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Abstract: Traffic congestion is becoming a critical problem in urban traffic planning. Intelligent
transportation systems can help expand the capacity of urban roads to alleviate traffic congestion.
As a key concept in intelligent transportation systems, urban traffic networks, especially dynamic
traffic networks, can serve as potential solutions for traffic congestion, based on the complex network
theory. In this paper, we build a traffic flow network model to investigate traffic congestion problems
through taxi GPS trajectories. Moreover, to verify the effectiveness of the traffic flow network,
an actual case of identifying the congestion areas is considered. The results indicate that the traffic
flow network is reliable. Finally, several key problems related to traffic flow networks are discussed.
The proposed traffic flow network can provide a methodological reference for traffic planning,
especially to solve traffic congestion problems.

Keywords: intelligent transportation systems (ITS); traffic network; taxi GPS trajectories; congestion
areas; traffic planning

1. Introduction

Traffic congestion is a major problem in traffic planning. With the rapid increase in
the number of motor vehicles in cities, the problems caused by traffic congestion are be-
coming increasingly critical. Several researchers have attempted to solve traffic congestion
problems by applying intelligent transportation systems [1,2]. In this regard, although intel-
ligent transportation systems cannot fundamentally solve the problem of traffic congestion,
they can enhance the traffic efficiency and capacity of the roads through the identification
and enhancement of unreasonable traffic modes. Thus, intelligent transportation systems
may represent an effective solution to alleviate traffic congestion and facilitate decision
making in traffic planning [3–5].

As a key part of intelligent transportation systems, urban traffic networks can help
examine traffic congestion problems because the congestion status of urban roads is closely
related to the urban traffic network [6]. Generally, an urban traffic network can be divided
into the urban static and dynamic traffic networks [7–9] based on the topological structure
of the urban roads and actual traffic flow. Moreover, both the static and dynamic networks
exhibit the characteristics of complex networks [10,11]. Thus, certain methods pertaining to
complex networks can be applied to urban traffic networks to analyze the problems caused
by traffic congestion [9,10]. When investigating traffic congestion problems based on the
complex network theory, a key task is to build an urban traffic network. As mentioned
previously, an urban traffic network includes an urban static and dynamic traffic network.
Usually, the urban static traffic network can be obtained as follows—the nodes are the
intersections of the urban roads, and the edges are the roads between the intersections.
Generally, most traffic congestion events occur at the intersections (nodes) due to the large
traffic flow. A higher traffic flow at a node corresponds to a higher possibility of the node
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being congested. However, the urban static traffic network is built based on the topological
structure of the urban roads and thus cannot reflect the traffic flow [12]. For example, when
new transportation hubs are established in new areas of the city, even though the nodes are
topologically influential nodes, the probability of traffic congestion is small due to the low
traffic demands. Moreover, congestion occurs not only at road intersections but also on
roads with large traffic demands. Thus, investigating traffic congestion problems based on
urban static traffic networks involves several limitations.

Compared with urban static traffic networks, urban dynamic traffic networks can
reflect the traffic flow and facilitate the investigation of the traffic congestion. In traffic
congestion analyses based on dynamic traffic networks, a key task is to represent the
traffic flow. Geospatial data, such as taxi GPS trajectory data, can be used to reflect the
traffic flow from several viewpoints [13,14]. As a means of transportation, the trajectory
data of taxies can be collected through global positioning system (GPS) data loggers.
Moreover, in the case of taxies, the running route and time are completely determined by
the passengers. Thus, taxies can reflect the spatial and temporal rules of the passengers’
travel. In addition, taxies can reflect the real traffic status based on the associated trajectory
data [15]. For example, we can judge whether an area is congested by the recorded speed
of taxies. Several researchers employed taxi GPS trajectory data to represent the traffic
flow. For example, based on the taxi GPS trajectories, Shi [16] clarified the urban recurrent
congestion evolution patterns, and Kan [17] detected the traffic congestion at a turn level.
Liu [18] defined the congestion coefficient by utilizing taxi GPS trajectories and studied
the traffic status in the morning and evening rush hours in Beijing. Shi [19] developed a
taxi tracking based method and estimated the traffic status based on the calculation of the
confidence intervals of the traffic parameters.

