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Abstract: Additive manufacturing technologies have been adopted in a wide range of industries
such as automotive, aerospace, and consumer products. Currently, additive manufacturing is mainly
used for small-scale, low volume productions due to its limitations such as high unit cost. To enhance
the scalability of additive manufacturing, it is critical to evaluate and preferably reduce the cost of
adopting additive manufacturing for production. The current literature on additive manufacturing
cost mainly adopts empirical approaches and does not sufficiently explore the cost-saving potentials
enabled by leveraging different process planning algorithms. In this article, a mathematical cost
model is established to quantify the different cost components in the direct metal laser sintering
process, and it is applicable for evaluating the cost performance when adopting dynamic process
planning with different layer-wise process parameters. The case study results indicate that 12.73% of
the total production cost could be potentially reduced when applying the proposed dynamic process
planning algorithm based on the complexity level of geometries. In addition, the sensitivity analysis
results suggest that the raw material price and the overhead cost are the two key cost drivers in the
current additive manufacturing market.

Keywords: production cost; additive manufacturing; direct metal laser sintering; dynamic process
planning; sustainability

1. Introduction

In recent years, public interest in innovating and improving additive manufacturing
(AM) technologies has been immensely growing since the first emergence in the 1970s.
Compared with traditional subtractive manufacturing processes, AM has shown to have
great potentials for enhanced manufacturing complexity, reduced production time and
cost, as well as an increased level of customization [1]. It is estimated that with the current
growth rate, the direct market of AM will reach USD100 to billion by 2025 [2]. Owing
to these superior advantages, AM technologies have been adopted in various industries
including aerospace [3–5], medical [6,7], consumer goods [8], automotive [9,10], etc. For
these different applications, a wide range of raw materials have been used such as metal,
ceramics, glass, paper, wood, cement, graphene, and even living cells [11]. Currently,
several AM processes with high deposition rates have been used in high production vol-
umes [12,13], but most AM applications are still limited to that of small- to medium-sized
productions, due to the relatively low production speed, unsatisfactory fabrication quality,
and relatively high cost per part (especially for smaller production volume). The pro-
duction cost, as one of the critical aspects of sustainability (along with environmental
and social sustainability), plays a guiding role in the evaluation of a new manufacturing
process [14]. In the current literature, cost assessments have been conducted for differ-
ent AM processes [15–27] including fused filament fabrication (FFF) [18], mask image
projection-based stereolithography [23], fused deposition modeling [19], light-directed
electrophoretic deposition [28], inkjet printing [29], multijet printing [30], laminated object
manufacturing [31], and electron beam manufacturing [32], etc.
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Metal-based AM processes have been dominating the AM market as the investment
in metal-based three-dimensional (3D) printing has been growing significantly in the past
years. According to the latest Wohlers Report, the worldwide revenue of metal AM grew
at a rate of 41.9% in 2019 [15]. Metal AM technologies have been favored in different
application domains. For example, GE Aviation has applied the laser-based AM technique
to fabricate critical components on LEAP jet engines, such as fuel nuzzle tip, engine inducer,
and combustor mixer [33]. Siemens has employed the direct metal laser sintering (DMLS)
to fabricate gas turbine blades that can be used in production of power generation [34]. To
further increase the market share of the metal AM market, it is necessary to evaluate and
preferably reduce the overall cost. In the current literature, studies on cost evaluation have
been performed for metal-based AM processes [1,16,18–22,26,35–38], and they suggest
great opportunities for saving production costs by adjusting production plans such as
changing the selection of process parameters [1,21]. The majority of these cost studies do
not rely on mathematical cost models, and they are mostly case specific, which limits the
applicability of their analysis results, as well as the potential for cost optimization.

In the current literature, some cost models have been established for metal-based AM
processes [20–22,26,37,38] for different research goals such as quantifying the production
cost of different part geometries and batch sizes [20], comparing the support cost using dif-
ferent overhang angles and support structures [21], exploring the opportunity for reducing
the cost for different building volumes [26], comparing the cost of traditional CNC and
metal-based AM [22], and applying topology optimization with cost constraints [38]. While
these cost models provide useful insights into understanding the different cost components
in metal-based AM, most of them are based on a constant selection of process parame-
ters within one batch, in other words, they consider the values of process parameters to
be constant during the fabrication. Dynamic process planning, which has been widely
adopted in traditional manufacturing processes [39–41], can help save production time,
reduce cost, and improve the overall productivity [37]. In the DMLS process, the selec-
tion of values for process parameters such as laser power, scanning speed, and hatching
distance is likely to affect the production cost, as well as fabrication quality [42]. Limited
by machine specifications, these process parameters usually can be altered within feasible
ranges [43]. The selection of these values is jointly determined by the desired quality
and feasible production time (cost), with the potential for adopting different values of
process parameters for different portions of the fabrication (in build direction) to reduce
the cost while ensuring fabrication quality. In the current literature, research on reducing
the production cost by leveraging dynamic production planning is rarely conducted.

