-compliant
materials in the project. However, these non-compliant materials have accumulated over
time, presenting challenges for the database. Due to these reasons, with the accumulation
of days and months, the database has become full of non-compliant data.
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1.3. Benefits and Challenges of the PCCES

The PCCES occupies a very important position in the field of public construction
works in Taiwan. Public construction projects require the use of the PCCES in accordance
with the law, so these projects have uniform specifications that can be followed. The
PCCES offers some benefits after collecting a large number of projects and integrating
data. For example, according to the PCC announcement [3], the PCCES can improve
the efficiency and credibility of fund review and fund comparison, avoid repeating the
establishment of system software and hardware by various agencies, save national public
funds, and reduce the opportunities for restricting competition and restricting bidding
during project bidding.

Although the PCCES does bring these benefits and helps users a lot, some researches
have pointed out problems with the system. For instance, users are not used to the stan-
dardized work items and resource codes in the PCCES [5]. Users need longer education and
training to be familiar with and operate the PCCES [6]. Many practical applications are still
not included in the PCCES [7,8]. The operation of the PCCES is time-consuming, requires
a lot of manpower, and has a high error rate [9]. Moreover, in the production of PCCES
documents there are general contradictions between architects and construction companies
in measurement and calculation methods, and some measurement and calculation methods
do not conform to the PCCES coding standard [10].

1.4. Research Objectives

This study focuses on the development of a machine-learning-based system to auto-
correct a public database of the construction field that contains the PCCES data in Taiwan.
People cannot use the data in the public database as the database is filled with messy data.
In actuality, while people use many tools for managing construction data, the data are still
chaotic. The quality of these data depends on how familiar a user is with the tools. There is
no classification method that can consider the meaning of construction specifications in
the construction classification system’s database and then automatically correct the wrong
data. Therefore, this study aims to develop a machine-learning-based system to improve
the performance of people who work on the construction files and need to use construction
classification systems. The developed method should achieve the following goals:

(1) Develop an auto-correct function to automatically correct the data from public
databases related to the construction field and the unstructured construction project
data. Users could use this function to correct data that they obtained from the open
data database made by the government.

(2) Develop a recommender function, which can help users to perform their job efficiently
without having experience in construction classification systems.

2. Literature Review

In order to develop a system that can automatically structuralize the construction data,
this study first reviews the characteristics and challenges of construction data management
(Section 2.1). Then, the novel methods for unistructural data processing proposed by other
studies is discussed in Section 2.2. Lastly, the review of state-of-the-art machine-learning-
based approaches to construction data processing is conducted in Section 2.3.

2.1. Challenges in Construction Data Management

Processing unstructured data is considered one of the most critical challenges in
construction data management. Project owners, architects, contractors, and suppliers com-
municate and coordinate through various documents. It is common that documents have
different naming conventions for the same object [11]. The different naming conventions
increase the time and cost of processing the data as the personnel need to organize the
raw materials for further communications. Attempts are being made by some to use a
construction classification system (CCS), such as the MasterFormat [12], UniFormat [13],
and OmniClass [12], to lower the extra cost of data processing. CCS usually uses layers of
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coding to categorize various materials and adds narrative descriptions. This system allows
all team members to use the storage efficiently and use retrieval mechanism codes in the
system to reference specific parts of any document, reducing the cost [14]. However, even
users who are working on the same project will have different CCS systems according
to their various roles in the project. It is not feasible to make all users familiar with the
CCS systems used by each other: the learning cost is too high. Not all of the team mem-
bers are familiar with these specifications, which may cause the inputted data to remain
unstructured.

In the field of construction engineering, there is also the problem of dealing with
the unstructured data [15–17]. Unstructured data mean the data set is not stored in the
structured format in the database; an alternative definition may be that the data do not
follow a predefined data model composition. This makes the data irregular, ambiguous,
and difficult to understand using traditional computer programs [18]. Many documents are
generated in a construction project, including images and text. The text-based unstructured
materials include contract templates, construction specifications, quality documents, and
material management documents [17]. Among them, only 20% of the available data are
structured and stored in a relational database, while approximately 80% are unstructured
text and stored in various forms of documents [19]. Traditionally, unstructured data
are expected to be converted to structured data by manual work. However, acquiring
knowledge from unstructured data is usually painful and expensive [20]. Therefore, several
studies have been conducted to determine a simpler and cheaper means of retrieving useful
information from unstructured data.

2.2. Unstructured Data Processing

Unstructured data have been considered a critical challenge in data management for
decades. Several studies have been conducted on transferring the unstructured data into
useful information in many fields. For instance, Kharrazi et al. used natural language
processing (NLP) to solve the problem of unstructured electronic health records [21]. Luo
et al. used the knowledge from data specialists and computer data modules to extract
structured data from unstructured medical records [22]. In the business field, Farhadloo
et al. attempted to discover the relative importance of each service or unique product
using the Bayesian method for a customer review system [23]. These investigators used an
online analytical processing (OLAP) system to analyze unstructured data from multiple
perspectives, including text mining (TM), information retrieval (IR), and information
extraction (IE), in an attempt to extract business intelligence from unstructured data.