In this paper, based on taxi GPS trajectories, we build a new dynamic traffic network
model termed as the traffic flow network. In the traffic flow network, the nodes represent
the real areas, and the congestion coefficient is considered as the weight of the edges,
which can reflect the real traffic flow through the congestion status. Moreover, the traffic
flow network is scalable. Additional datasets can be implemented to build a larger traffic
flow network that contains considerable amounts of historical data and can be used to
investigate traffic congestion problems. In addition, we can adjust the size of the area
represented by the node to investigate the congestion problems at different scales. Using the
traffic flow network, the traffic congestion problems can be analyzed, thereby facilitating
the decision making in traffic planning.

As mentioned previously, certain methods pertaining to complex networks can be
applied to traffic flow networks to investigate the problems caused by traffic congestion.
Considerable research has been performed to investigate the traffic congestion problems by
using dynamic traffic networks and the complex network theory. For example, an improved
mesoscopic traffic flow model based on the complex network theory was proposed, through
which, the influence of the network topology on the traffic congestion could be examined
to formulate effective control strategies to alleviate the traffic congestion [20]. Moreover,
Wu [21] proposed a new traffic model for routing choice behaviors to enhance the efficiency
of the urban traffic network.

Based on the traffic flow network and complex network theory, we consider an ac-
tual case of a traffic flow network to solve the traffic congestion problem in Beijing. In a
weighted complex network, based on the nodal influential metrics [22,23], the nodal in-
fluential values can be calculated considering the weights of the edges. Subsequently,
we can determine the influential nodes according to the influential values. Therefore,
in this paper, several local nodal influential metrics, including the nodal strength [24],
average strength [25], weighted clustering coefficient [26], and weighted companion
behaviors [22], are employed to calculate the nodal influential values. Because the weights
of the network can reflect the congestion status, the influential values of the nodes can
reflect the congestion degree of the areas. Using this information, we can identify the
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congestion nodes of the traffic flow network, which can help examine the traffic congestion
problems and facilitate the decision making in traffic planning.

The key contributions of this paper can be summarized as follows.

(1) A new traffic flow network model is built based on taxi GPS trajectories. The model
is scalable and can reflect the traffic status. The traffic flow network can be employed
to investigate traffic congestion problems and facilitate decision making in traffic
planning.

(2) The traffic flow network is applied to an actual case of identifying the congestion areas.
(3) Several key problems pertaining to the traffic flow network are discussed.

The rest is organized as follows. Section 2 introduces the process of building the traffic
flow network based on the taxi GPS trajectories. Section 3 presents a real case of traffic
flow network in identifying the congestion areas. Section 4 discusses several key problems
about the traffic flow network. Section 5 concludes the work.

2. Method: Building the Traffic Flow Network

As mentioned previously, compared with static traffic networks, traffic flow networks
can better facilitate the investigation of the traffic congestion. Thus, it is critical to build an
effective traffic flow network. In this paper, the taxi GPS trajectory data are employed to
build a weighted traffic flow network. This section describes the data source for the taxi
GPS trajectory data. Next, the process of building the traffic flow network based on the
taxi GPS trajectories is described, including the data selection, building of the primitive
traffic flow network, and establishment of the final traffic flow network.

2.1. Data Source

The taxi GPS trajectory data are derived from the Urban Computing Group [27,28].
The taxi trajectory data include the taxi ID, GPS coordinates, and timestamps of 10735 taxi
trajectories in Beijing from 2 February to 8 February 2008, involving 15 million GPS nodes
and covering all the critical traffic areas in Beijing.

2.2. Overview of Building the Traffic Flow Network

This section describes the building of a weighted traffic flow network based on the taxi
trajectory data to effectively investigate the traffic congestion. For the employed dataset,
the following problems are considered.

First, as mentioned previously, the dataset contains 15 million GPS nodes for the
period of a week, and this number is sufficient to build the traffic flow network. However,
the different taxi trajectory data reflect different traffic statuses. This paper is aimed at
investigating traffic congestion problems; thus, not all the data can be employed to build
the traffic flow network. The proper trajectory data must be selected before building the
traffic flow network.