To fill the knowledge gap, a comprehensive cost model with an integrated dynamic
process planning algorithm is established for the DMLS process. The layer-wise process
parameters are selected based on the geometry complexity for the purpose of time and cost
saving. Four case studies are conducted to investigate the performance of the proposed
model and the dynamic process planning algorithm. The results from this paper would not
assist AM manufacturers to improve their efficiency but could aid AM decision-makers
towards cost-effective production planning and further advancement in AM. The remainder
of this article is organized as follows: In Section 2, the DMLS process is illustrated, followed
by the established cost model and the dynamic production planning algorithm; in Section 3,
case studies are performed, including model evaluation, analysis of dynamic process
settings, and sensitivity analysis; in Section 4, we discuss the conclusions and future work
of this research.

2. Methodologies
2.1. Illustration of the Direct Metal Laser Sintering Process

As one of the most popular metal-based AM technologies, the DMLS process projects
a high-power laser beam onto a powder bed and fuses the atomized fine particles to create
a solid structure layer-by-layer [44]. As illustrated in Figure 1, the production process can
be categorized into three stages, i.e., the preprocessing stage, the production stage, and
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the postprocessing stage. During the preprocessing stage, the 3D geometry information
is generated by designers and fed into the control software of the DMLS machine. The
DMLS machine is set up with the materials and protective gas in the preprocessing stage.
In practice, maintenance activities (including cleaning, component replacement, etc.) are
conducted regularly to maintain the process reliability and stability. In the production stage,
metal powders are delivered by a powder delivery system to the build platform, where
a part is fabricated. The platform is installed in a chamber that is filled with protective
gas [44]. During the fabrication process, the protective gas is delivered into the chamber at a
steady rate. A roller is used to spread the powders onto the build platform. During the part
fabrication, a high-power laser, which is controlled by a scanning mirror through changing
its refection direction, is used to melt and fuse metallic powder at the platform layer-by-
layer [45]. When the sintered metal powder is cooled down, the fabrication of a layer is
completed. After the fabrication of each layer, the used powders are collected for recycling.
During the postprocessing stage, the fabricated parts usually undergo several different
steps necessary to further improve the finished quality, such as cleaning, hardening or
curing, surface finishing, and coloring [43].
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Figure 1. Illustration of the three stages of the direct metal laser sintering (DMLS) process and
associated costs.

During the three stages of DMLS, different cost components occur. The total fabrication
cost consists of overhead cost, energy cost, labor cost, and material cost. The overhead
cost includes machine and software investment, administration, and maintenance, and it
mainly occurs during the preprocessing stage. The energy cost covers the electricity cost
caused by the laser device and the powder delivery system, and it mainly occurs during
the production stage. The labor cost occurs in the labor-involved activities during the
preprocessing phase as well as the postprocess phase. These postprocess procedures add
to the time required to manufacture the parts [46]. The material cost is a collection of all
the materials that are used in the manufacturing process.

2.2. Cost Modeling

To generate the total cost of the DMLS process, it is necessary to investigate the
different components of the DMLS process. The total cost of the manufacturing process
(CTotal) (USD) consists of the energy cost (Cenergy), the labor cost (Clabor), the material cost
(Cmaterial), and the overhead cost (Coverhead). It can be formulated as follows:

CTotal = Cenergy + Clabor + Cmaterial + Coverhead (1)

The unit cost per part in a batch with mixed geometry is determined by the mass and
the geometry complexity of the part. The geometry complexity of each individual part
needs to be calculated separately.
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Let i be the index of the part manufactured in a production batch, with mass mi and
geometry complexity factor fgeoi . The cost for a specific part k (USD) is estimated as follows:

Cpartk = CTotal ×
mk × fgeok

∑ mi × fgeoi

(2)

In this equation, mi denotes the mass of the part i (g), and fgeoi represents the geometry
complexity factor of the part i. The geometry complexity factor can be defined by different
geometry information of the part.