In the field of construction engineering, researchers have also tried to solve the problem
of unstructured data. In the study of [16], a view-based method was used, with metadata
models to convert documents to structured data. Alsubaey et al. presented a Naïve Bayes
text mining approach to identify early warnings of failure from meeting records [24].
Kim and Chi developed a system based on natural language processing (NLP) to extract
hidden knowledge from construction accident cases [25]. Even though studies have been
conducted that address unstructured data, none of these results can solve the problem that
the CCS faces.

The issue for the CCS is in the material codes and in challenges in providing accurate
description of materials. For materials in the CCS, there is a coding system for specifications,
and the CCS uses specific terms to describe the specifications. However, in actuality, not
everyone can master the coding system and become familiar with these terms. People use
unprofessional terms in construction files at work, and it works fine as these terms are
readable. Even though the codes and descriptions in construction files are invalid in the
CCS, these construction files contain data with coding errors yet proper descriptions of
unstructured data.

Machine learning is a popular solution to convert unstructured data into structured
data. Machine learning is flourishing due to the improvement of hardware computing
power, the reduction of data storage costs, and the innovation of various algorithms.
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With the advancement of machine learning, various machine learning algorithms enable
the model to learn from data, which makes computers able to handle more and more
tasks. After training the model with a large number of examples, classifying the data or
predicting the model training, the model can extract information from samples to learn
and can complete specific tasks or prediction. These abilities allow a computer to complete
specific tasks or make predictions for a variety of applications. Machine learning can
gradually replace human resources in specific tasks, such as in autonomous vehicles [26],
voice recognition [27], weather prediction [28], face recognition [29], lie detection [7], image
processing [30], etc.

2.3. Machine-Learning-Based Methods For Construction Data Processing

A typical construction project may have thousands of outstanding issues. An artificial
intelligence program that can help humans systematize these problems and the data
accompanying them would greatly improve the efficiency of work. There are many things
that artificial intelligence can accomplish. For images, in the unstructured data processing
of images, some algorithms have performed classification of pictures directly [31], and
some studies have algorithms that give these images a text caption, then these images
became text data [32]. For text, Wu et al. used natural language analysis to automatically
extract keyword lists from pathological examination reports [33]. Nandhakumar et al. used
the characteristics of words or sentences and conditional random field (CRF) models to
extract important parts of medical reports [34]. The methods described above are attempts
made to structure data.

3. ACS Methodology
3.1. System Overview

This study proposes an automatic correction system (ACS) that can correct the data
automatically or provide a recommended list to users for manual correction. The proposed
system includes three primary modules: a data processing module, a search processing
module, and a mapping processing module. Figure 2 shows the system overview of the
ACS. The data processing module processes the raw data collected from different resources
and then stores them in the result database. The main job of the data processing module is
to train a word embedding model and establish a result data set. The search processing
module processes the target data input by the user and then puts them into the word
embedding model to find data with higher similarity. The data processing module and the
search processing module both use the same text processor [35]. The following sections
will describe each module sequentially.

Figure 2. The designed system structures for the automatic correction system (ACS).
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3.2. Data Processing Module

The data processing module processes the raw data then uses the processed raw data
to train a word embedding model. This study used the corrected blank valuations and the
CCS system manual as the raw data. The data processing module uses the text processor to
normalize the data that were manually extracted from the raw data. These processed data
will then be inserted into a corpus. Subsequently, correct code, correct name, correct name’s
segmentation, and original name’s segmentation are extracted from the corpus as the result
data and stored in the result database. At the end of this module, the corpus is taken as the
input for training the word embedding model. Figure 3 shows the system overview of the
ACS.

Figure 3. The workflow of the ACS’s data processing module.

3.2.1. Raw Data Collection

For the raw data collection, the system manuals and blank valuations were collected
that related to a specific CCS. The ACS has a particular use in correcting a public database
associated with one specific CCS, and the performance of the ACS depends on the quality of
the collected data. System descriptive documents were collected from the institutions that
manage CCS, and blank valuations that use CCS were received from a private company’s
real cases. For the descriptive documents of the ACS, they at least contain specifications,
descriptions, and coding systems. These correct codes and descriptions were extracted as a
data column to two data fields in the “Manual Extracted Data,” termed as “Correct Code”
and “Correct Name.” The inaccurate description was also extracted as a data column,
termed as “Original Name”.

3.2.2. Text Processor

The text preprocessing is advantageous for the subsequent classification results and
can reduce the complexity of the calculation. Figure 4 shows workflow of the ACS’s text
processor. The text processor handles the text preprocessing and contains the following
tasks: stop word removal, lowercase conversion, normalization, and tokenization. Af-
ter users enter data, such as a sentence, the text processor removes stop words [36], converts
uppercase and lowercase letters to be consistent, normalizes the preprocessing data ob-
tained thus far, and finally uses tokenization to segment the data. An alias dictionary is
utilized for the tokenizing. The dictionary includes synonyms, which can increase the
quality of statements [35].
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Figure 4. The workflow of the text processor.

3.3. Search Processing Module

For the search processing module, the input is the target data that the user keys in,
and the output data are data with higher similarity obtained from the word embedding
model. After the data processing module trains the word embedding model, the search
processing module uses the text processor to handle the input target data and convert the
target data into segmentations. Subsequently, the segmentation is taken as the input to the
word embedding model to find similar data. The output of this module is the similar data
that the model found. Figure 5 shows the system overview of the ACS.

Figure 5. The workflow of the search process module.