Second, the traffic flow network must contain both nodes and edges. However, the
employed dataset only contains the GPS nodes. For each taxi, the GPS nodes on the same
day can be connected chronologically, and a primitive traffic flow network consisting of
the trajectory network of each taxi can be established. However, each trajectory network is
independent, and the independent networks must be integrated into the final traffic flow
network.

Third, the weights need to be added to the edges to reflect the traffic status. Moreover,
in the primitive traffic flow network, each node represents a geographical point. However,
to investigate traffic congestion problems, a congestion node should represent a congestion
area. Thus, the primitive traffic flow network must be merged to ensure that each node
represents an area. Finally, we aim to obtain a weighted traffic flow network in which each
node represents an area, and each edge can reflect the traffic status.

To satisfy the aforementioned requirements, the process of building the traffic flow
network can be divided into three parts, namely, the data selection, building the primitive
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traffic flow network, and building the final traffic flow network. The details of these
processes are as follows.

2.3. Procedures of Building the Traffic Flow Network
2.3.1. Data Selection

To effectively investigate traffic congestion problems, several requirements must be
considered for the data selection. First, the selected dataset must be sufficiently large and
cover multiple time periods to be able to reflect the normal traffic status of the research areas
and reduce the impact of abnormal traffic flows in the selected time periods. For example,
we select the taxi GPS trajectory data collected in a day to investigate the congestion status.
The occurrence of unexpected events in the day, such as inclement weather or large scale
public events, may lead to abnormal traffic flow and affect the results of the investigation.
Thus, a larger dataset and consideration of more time periods in the dataset will lead to
more accurate results. Second, the traffic status reflected in the selected dataset should
correspond to a relatively congested state. In this paper, we aim to investigate traffic
congestion problems. Under ordinary circumstances, traffic congestion events occur when
the traffic flow in the city is large. Thus, sufficient traffic flow should be ensured in the
selected dataset.

To satisfy the aforementioned requirements, we extract the taxi GPS trajectory data
from 7 a.m. to 9 a.m. from the complete dataset and analyze only the taxi GPS trajectories
that appear within the Fifth Ring Road. The dataset contains 817,462 taxi GPS trajectories
and covers the selected areas, corresponding to sufficient data; see Figure 1. Moreover,
according to the 2009 annual report of the Beijing traffic development [29], the period of
7:00∼9:00 corresponds to the morning peak, which can be proved by the following traffic
data. First, the average speeds for the expressways and main roads within the Fifth Ring
Road of Beijing are 35.6 km/h and 23.1 km/h, respectively, which is low enough to reflect
the traffic congestion. Second, Figure 2 shows the volume–demand to capacity ratio (V/C)
of the morning peak during a week in Beijing. The results indicate that the selected dataset
is sufficiently large and involves a sufficient traffic flow, which satisfies the requirements
for the data selection.

2.3.2. Building of the Primitive Traffic Flow Network

In this step, we aim to build the primitive traffic flow network, which consists of the
daily trajectory network of the different taxis and add the weights to the network.

The selected dataset only contains the taxi GPS trajectory nodes, which include the
taxi ID, GPS coordinates, and timestamps. To build the trajectory network of each taxi, the
following method is employed. First, in terms of the GPS trajectory nodes for each taxi,
because taxis are not always in operation, the dataset for the remaining time affects the
investigation of the traffic congestion. Thus, we remove the duplicate nodes according to
the GPS coordinates and regard each remaining node as a node of the network. Second,
we build the edges of the trajectory network for each taxi. Because the trajectory nodes
have timestamps, we connect two adjacent nodes chronologically on the same day as the
edges. In this manner, we can obtain the primitive traffic flow network. Third, to reflect
the real status of the traffic flow, the corresponding weights must be added to the network.
In this paper, we aim to investigate traffic congestion; thus, the weights should reflect the
congestion status. Based on the GPS coordinates and timestamps of the taxi trajectory data,
we introduce the congestion coefficient as the weights of the network [18]. The congestion
coefficient can be defined as:

Congestion Coe f f icient = Duration o f an Edge/Distance o f an Edge (1)
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(a)

(b)
Figure 1. Selected taxi GPS trajectories in morning rush hours. (a) Overview; (b) An illustration of random 1000 trajec-
tory nodes.
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Figure 2. The V/C of the morning peak during weekdays in Beijing [29].