2.2.1. Energy Consumption Cost

The energy consumption consists of several components, including the energy con-
sumption during the production stage. The machine has some constant energy consump-
tion components once it is started, such as cooling fans, monitoring units, etc. It also has
some energy consumption related to the scanning time, such as the protective gas system,
motor systems, laser units, etc. It is shown in Equation (3) as:

Cenergy = (Pconst × tset + ∑
j

Elaser,j + (Pmech + Pconst)× tscan + ((Precoat + Pmech)× nlayer × tlayer)×Menergy (3)

Let j be the index of the layer in the batch. Pconst represents the constant power
consumption of the system, including control unit, fans, and heating systems, etc. (J/s),
tset represents the time consumption before the building process, including preheating,
self-calibration, etc. (s), Elaser,j is the energy consumption of layer j (J), Pmech is the power
of the nozzle motor system (J/s), Precoat denotes the power of the recoating system (J/s),
nlayer denotes the total number of layers, tlayer represents the fixed recoating time for each
layer (s), and Menergy represents the monetary price of the energy (USD/J).

The energy consumption of layer j can be estimated as:

Elaser,j =
∫ t0,j+tscan,j

t0,j

Plaserj
dt, Plaserj

∈ Plaser (4)

In the equation, tscan stands for the total scanning time (s), t0,j denotes the starting
scanning time in the layer j, and tscan,j is the total scanning time in the layer j.

The total scanning time can be formulated as follows:

tscan = ∑
j

tscan,j (5)

tscan,j =
∫ 1

Vscanj × Hdj

dS, S ∈ Sj, Vscanj ∈ Vscan (6)

In the equations, Vscanj represents the scanning speed at the layer j (mm/s) and Hdj

denotes the hatching distance at the layer j (mm).

2.2.2. Labor Cost

Labor cost is mainly determined by the process with the interaction of labor forces.
Note it is assumed that there is no human interaction during the manufacturing process of
DMLS. It includes setup for the machine, operating software, maintenance, preprocessing,
and postprocessing. The cost of labor can be formulated as follows:

Clabor =
(
tsetup + toperating + tpre−pro + tpost−pro

)
×Mlabor (7)

In this equation, tsetup represents the setup time for the machine (h), toperating denotes
the operating time for the machine (h), tpre−pro represents the preprocessing time (h),
tpost−pro represents the postprocessing time (h), and Mlabor denotes the hourly salary of the
labor (USD/h).
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2.2.3. Material Cost

The material cost primarily contains two sources, namely part material, and protective
gas cost. The material cost can be formulated as proposed:

Cmaterial =
1

αu
×
(

ρmetal(∑
j

Lj × Sj + Vsupport)

)
×Mmetal + Vgas × tbuild ×Mgas (8)

In this equation, αu denotes the utilization rate, ρmetal denotes the density of the metal
material (g/mm3), Sj represents the total area of in the layer j (mm2), Mmetal represents
the price of the metal material (USD/g), Vgas denotes the gas release speed during the
production (m3/h), tbuild represents the total production time (h), and Mgas is the price of
the protective gas (with the unit of volume) ($/L).

The total area in the layer j can be estimated as follows:

Sj = ∑
I

Si,j (9)

Si,j denotes the area of the part i in the layer j (mm2).

2.2.4. Overhead

The overhead cost includes the machine preparation cost, the maintenance cost, and
the administration cost. It is assumed that the machine has a limited life. The regular-
period-based maintenance is executed. Additionally, a periodical administration for the
machine is performed to ensure the stability of the machine. The overhead cost can be
summarized as follows:

Coverhead = (Mmachine/Nli f e + Mmaintenance/Nmaintence + Madministration/Nadministration)× tbuild (10)

In this equation, Mmachine denotes the machine investment cost (USD) including hardware
and software costs, Nli f e denotes the life span of the machine (h), Mmaintenance denotes
the maintenance cost (USD), Nmaintence represents the maintenance period (operation time
between maintenances) (h), Madministration represents the administration cost (USD), and
Nadministration represents the administration period (h).