3.3.1. Word Embedding

Word embedding is one of the most popular representations in documentation vo-
cabulary [37]. It can capture the context, semantic, and syntactic similarity of words in
documents, and the relationships with other words. Roughly speaking, it is vector rep-
resentations of specific words. The program cannot directly use the text contained in an
electronic file, and thus the text needs to be converted into a format that the computer can
handle, with word vector representation being one of these conversion methods. A series
of processing steps will be performed on the text until the text becomes a sentence or word.
These sentences or words are given an independent code, and the code is a vector.

There are many ways to do word embedding, such as hashing vectorizer [38], count vec-
torizer [39], and Term Frequency – Inverse Document Frequency (TF-IDF) vectorizer [40].
The method we used in this system was a shallow neural network, where by learning a large
amount of text, words are transformed into vectors in vector space. Then, a distribution
of a large number of vectors in vector space is used to calculate similarity and find words
with similar meanings. Words with the same meanings have identical representations.
This representation is considered a fundamental breakthrough in machine learning for
natural language processing problems [41]. Here, the characteristics of word embedding
technologies are taken as the core application of the system.

Word embedding methods include dimensionality reduction of word co-occurrence
matrices [42–44], probability models [45], and explicit representation of the context in which
words are located [46]. In the ACS, we used the continuous bag of words (CBOW) [47] as
the language model to obtain the vector matrix. Figure 6 shows the system overview of
the ACS.
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Figure 6. The architecture of the continuous bag of words (CBOW) model.

In the CBOW model, the context of surrounding words is used to predict the word in
the middle. The input layer is one-hot encoding [48] and the size is equal to N. Each element
in the input layer corresponds to the words in a vocabulary. Zero means no input, and
a 1 means a word is input. The hidden layer is the input layer multiplied by the weight
matrix (1 × N * N × V = 1 × V). Since the input is a hot-coded vector, the hidden layer is
the result of superimposing multiple rows from the weight matrix. The row index of these
rows is equal to the index, with the input element being 1. Therefore, the input layer is like
a lookup table for the weight matrix row search.

3.3.2. Similarity Calculation

The ACS uses text similarity to correct the data. For example, there are data that have
been classified as wrong data, since the description is not sufficiently accurate even if it is
semantically close. The system can replace the incorrect data with the most similar data if
they can be found from the model.

The ACS deals with the text that users entered as a result and then inserts the results
into the word embedding model. The result is the segmentation of the text. The model will
give a vector to the result, which can represent the result in the model’s vector space. Then,
this study uses the cosine similarity [49–51] to calculate the similarity of vectors. The ACS
takes the results in the result database, inputs them into the model to obtain vectors, and
then uses the vectors from the results and the vectors from user model entries. After the
vectors are input to the model, the ACS calculates the normalized dot-product from the
cosine angle. Given two data a and b represented as two vectors Va and Vb, the cosine
similarity can be calculated as Equation (1).

cosine(Va, Vb) =
∑N

i=1 Va·Vb√
∑N

i=1 Vai
2
√

∑N
i=1 Vbi

2
. (1)

Va is the frequency of each word in the user statement after being disassembled. Vb
is the frequency of each word in the corpus statement after being disassembled. The
cosine(Va, Vb) can represent the similarity of these two vectors. The closer the angle is to
zero degrees, the more similar the two vectors are.

3.4. Mapping Process Module

The mapping process module finds the correct code from the result data set depending
on the similar data from the search processing module. The system obtains a data set and
data after finishing the above two modules. The result database contains the data processed
by the text processor in the data processing module. The data in the database are similar to
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the target data processed by the search processing module. The mapping process module
will pick the data from the similar data one by one as keywords to query the result database.
If it finds the data that contain the segmentation that 100% matches the keyword, it takes
the correct code from the data as the output. Figure 7 shows the system overview of the
ACS.

Figure 7. The workflow of the mapping process module.

4. Implementation

This research used the PCCES data as the training data to implement the developed
system. The following subsections will describe the training data and the implementation
of the ACS’s three modules.

4.1. Training Data

For data training, in this study two types of data were collected for training the
word embedding model: the PCCES manual and manually corrected actual project data.
The latter was used, as these data were more in line with real work scenarios.

4.1.1. PCCES System Manuals

In the PCCES manuals, there are many of the specification codes and instructions.
Anyone who wants to use the PCCES to estimate the project budget needs to know how
to use the PCCES manuals. People need to be trained to know which objects they want
to evaluate and where to place the objects, such as human resources, machines, materials,
methods, and the environment. Then, they need to select the correct manual chapter. The
specification code and description contain different layers, and thus a code and specification
are needed for picking objects layer by layer. Finally, after combining these picked codes
and specifications, the data processing is completed with 100% accuracy.

One-hundred percent correct information was obtained from the manual. There are
18 chapters in PCCES manuals, which cover the tender documents and contract items
such as general requirements and fieldwork. This study only selected concrete chapters
for implementations.

In a chapter there are multiple sections, and each section has a code designed for
the name, specification, and unit of the material. Permutations were used to generate
all possible data. The grid shown in Table 1 was used to choose one code from each
column and combine them as a specification code with a description. For example, the
code “03330/4/2/0/0/2” means “Building Concrete/Ready-Mixed Underwater Con-
crete/140 kgf/cm2/M2.” The exhaustive method in the table was used to list all specifi-
cation codes, with these specification codes being one of the training data for the word
embedding model.
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Table 1. The example of the PCCES manuals.