The distance and duration for an edge can be calculated based on the GPS coordinates
and timestamps of the adjacent nodes, respectively. The distance and time are measured
in meters and seconds, respectively; thus, the congestion coefficient is measured in s/m.
Specifically, the congestion coefficient is the reciprocal of the average velocity through this
edge. A larger congestion coefficient corresponds to the smaller speed of a taxi passing
through this edge, indicating a higher congestion in the area.

Through this process, the primitive traffic flow network composed of the trajectory
network of each taxi can be obtained, which contains the nodes and weighted edges.

2.3.3. Building of the Final Traffic Flow Network

In this step, the primitive traffic flow network is merged with the final traffic flow
network. In the primitive traffic flow network, the trajectory networks for the different
taxies are independent of one another. Thus, the independent trajectory networks must
be merged to build the final traffic flow network. Moreover, as discussed in the previous
sections, to investigate traffic congestion problems, the nodes in the traffic flow network
should represent the areas. Thus, we can merge the independent trajectory networks
through the following method: if several nodes are involved in a common area, the nodes
can be replaced by one common node, which can represent an area. Through this process,
the independent networks can be merged to create a connected network.

We design a loop algorithm to merge the primitive traffic flow network—(1) for each
node of the primitive traffic flow network, a common area is built around the node. In this
paper, we design a circular area with a radius of 50 m. If other nodes are involved in the
common area, we replace the indexes of these nodes with the index of the node. (2) After



Sustainability 2021, 13, 266 7 of 18

the loop, the node list appears as duplicate indexes. Based on the latest node list, for the
edge list, we update the nodes’ indexes for the two endpoints of the edge and maintain the
weights as constant. Subsequently, the edges with the same endpoints are deleted. (3) We
renumber the indexes of the node list and edge list; see Figure 3.

Figure 3. Merging of the primitive traffic flow network. (a) Original network; (b) Replacement of the indexes (c) Merging of
the network; (d) Updating of the indexes.

Finally, we obtain an undirected weighted traffic flow network; see Equation (2)

G =
(

V, E, W
)
, (2)

where V =
(

v1, v2, · · · , vn
)

represents the nodes set and each node represents a
circular area with a radius of 50 m. E =

(
e1, e2, · · · , em

)
represents the edges set;

W =
[
wij
]n

i,j=1 is a matrix of weights, where wii ≥ 0, wij(i 6= j) represents the weights of

edges
(
vi, vj

)
, and the weight can indicate the congestion status.

The traffic flow network we built contains 32,528 nodes and 131,488 edges; see
Figure 4.
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Figure 4. A simple illustration of the traffic flow network with 50 edges.

3. Application: Identifying the Congestion Areas for Traffic Planning
3.1. Overview

In this paper, we build a new traffic flow network model to investigate the traffic
congestion problems based on taxi GPS trajectories. In the traffic flow network, the nodes
represent the real areas, and the edges reflect the congestion status. Moreover, the traffic
flow network is scalable and can contain a considerable amount of historical data, thereby
ensuring the accuracy of the results.

As mentioned previously, traffic flow networks exhibit the characteristics of complex
networks. Thus, certain methods pertaining to the complex network can be applied to
the traffic flow network. In a complex network, certain nodes are more important than
others [30,31]. For example, in a healthcare service network, a supply relationship exists
between the healthcare service nodes. If an influential node fails, the supply efficiency of
the entire healthcare service network is considerably reduced [32].

Similarly, in the traffic flow network, the congestion coefficient is employed as the
weight of the network. Based on the weights, the nodal attribute values can be obtained by
employing different nodal metrics, which can reflect the congestion status of the areas rep-
resented by the nodes. Moreover, larger attribute values correspond to a higher congestion
of the nodes. Thus, we can identify the congestion areas by ranking the nodal attribute
values in descending order.