2.2.5. Geometry Complexity Factors

In the DMLS process, different process parameters, including laser power and scan
speed, have been found to influence the production cost [22,25,47]. On the one hand, more
laser power and slower scanning speed result in larger melt pools and fewer scanning
operations. On the other hand, less laser power and faster scanning speed create thinner
structures. According to the mechanism, if the process parameters in the planning strategy
are decided by the geometry, significant time can be saved, and consequently, the total cost
is reduced. The geometry complexity can be divided into two categories, i.e., layer-wise
factor and volume-related factor. These two categories correspondingly influence layer-
related and volume-related characteristics. The former category includes perimeter area
ratio, isoperimetric ratio, and curvature statistics, etc. It represents the complexity of a
specific layer of the part. The more complex a layer is, the more variation of the process
parameters in the same layer will be required to better realize the layer-wise characteristics.
The latter category includes fullness ratio, and three-dimensional bounding box ratio, etc.
Volume-related factors influence volume-related characteristics. A weighed formulation
of geometry complexities is introduced to decide the process parameters to achieve lower
production costs. A set of process parameters L, Plaser, and Vscan are decided by the
geometry factors.

Geometry complexity can be defined with different geometry information. In this
paper, layer-related geometry complexity is defined as the bounding box ratio of the layer.
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A layer may have multiple closed-loop polygons. The layer-wise geometry parameter of
the layer j in the part i can be expressed as follows:

fgeoi,j = rbbox (11)

Volume-related factors are defined as the three-dimensional bounding box ratio. The
volume-related complexity of the part i can be expressed as follows:

fgeoi =
∑j Lj × Si,j

Vbbox
(12)

In the equation, Vbbox denotes the bounding box volume (mm3) of the three-dimensional
models of the part i.

2.3. Process Planning Algorithm

To reduce the total cost of the DMLS process, a novel process planning algorithm is
proposed to select parameters based on the geometry factors. The algorithm is demon-
strated as follows: In detail, based on the part geometry information, a set of process
parameters including laser speed, the hatching distance, and laser power is determined
accordingly to decrease the total cost in the DMLS process.

Step 1 GET the part geometry information including volume-related factors Vbbox and geometry
complexity factors fgeoi,j

Step 2 GET the feasible ranges of changeable parameters Lj, Plaserj
, Vscanj , and Hdj

based on
machine specification
Step 3 FOR i = 1 : nPart
FOR j = 1 : nlayer
CALCULATE the layer-wise geometry complexity fgeoi based on the part geometry complexity
factor rbbox,i for each part in the batch
CALCULATE the feasible range of parameters of Lj, Plaserj

, Vscanj according to fgeoi,j

CALCULATE scanning time for the layer j as tscan,j according to the changeable parameters Lj,
Plaserj

, Vscanj

END LOOP
CALCULATE total scanning time tscan
CALCULATE total cost CTotal
END LOOP
Step 4 FIND a set of parameters L, Plaser, and Vscan that reduce the total cost CTotal
Step 5 RETURN the solution with changeable parameters for each layer and total cost CTotal
Step 6 END

A flowchart describing the algorithm is shown in Figure 2.
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3. Case Studies

In this section, four case studies are conducted to evaluate the performance of the
established cost model, as well as the dynamic process planning algorithm. The first case
study, in Section 3.1, is designed to compare the proposed model and the two existing
models in the literature, in terms of calculating the total production cost for different
types of materials. The second case study, in Section 3.2, is designed to explore using
the proposed cost model for different production scenarios, i.e., production of one single
geometry and production of a mixed batch of different geometries. The third case study,
in Section 3.3, is designed to compare the calculated total production cost when using
constant process parameters and the proposed dynamic process planning algorithm which
is based on the geometry complexity. Finally, the sensitivity analysis, in Section 3.4, is
designed to identify the key cost drivers in the current market that have a direct impact on
the total production cost. To perform these case studies, some assumptions are adopted as
shown in Table 1, and they are applicable to all the case studies in this section.
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Table 1. Cost model calculation assumptions.