Chapter
No. Chapter Name Class (6th) Compressive

Strength (7th)
Cement Type

(8th)

Chemical
Admixture

(9th)

Valuation Unit
(10th)

03330 Building
Concrete (0) (0) (0) (0) M (1)

Machine-mixed
(1) 80 kgf/cm2 (1) - - M2 (2)

Ready-mixed
(2) 140 kgf/cm2 (2) - - 3 M (3)

Machine-mixed
underwater (3) 175 kgf/cm2 (3) - - Lump (4)

Ready-mixed
underwater (4) 280 kgf/cm2 (4) - - T (5)

Ready-mixed,
under 10F (5) 315 kgf/cm2 (5) - - Piece (6)

Ready-mixed,
under 20F (6) 350 kgf/cm2 (6) - - Each (7)

Ready-mixed,
under 30F (7) 400 kgf/cm2 (7) - - Set (8)

- - - - KG (9)

4.1.2. Blank Valuations

Real project documents were obtained from two companies, Knowledge Analy-
sis Space Exploration, Inc., Taipei, Taiwan and United Geotech, Inc., Taipei, Taiwan,
which were undertaking public works, and these documents were one of the word em-
bedding model training data sets. Each construction project contained a large number of
documents and data files. The desired files in these documents and files were the price
valuation files. The price valuation file contained names, terms, and aliases of objects or
materials in the construction files. In actuality, the price valuation file may contain vague
information that people can understand while the PCCES cannot. The system is unable
to process the information and needs humans to correct it for the system to understand.
Those corrected files were the desired files for collection as they contained two types
of information: vague information and manually structured data. These two types of
information can point to each other. Table 2 lists the example of the valuation we collected.

Table 2. The example of corrected blank valuation.

Wrong Data Correct Data

Work Item/Material Code Work Item/Material Code

Technician L00000520A5 Senior Worker L000006200001
Unskilled Laborer L0000061005 Junior Worker L000006100001

Plastic Road Marking M02898A003 Product, Road Marking,
Glass Ball M0289801009

Reflective Glass Ball M02898B003 Road Marking, Glass Ball 02898B0009

Adhesive M02900C000F Product, Road Marking
Adhesive M0289800019

Equipment Fee E0512450001 Not Classified Machinery E000001000004
Tool Wear W0127120004 Tool Wear W0127120004

4.2. System Implementation

The ACS can be divided into four parts: the text processor, the database, the model
training, and the searching and mapping. In this section, the implementation of these four
parts is introduced.
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4.2.1. Text Processing

The text processor used in the ACS was developed and used in our previous work [35].
In the previous work, a proper term dictionary was already constructed to improve the
quality of data segmentation. This dictionary was used to develop a text processor, which
could be used to handle any data imported into the system. Since the PCCES is written
in Chinese, we implemented specific Chinese text processors, especially for Taiwan’s
construction field.

We constructed a dictionary for terms in Taiwan’s construction field to solve these
issues. This dictionary was used in the text processor to normalize the data. The text
processor unified inconsistent units in Chinese, removed and replaced Chinese symbols
and stop words, and replaced unit symbols with the real letter or number. The results are
shown in Table 3. For example, if the input text was “Building Concrete and Ready-Mixed
Underwater Concrete/140 kgf/cm2/m2,” the output would be “Building Concrete/Ready-
Mixed Underwater Concrete/140 kgf/cm2/M2.”

Table 3. The characteristics that this study processed in the text processor.

Before Action

Stop words “.” (period) Remove
Symbols “m2” (square meter) Replace with “m2”
Unnecessary prepositions “and”, “or”, “included” Remove
Full width character “(” (left parenthesis), “
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written in Chinese, we implemented specific Chinese text processors, especially for Tai-
wan’s construction field. 

We constructed a dictionary for terms in Taiwan’s construction field to solve these 
issues. This dictionary was used in the text processor to normalize the data. The text pro-
cessor unified inconsistent units in Chinese, removed and replaced Chinese symbols and 
stop words, and replaced unit symbols with the real letter or number. The results are 
shown in Table 3. For example, if the input text was “Building Concrete and Ready-Mixed 
Underwater Concrete/140 kgf/cm2/m2,” the output would be “Building Concrete/Ready-
Mixed Underwater Concrete/140 kgf/cm2/M2.” 

Table 3. The characteristics that this study processed in the text processor. 