Parameter Value Source

Machine rated power Pconst 200 W

Technical data of EOS M290 [48]

Power of the motor system Pmech 1000 W

Power of the recoating system Precoat 200 W

Gas release speed Vgas 28 m3/h

The life span of the machine Nli f e 3 years

Time of layer change tlayer 7.2 s Estimated based on the practical operation

Unit price of the energy Menergy $0.12/KWh Averaged retail price of electricity in the residential sector, May 2020 [49]

Hourly salary of the labor Mlabor
10.12
USD Government data [50]

Material utilization rate αu 50% Model assumption

Density of the material ρmetal
4.41
mg/mm3

Material property [51]
Price of the material Mmetal $20.85/kg

Price of the protective gas Mgas $0.14/cm3

The listed prices on the official website [48]
Machine investment Mmachine $600,000

Maintenance cost Cmaintenance $300

Administration cost Cadministration $35,000

3.1. Model Comparison with the Current Literature for Different Materials

In this case study, the proposed model is compared with the two existing cost models
in the literature for different materials, i.e., 316L, AlSi10Mg, and Ti4Al6V. Similar sets of
parameters are adopted as inputs in the proposed model and the existing models in the
literature to calculate the total production costs, which are the outputs of this case study.
The expected outcome of this case study is the comparison of model calculation results
from the proposed model and the existing models in the literature.

Figures 3–5 are the comparison results between the proposed model and the existing
models in the literature [20,25]. Three metal are used to compare the cost calculation for
the model proposed in this work, namely 316L, AlSi10Mg, and Ti4Al6V. According to the
figures, the model in this work has close calculation results with the models in the literature.
To compare the results, the model calculation for 316L in this work is 0.02% higher than the
cost calculation in the literature [20]. The model calculation for AlSi10Mg is 0.02% lower
than the model calculation in the literature. The model calculation for Ti4Al6V is 0.28%
lower than the calculation in the literature [25]. In conclusion, the model can be applied in
the general DMLS process.

3.2. Model Calculation for Single Geometry and Mixed Batch Productions

The objective of this case study is to investigate the cost performance of the DMLS
process using the proposed cost model, while the process parameters remain constant. More
specifically, two different production scenarios are studied, i.e., single geometry production
in Scenario I and mixed batch production in Scenario II. The inputs of Scenario I case study
are the 3D geometry information, as well as the values of process parameters, and the
output of the case study is the calculated cost performance among different categories
including overhead, labor, material, and energy costs. Similarly, the inputs of the Scenario
II case study are the 3D geometry information for all 15 geometries in the batch, as well as
the values of process parameters, and the output of the case study is the cost per part for
different geometries. The expected result of this case study is that the cost per part depends
on both geometry complexity and the mass of the part.
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In Scenario I, a single geometry in a batch is produced using the parameters in Table 2,
which are based on practical recommendations from the EOS company. It is assumed to
manufacture the parts using Ti6A14V as the material.

Table 2. Cost model parameters assumptions.

Parameters Value

Laser power Plaserj
285 W

Scanning speed Vscanj 1020 mm/s

Hatching space Hdj
161 µm

Layer thickness Lj 30 µm

The layout is shown in Figure 6 and the geometry facts are described in Table 3. The
National Institute of Standards and Technology (NIST) AM test artifact is designed for
investigating the performance of the AM process [50]. It contains various geometry char-
acteristics that make it reasonable to be manufactured with dynamic process parameters.
In this work, the cost model calculation for the part is applied to evaluate the effect of the
dynamic process planning algorithm on cost efficiency.
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Table 3. The geometry information for Scenario I.

Description NIST Test Artifact

Mass (g) 447.34

Dimension 141.42 cm × 141.42 cm × 3.00 cm

Geometry complexity fgeo = 0.30

In Figure 7, the cost distribution is calculated by the model proposed in this work.
Among the total cost of USD119.98, the material cost is estimated to be USD57.41 which
represents the largest portion, i.e., as much as 47.4%. The overhead cost is estimated at
USD38.87 which represents 32.1% of the total cost. Labor cost is calculated as USD22.11. It
represents approximately 18.3% of the total cost. The energy cost is estimated as USD1.47
for Scenario I. Notably, the overhead cost represents most of the total cost. Energy cost is
the lowest distribution of the total cost for the DMLS process.
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Figure 7. The cost distribution for single geometry in Scenario I.

In Scenario II, a batch of different geometry parts is manufactured with the same
parameters. The geometry information is listed in Table 4. It is performed to investigate
the cost distribution determined by geometry information. Applying the cost model, the
cost of each part in the batch can be obtained according to the combination of mass and
geometry complexity characteristics. The layout of the batch with different geometry parts
is shown in Figure 8.

Table 4. The geometry information in Scenario II.

Part Description Mass (g) Dimension (cm × cm × cm) Geometry Complexity

No. 1 Washer 1 × 8.5 1.45 0.2 × 0.21 × 0.15 fgeo1 = 0.49

No. 2 Wingnut 6 × 9 4.42 0.12 × 0.34 × 0.99 fgeo2 = 0.24

No. 3 Wingnut 6 × 9 4.42 0.12 × 0.34 × 0.99 fgeo3 = 0.24

No. 4 Wingnut 6 × 9 4.42 0.12 × 0.34 × 0.99 fgeo4 = 0.24

No. 5 Bolt 25 × 8_button 5.83 1.31 × 1.31 × 3.00 fgeo5 = 0.26

No. 6 Bolt 25 × 8 countersunk 5.83 1.31 × 1.31 × 3.00 fgeo6 = 0.26

No. 7 Nut joiner 18 × 9 5.87 1.20 × 1.39 × 1.80 fgeo7 = 0.44

No. 8 Bolt 25 × 8 socket 6.55 1.15 × 1.15 × 3.10 fgeo8 = 0.37

No. 9 Bolt 25 × 8 6.98 1.20 × 1.39 × 3.00 fgeo9 = 0.32

No. 10 M15_nut 19.38 4.00 × 3.46 × 0.50 fgeo10 = 0.63

No. 11 Tensile test type 4 28.06 11.43 × 1.91 × 4.06 fgeo11 = 0.71

No. 12 Drive gear 31.30 4.50 × 4.50 × 0.90 fgeo12 = 0.34

No. 13 Tensile test type 1 36.35 16.50 × 1.90 × 0.32 fgeo13 = 0.82

No. 14 M15 bolt 50.70 4.60 × 4.00 × 3.46 fgeo14 = 0.18

No. 15 NITS test artifact 96.62 10.61 × 10.61 × 1.28 fgeo15 = 0.30
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Figure 8. Three-dimensional view of the mixed batch in Scenario II.

In Figure 9, the unit cost per part, and the mass of the part is illustrated. It can be
observed that the unit cost is not a positive relationship with the mass of the part in a
mixed batch. For instance, part No. 13 has a larger mass than part No. 12. The unit cost
per part of No.13 is lower than No. 12. The reason is that the distributed cost is influenced
by the mass and also the geometry characteristics. This indicates that mass is not the only
parameter for distributing the unit cost in a mixed batch.
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3.3. Cost Performance Using Constant vs. Dynamic Process Planning

The objective of this case study is to compare the cost performance of adopting
a constant and dynamic interlayer process planning using the proposed model. More
specifically, Scenario I in Section 3.2 is used as the constant case, and the dynamic process
planning algorithm shown in Section 2.3 is used to calculate the layer-wise values of
the process parameters. The input of this case study is the geometry information, and
the outputs are the selected values of process parameters based on geometry complexity,
as well as the calculated layer-wise total production cost. It is expected that the total
production cost when using a dynamic process planning algorithm in the DMLS process is
less than when adopting constant process parameters.

It can be observed in Figure 10 that the cost for each layer with dynamic parameters is
less than the cost with constant parameters. It is noticed in Figure 10 that cost distribution
is determined by geometry in production with dynamic process planning. The total cost
with constant parameters is USD 119.98. Applying the dynamic parameters, the total cost
is reduced by 12.73% to USD104.70. The cost of each layer depends on its mass distribution
and the geometry information. The difference between each layer can be observed in
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Figure 11. Overall, the cost of the dynamic process is lower than the cost of the constant
process. The calculation suggests that dynamic interlayer process planning saves costs in
the DMLS process.
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3.4. Sensitivity Analysis

To identify the key cost drivers to the DMLS process, a sensitivity analysis is per-
formed, in this section, to explore the influence of parameters (including machine invest-
ment, labor hourly rate, energy unit price, and material unit price) on the total production
cost. Specifically, this case study is performed by quantifying the variation of the total
production cost when each of these studied parameters is altered by ±20% while other
parameters remain the same.