 Before Action 
Stop words “.” (period) Remove 
Symbols “m2” (square meter) Replace with “m2” 
Unnecessary prepositions “and”, “or”, “included” Remove 
Full width character “(” (left parenthesis), “。” (period) Remove 
Unify units “3000psi” Replace with “210 kgf/cm2” 

4.2.2. Database 
Specific information was extracted from the raw data and stored in a database for use 

in training the word embedding model. For the training data, there were already the 
PCCES manuals and blank valuations. However, these data were raw data that could not 
be used to train the word embedding model directly, and thus there was a need to first 
preprocess these data. One-hundred percent correct data were already generated from 
PCCES manuals. Furthermore, there were the original and corrected blank valuations. The 
100% accurate data had two data types: specification code and specification description. 
For the fixed blank valuations, there were four data types: correct specification code, 

” (period) Remove

Unify units “3000psi” Replace with “210
kgf/cm2”

4.2.2. Database

Specific information was extracted from the raw data and stored in a database for
use in training the word embedding model. For the training data, there were already the
PCCES manuals and blank valuations. However, these data were raw data that could not
be used to train the word embedding model directly, and thus there was a need to first
preprocess these data. One-hundred percent correct data were already generated from
PCCES manuals. Furthermore, there were the original and corrected blank valuations. The
100% accurate data had two data types: specification code and specification description. For
the fixed blank valuations, there were four data types: correct specification code, accurate
specification description, invalid specification code, and invalid specification description.
These four different data types were combined as four data table fields. The correct
specification description and incorrect specification description were used to extend the
other data fields, termed as “correct description segmentation” and “original description
segmentation.” This data field was used to store the result of the text preprocessing module
after processing the specification text.

For example, consider three data strings. The first was from 100% correct data and was
“0331043003, Building Concrete and Ready-Mixed Underwater Concrete 140 kgf/cm2 m3.”
The others were from the corrected blank valuations and were “0331000003, 140 kgf/cm2

premix concrete” and “0331023003, Building Concrete and Ready-Mixed Concrete
140 kgf/cm2 m3.” After segmenting the data in the text processor, the data and data
segmentation were placed in the data table, as shown in Tables 4 and 5.
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Table 4. The example of 100% correct data that this study made from the PCCES manuals.

Field Name Value

Correct_Code 0331043003

Correct_Desc Building Concrete and Ready-Mixed
Underwater Concrete 140 kgf/cm2m2

Original_Code N/A
Original_Desc N/A

Correct_Desc_Seg “building concrete,” “ready-mixed,”
“underwater,” “concrete,” “140 kgf/cm3,””m3”

Original_Desc_Seg N/A

Table 5. The example of the corrected blank valuation that this study obtained.

Field Name Value

Correct_Code 0331023003

Correct_Desc Building Concrete and Ready-Mixed Concrete
140 kgf/cm2m2

Original_Code 331000003
Original_Desc 140 kgf/cm2 premix concrete

Correct_Desc_Seg “building concrete,” “ready-mixed,”
“concrete,” “140 kgf/cm3,””m3”

Original_Desc_Seg “140 kgf/cm2,” “ready-mixed”

4.2.3. Model Training

In this study, data segmentation and the CBOW were used to train the model. The seg-
mentation was stored in the previously constructed database. The language model used
was CBOW, which was developed by Tomas Mikolov [47]. Because the scope of application
of this research was for a small field, the use of CBOW was enough for the goal of solving
this research, and compared with other models such as BERT [52] and GPT-2 [53], the cost
of CBOW was low, due to reduced hardware requirements, reduced data volume, and
more constant training time, so this study chose CBOW. The CBOW language model has
been implemented in the gensim package provided in Python. This study used the gensim
package to train the CBOW model.

In the database, the correct description segmentation and original description segmen-
tation were already present. The segmentation was combined as a huge list that contained
18,513 data rows. This list was the input of the CBOW, and the output was the word
embedding model. The listing method is shown in Table 6.

Table 6. The list of segmentation that this study used to train the word embedding model.

Index Segmentation List

1 0331023003

2 “building concrete,” “ready-mixed,”
“underwater,” “concrete,” “140 kgf/cm3,””m3”

. . . . . .
n “140 kgf/cm2,” “ready-mixed”

4.2.4. Searching

The goal of the search function was to find the 10 most similar data and return the data
to the user. In the search function, after the user entered a term, sentence, or messy text,
the system used a text processor to process the text entered by the user. After processing
the input text using a text processor, the text processor generated a word segmentation,
with the quality of the word segmentation equal to that of the training data. With these
word segmentations, the training data with the correct data were extracted from the
database and segmented. Then, in the word embedding model, one by one, the user input
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text segmentation and training data segmentation performed calculations to find the 10
most similar data.

4.2.5. Mapping

The comparison function found the correct coding and narrative from the database
according to the 10 most similar words. In the search function, the system completed
the search and provided the 10 most similar words to the comparison function. The
type of data was word segmentation, and it could not be used directly. At this time, the
comparison function was needed to restore the word segmentation to the original text
narrative, which was why the segmentation was stored in the database. SQL statements
were used to compose database query commands, to query 10 segmentations of similar
data separately, to find the correct code and correct description, and then to display it on
the user interface for the user.

5. Validation

To validate that the ACS could structuralize and correct the existing data in the
PCCES, this research conducted a system evaluation to evaluate the performance of the
ACS. Additionally, a user test was also conducted to test if the recommendation function of
the ACS could help related personnel to correct the data with higher efficiency. Two tests
were designed to verify the usability of the ACS, one for the system evaluation and one
for the user test. Whether the auto-correction function was complete and feasible was first
tested, followed by testing of the recommendation function.

5.1. System Evaluation

A system evaluation test was conducted to validate the accuracy of the developed
auto-correction function of the ACS. This study used the PCCES as an example and used
real data from two companies in Taiwan as the data sources. The following subsections
will describe the data source, classification, and the results of the test.