The impacts of the parameters are demonstrated in Figure 12. In this figure, it can be
observed that increases in the machine investment, the labor hourly rate, the electricity
unit price, and the raw material unit price lead to an increase in the total cost. It can be
observed that the total cost of the base is changed by 8.36% according to the 20% change in
the material unit price. Changing the labor hourly rate by 20% results in a 2.25% change in
total cost. Changing the energy unit price leads to a change of 0.30% of the total cost. In
addition, a 20% change in the machine investment results in a change of 6.20% in the total
cost. In conclusion, the material unit price and machine investment are more sensitive to
other parameters.
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4. Conclusions and Future Work

In this paper, a comprehensive cost model is established to quantify the cost perfor-
mance of the DMLS process, especially when adopting the proposed dynamic process
planning algorithm. Multiple case studies are presented to demonstrate the performance
of the proposed model from different aspects. More specifically, the comparison of the
proposed model and the existing models in the literature demonstrates that the proposed
model is applicable for calculating the production cost of DMLS when fabricating differ-
ent types of materials. In addition, the calculated cost distribution from single geometry
production indicates that the overhead cost and the material cost are the two major cost
components as compared with the energy cost and labor cost. Additionally, by observing
the cost of fabricating the Ti4Al6V product using both constant and dynamic layer-wise
parameters, it shows that 12.73% of the total cost can be potentially reduced by leveraging
the dynamic process planning algorithm. Furthermore, it has been identified that the raw
material price and the machine investment are the two key cost drivers in the current
market that have the most influence on the total cost of the DMLS process. This indi-
cates potential opportunities for further reducing the production cost by lowering the raw
material price, as well as lowering the capital investment in DMLS hardware and software.

The present work has certain limitations in terms of the lack of exploring other ways
of reducing the production cost of DMLS (e.g., increase the utilization of build space)
and the lack of optimization of the production cost with the constraints of fabrication
quality and mechanical properties. To extend this work, the relationships among process
parameters and the achieved quality and mechanical properties [53] should be established
and used as constraints to reduce/optimize the production cost of DMLS. In addition,
different strategies for reducing the production cost should be investigated from the design
stage (e.g., how to adjust the geometry design to reduce the production while achieving
similar functionality, fabrication quality, and mechanical properties); production stage (e.g.,
how to better utilize the available build space to fit as many parts as possible without
sacrificing the fabrication quality); and use stage (e.g., how to increase the useful life of
DMLS fabricated products to reduce the product demand).
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Notation List
Aisoi,j Isoperimetric area of the layer i part i (mm2)
Hdj

Hatching distance at the layer j (mm)
Plaserj

Laser power at the layer j (J/s)
Vscanj Scanning speed at the layer j (mm/s)
fgeoi Geometry complexity factor of the part i
Cparti Distributed cost for part i (USD)
CTotal Total cost of the entire production batch (USD)
Cadministration Administration cost (USD)
Cenergy Energy cost in the production batch (USD)
Clabor Labor cost during the preprocessing and postprocessing period (USD)
Cmaintenance Maintenance cost (USD)
Cmaterial Material cost of the batch (USD)
Coverhead Overhead cost (USD)
Elaser,j Energy consumption of layer j (J)
Lj Layer thickness of the jth layer (mm)
Menergy Monetary price of the energy (USD)
Mgas Price of the protective gas (USD/L)
Mlabor Hourly salary of the labor (USD/h)
Mmachine Machine investment cost (USD)
Mmetal Price of the metal material (USD/g)
Nli f e Life span of the machine (h)
Pconst Constant power consumption of the system (J/s)
Plaser A set of laser power for the process planning
Pmech Power of the nozzle motor system (J/s)
Precoat Power of recoating system (J/s)
Senvelopi,j

Envelop area of the jth layer in the part i (mm2)
Si,j Area of the part i in the layer j (mm2)
Sj Total area of in the layer j (mm2)
Vbbox Bounding box volume (mm3)
Vgas Gas release speed during the production (L/h)
Vscan A set of scanning speed for the process planning
Vsupport Total volume of the supporting structures (mm3)
ci,j Perimeter of the jth layer in the part i (mm)
mi Mass of the part i (USD)
nlayer Total number of layers
npart Total number of parts
t0,j Starting scanning time in the layer j (s)
tbuild Total production time (h)
tlayer Fixed recoating time for each layer (s)
toperating Operating time for the machine (h)
tpost−pro Postprocessing time (h)
tpre−pro Preprocessing time (h)
tscan,j Total scanning time in the layer j (s)
tscan Total scanning time (s)
tset Time consumption before the building process (s)
tsetup Setup time for the machine (h)
αu Utilization rate (%)
ρmetal Density of the metal material (g/mm3)
L A set of layer thickness for the process planning
iPlaser Index of the part
jHdj

Index of the layer
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