5.1.1. Data Source

The real data was obtained from two companies in Taiwan: Knowledge Analysis
Space Exploration, Inc. and United Geotech, Inc. Furthermore, we generated 10,906 pieces
of 100% correct data from the PCCES manuals. Totals of 5847 and 1382 raw data points
were obtained from Knowledge Analysis Space Exploration, Inc. and United Geotech, Inc.,
respectively. The reason that these data were desirable was that they were from actual
work projects; regardless of whether the code or the description of these data were correct,
the project is still working fine, which means that the semantics in the data is accurate or
close to the object.

For the 100% correct data, as per the codes and specifications listed in Table 1, six layers
were included in the table. The PCCES manuals were used by picking one code and
one description from each layer, depending on whether the description met the target
material, and then combining these components. Finally, the data that perfectly fit the
PCCES manuals were obtained. The user needed to insert this material in the project
documentation if there was new material used in the construction project. For example, for
a premixed concrete that had no additives and a strength of 4000 psi, then Table 1 could
be used to generate the code and description for this material. The code of this material
would be “0333024003,” and the description would be “Building Concrete, Ready-Mixed
Concrete, 280 kgf/cm2, M3.”

5.1.2. Classification

The corrected data were obtained after the raw data were processed by the devel-
oped system. These corrected data were used to calculate the accuracy of the automatic
construction function to validate the performance and accuracy of the ACS. The obtained
data included the raw data and correct data to calculate the accuracy of the corrected data.
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Furthermore, the raw data and accurate data could correspond to each other. With the
correct answers, we could know whether the system modified the data correctly or not.

Four rules were used to determine whether the automatically corrected data was
correct to evaluate the accuracy of the automatic correction function: (1) if the raw data,
manual correction data, and system correction data were all the same, it was correct;
(2) if the manual calibration data and the machine calibration data were the same, it was
accurate; (3) if the original data and the machine calibration data were the same, it was
correct; and (4) after finishing the comparison with the first three rules, the information
that was not included in the above three rules would be manually checked.

5.1.3. Results and Discussion for System Evaluation

In this section, the test result of the auto-correction function is presented. For the
auto-correction function, the above four rules were used to judge whether the corrected
data were correct. After completing the comparisons, 7392 and 1532 data points were
obtained based on the first and second rules, respectively. Additionally, 4268 data points
were obtained based on the third rule. Then, 1025 data points were confirmed manually.
A total of 14,217 correct data points were obtained after the system processed the 18,551
input data points for a 76.64% accuracy. The results are shown in Table 7.

Table 7. The results of the auto-correction function evaluation.

Total
(A) Rule 1 Rule 2 Rule 3 Rule 4 Subtotal

(B)

Correct
Rate

(B/Ax100)

18,551 7392 1532 4268 1025 14,217 76.64%

In the automatic correction function, the system took out the most similar data from the
10 most similar data and used these data to correct the wrong data. But in the failure cases,
we observed that the correct answers to some of the failure cases were actually included in
the 10 most similar data, but they were not the number one answers. In addition, there
were some failure cases because they did not exist in the training data, such as tremie pipe
and sprayed concrete, etc., so these cases were not applicable to this system.

5.2. User Test

Besides the auto-correction function, the ACS also provided a recommendation func-
tion to help the user correct the data manually. In order to test the usability of the rec-
ommendation function, this study designed a test and invited eight actual practitioners
and students from the Department of Civil and Construction Engineering to use the ACS.
The subjects were asked to conduct nine tasks by using both the PCCES and ACS. The
operation times of each task were recorded for further analysis.

5.2.1. Background of the Subjects

For the user test, we invited eight users who had many years of industry experience
and could use the PCCES proficiently at work, as well as students who had no work
experience and no experience in using the PCCES. These users tested whether people
with the same background in a specific field were familiar with the PCCES differently and
whether there were differences in test results. The subjects included five civil engineering
students without any experience in using the PCCES, and three civil engineers with 1, 4,
and 8 years’ experience. The details of these users are shown in Table 8.
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Table 8. The background information of the invited subjects.

Subject Background Experience in Using PCCES (Years)

A Undergrad student from Civil
Engineering Department 0

B Graduate students from Civil
Engineering Department 0

C Graduate students from Civil
Engineering Department 0

D Graduate students from Civil
Engineering Department 0

E Graduate students from Civil
Engineering Department 0

F Civil Engineer 1
G Civil Engineer 4
H Civil Engineer 8

5.2.2. Testing Scenario

In actuality, users often use email and Microsoft Excel when they are working. The
resulting electronic documents contain various kinds of information. Users need to retrieve
useful information from the electronic documents and then manually extract this informa-
tion from the manual, finding the correct code and specification description in the PCCES
to meet the work specification.

In this test scenario, we simulated the user’s process of using the PCCES to create data
in accordance with the description of materials, manpower, and equipment in the Excel
file. Ten raw materials were extracted from some actual work project data to simulate the
real work situation (Table 9). The eight testers were asked to use the PCCES and ACS to
find their correct codes and specifications. At the same time, the time when they found the
code was recorded, giving a usage time, and these statistics were further used to evaluate
the benefits of the ACS for its users.

Table 9. List of the 10 tasks that were used in the user test.

Task Raw Data

T1 Structure concrete, ready-mixed, 210 kgf/cm2

T2 Structure concrete, including placing and compacting
T3 210 kg/cm2 ready-mixed concrete
T4 Concrete placing and compacting

T5 Structure concrete, ready-mixed, 210 kgf/cm2, nighttime
construction

T6 Structure concrete, ready-mixed, 140 kgf/cm2, nighttime
construction

T7 140 kgf/cm2 ready-mixed concrete

T8 Structure concrete, ready-mixed, 140 kgf/cm2, daytime
construction

T9 175 kg/cm2 ready-mixed concrete
T10 280 kg/cm2 ready-mixed concrete

5.2.3. Results and Discussion for the User Test

In this section, the results of asking users to check the recommendation function are
presented. For the recommendation function, we mainly compared whether the ACS could
help users work more efficiently than the PCCES, so the operating time was examined.

For the recommendation function, the times taken by users to process 10 raw data
points using the two methods of the PCCES and ACS were recorded, and the processing
times of the users according to each topic were averaged, as shown in Tables 10 and 11.
Table 10 shows that after repeated operation of the PCCES, all the users minimized their
operating times, and this minimum value could not be lowered. Additionally, as a result,
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as shown in Table 11, no matter how good a user was at operating the PCCES, users had
really low operating times in the ACS. The average operating times of each question in the
two systems are shown in Figure 8. Comparing these two systems, even if the users were
allowed to repeat the operation 10 times in the PCCES, the average working time of the
PCCES was much higher than that of the ACS.

Table 10. Results of the user test with the PCCES.

User
Operation Time (Sec.)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total Avg.

Q1 62.80 59.40 72.60 61.60 65.20 37.70 31.30 113.11 35.90 52.50 592.11 59.21
Q2 74.77 64.20 52.54 43.08 51.73 33.18 29.81 37.28 29.64 27.45 443.68 44.37
Q3 102.64 50.81 68.09 33.33 59.56 44.06 31.66 33.97 32.54 36.55 493.20 49.32
Q4 62.75 85.04 72.15 45.26 53.25 45.78 41.16 40.51 41.15 32.60 519.65 51.97
Q5 69.04 87.15 51.87 42.07 53.88 49.01 37.02 42.18 35.76 41.19 509.17 50.92
Q6 83.82 71.67 49.50 56.35 51.79 47.19 45.06 39.62 33.76 29.30 518.06 51.81
Q7 43.23 37.09 30.50 31.44 33.35 29.57 35.95 28.88 28.82 28.92 327.75 32.78
Q8 86.27 97.47 99.77 63.55 67.59 46.86 49.89 52.99 52.99 39.44 646.57 64.66

Total 585.32 552.83 497.01 376.68 446.35 333.35 301.85 388.54 388.54 287.95 - -
Avg. 73.17 69.10 62.13 47.09 55.79 41.67 37.73 48.57 48.57 35.99 - -

Table 11. Results of the user test with the ACS.

User
Operation Time (Sec.)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total Avg.

Q1 12.15 17.90 22.11 22.72 30.81 28.11 27.25 21.60 23.02 22.30 227.97 22.80
Q2 11.14 22.83 20.38 19.20 24.52 21.78 21.29 21.96 20.44 21.37 204.91 20.49
Q3 18.30 15.12 29.43 30.68 28.01 24.92 22.82 27.51 25.14 21.39 243.32 24.33
Q4 16.76 13.09 24.14 22.76 28.61 27.13 37.92 23.62 18.42 22.33 234.78 23.48
Q5 15.61 20.36 31.42 25.92 27.95 28.04 29.01 26.26 25.32 27.97 257.86 25.79
Q6 21.34 16.82 38.53 38.23 32.84 31.97 28.09 28.72 26.69 25.01 288.24 28.82
Q7 12.01 19.42 17.52 16.43 23.14 17.75 17.57 22.18 15.68 16.66 178.36 17.84
Q8 25.80 16.63 23.10 28.34 37.57 20.23 20.33 25.06 23.69 19.50 240.25 24.03

Total 133.11 142.17 206.63 204.28 233.45 199.93 204.28 196.91 178.40 176.53 - -
Avg. 16.64 17.77 25.83 25.54 29.18 24.99 25.54 24.61 22.30 22.07 - -

In this testing, we found that for a continuously operating system, as the familiarity
increases, the user’s operating time will decrease to a point at which, finally, there is a
bottleneck that prevents further reductions. The decline rate of the operating time of the
PCCES was significant; however, the rate of decrease for the ACS was less obvious, and
the user’s operating time was almost the same. It could be seen that the recommendation
function of the ACS greatly eliminated this proficiency factor. Compared with the PCCES,
using the recommendation function of the ACS helped users save 54% of the operation time.
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Figure 8. The average operating time for each task by eight users in two systems.

6. Discussions

The main contribution of this research is the development of a system that can auto-
matically correct public databases in the field of construction engineering in Taiwan for
a database that is full of chaotic data. Two main functions are implemented in the ACS:
the auto-correction function and the recommendation function. No manual intervention is
required during the processing of the auto-correction function, which can reduce the user’s
workload. The recommendation function allows users to input different keywords or
similar words. The function will process the input text data and automatically check to find
the most similar and standard data to provide to the user. The language model was trained
based on the collected 18,551 data points, used to calculate the similarity between the user
input text and the correct data, and then used the accurate data in the automatic correction
function or provided a list of user recommendations. The auto-correction function was
used to summarize 18,551 data points at an accuracy of 76%. Ten data out of the 18,551
were taken for user operation. Compared with the PCCES, using the recommendation
function can help users save 54% in operation time.

6.1. Contributions

In the existing public database in Taiwan, there is a large amount of messy data,
so that the Taiwan government needs to stipulate the accuracy rate of the data by law.
We attempted to use the auto-correction function of the ACS to solve the problem of this
messy data.

(1) The ACS can automatically correct and structuralize the untrusted construction
data. Many studies have been conducted to structuralize the semi-structured data. For
instance, Woo et al. used the text clustering method to clean the large-scaled medical
report data [54]. Soto et al. proposed the ViTA-SSD system that allows the user to
explore the insightful patterns in the semi-structured data by providing a visualized
analysis method [55]. However, these methods still require lots of human interactions
on results checking, correcting, and exploring. Instead, the ACS used a machine-
learning-based method that can automatically correct and structuralize the construction
data. It allows the ACS to improve quality and output efficiency and does not require
human intervention in the processing process, which can reduce the workload of users.
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Furthermore, the automation of operations to achieve the maximum benefit is a current
industrial target.

(2) The ACS provides a recommendation function that can improve the related per-
sonnel’s working efficiency and accuracy. As not everyone can be proficient in under-
standing the PCCES coding specifications, the produced data are often non-standard.
Even for users who are skilled in using the PCCES, due to the operation steps of the
PCCES, the operation time will encounter a bottleneck and cannot continue to be re-
duced. The recommendation function of the ACS is an attempt to solve the above
two problems. By providing a more user-friendly experience and removing the need
for familiarity of coding standards, the user’s operating time and data accuracy are
improved.

(3) The ACS successfully reduces the threshold of operating the data management
system. It can be seen from the test of the recommendation function that, regardless of
whether users have used the PCCES or not, when operating the PCCES, as the number
of operations increases, the proficiency will increase, and the operation time will not
continue to reduce past a certain level. This is because the PCCES code is attached and
the operation interface has a lower operating time, even if the user is already skilled.
The recommendation function implemented by the ACS relies on the user entering
divergent keywords or similar words, such as material names, aliases, or specifications,
and other obscure data. The system then provides the results that meet the PCCES
specifications for the user to select. The benefit of the recommendation function is
that it removes the variable proficiency levels. Regardless of whether the user has a
professional background or is familiar with coding standards, he or she can rely on
keywords to find the correct result.

(4) The system we developed is not limited to the PCCES, it can be applied to differ-
ent CCS systems. Since the system is based on the CBOW language model, the data
we collect will determine the application direction of this system. In this study, we use
the data related to the PCCES system to obtain the model after training and use this
model to classify and correct the wrong PCCES data. In other words, if the training
data are replaced by another CCS system, this system can also be utilized on other CCS
systems.

6.2. Limitations

(1) In this study, the data collected limited the scope of the ACS in the PCCES. In
machine learning, data are the foundation of everything, where only by having more
data can the application scope and accuracy be expanded. In this study, we only
implemented one section of the PCCES coding specification. Most of the collected data
belong to this category, as it is one of the most commonly used codes in this section.
Furthermore, the specification description contained in this section has a description of
the strength of the concrete. If this section can be improved, the coding accuracy rate
will be beneficial for the PCCES as a whole.

(2) The accuracy of the ACS is not sufficient. In this study, we used 18,551 PCCES
data to train the CBOW model, applied it to a small range of the PCCES, and got a
76.64% correct rate. The application range of the ACS in the PCCES depends on the data
we collected, and although the accuracy of 76.64% was much higher than the 37.47%
announced by PCC, it is not good enough to meet expectations. The application range
of the ACS in the PCCES is not that wide. The average accuracy rate will decrease when
the application range of the ACS is expanded and extended to a range that is difficult
to automatically correct if the higher accuracy rate is not achieved in the application
range for now. For the system that uses machine learning technology, the amount of
data collected will affect the trained model and then affect its accuracy. If we can obtain
more information, we may be able to improve the accuracy rate.
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7. Conclusions

This research proposed a data correction system, the ACS, for automatically correcting
the public construction data. The system we developed provides data auto-correction
and recommendation features to improve human working performance and reduce the
threshold of operating the data management system. A text classification system, the
ACS, was developed using language models based on natural language processing and
machine learning to correct public databases in the field of construction in Taiwan; at the
same time, this system is also proposed to help users produce correct data more efficiently.
By using a machine-learning-based language model to analyze text semantics and provide
higher accuracy and efficiency information, the ACS can improve the efficiency of actual
users and the accuracy of data in construction projects. In the automatic calibration test,
a 76% accuracy rate was obtained after correcting 18,551 data points. A user test was also
conducted on the recommendation function. A question was provided containing 10 real
data points as well as a questionnaire to perform a user test on eight participants to observe
them solving the problem under the two systems. After the trial, for the average processing
time for each data point, 51.95% of the time was saved. From the test results, it was found
that users using the ACS were more efficient than when using the original system and could
accurately produce materials that meet the specifications. The results show that the ACS
can effectively save operation time of the CCS and thus reduce the threshold of operating
the data management system by providing a recommendation function. The proposed
method can not only be used in the PCCES but can also be deployed to different CCS
systems.
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