In this paper, we present a real case based on the traffic flow network. The main
task is to identify the congestion nodes by employing different nodal metrics. To identify
the congestion nodes in the traffic flow network, the first step is to select proper nodal
metrics to calculate the nodal attribute values. Generally, the nodal metrics include local
metrics [22,26,33] and global metrics [23,34,35]. For a certain node, the local metrics are
used to calculate the nodal attribute values based on the neighboring nodes, while the
global metrics are used to calculate the nodal attribute values based on all the other nodes.
In real life, traffic congestion often occurs in a local area; thus, the local metrics can more
accurately identify the congestion nodes in the traffic flow network.

Serial local weighted metrics, including the nodal strength [24], average strength [25],
weighted clustering coefficient [26], and weighted companion behaviors [22], are employed
to identify the congestion nodes in the traffic flow network. The following text presents the
details of the four local nodal metrics.
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3.2. Local Weighted Nodal Metrics
3.2.1. Nodal Strength

In an unweighted network, the degree of a node represents the number of neighboring
nodes. In a weighted network, the weighted degree of a node is termed as the nodal
strength [24]. The nodal strength is the sum of the weights of the edges connected to the
node. The nodal strength can be expressed as in Equation (3).

Si =
N

∑
j=1

wij, (3)

where Si represents the nodal strength i, N is the degree of node i, wij represents the weight
of node i and node j.

3.2.2. Average Strength

The average strength [25] can be expressed as Equation (4).

ASi =

(
N

∑
j=1

wij

)
/N, (4)

where ASi represents the average strength of node i, N is the degree of node i, wij represents
the weight of node i and node j.

The nodal strength and average strength describe the congestion levels in an area
from two different perspectives. For a node, the nodal strength and average strength are
positively correlated with the congestion levels. Higher nodal and average strength values
correspond to a more congested node.

3.2.3. Weighted Clustering Coefficient

To clearly define the weighted clustering coefficient, we first introduce the unweighted
clustering coefficient. The unweighted clustering coefficient represents the probability that
the neighbors of a node are adjacent to one another, which reflects the compactness of a
network [36]. Suppose node i in a network has ki edges connecting it to other nodes, and
these nodes are neighbors of node i. At most ki(ki − 1)/2 edges can exist between these ki
neighbor nodes. If the actual number of edges between the ki neighboring nodes is Ei, the
unweighted clustering coefficient of node i can be defined as in Equation (5)

Ci = 2Ei/[ki(ki − 1)], (5)

where Ci represents the unweighted clustering coefficient of node i. Ei is the actual number
of edges between ki neighbors of node i.

From another perspective, if there exists an edge between the two neighboring nodes
of node i, the two neighboring nodes and node i can form a triangle. Thus, Ei is equal to the
number of triangles composed of node i and its neighbors, and ki(ki − 1)/2 is equal to the
number of connected triples centered on node i; see Figure 5. If the adjacency matrix of the
network is A =

(
aij
)

N×N , the number of triangles composed of node i and its neighbors is

Ei =
1
2

N

∑
j,k=1

aijajkaki. (6)

Thus, Ci can be rewritten as follows; see Equation (7).

Ci =
2Ei

ki(ki − 1)
=

1
ki(ki − 1)

N

∑
j,k=1

aijajkaki. (7)
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Figure 5. Illustration of triangles and connected triples.

In this paper, to reflect the weight of node i, for each triangle composed of node i
and its neighbors, we calculate the geometric mean of the normalized weights of the three
edges and consider the summation of the weights as the weight of node i [37]. The weight
can be expressed as

wi = ∑
j,k

( ∧
wij

∧
wjk

∧
wki

)1/3
, (8)

where wij is the weight of node i and node j;
∧

wij = wij/ max
(

wij, wjk, wki

)
, so are

∧
wjk and

∧
wki.

Thus, the weighted clustering coefficient Ci(w) can be expressed as

Ci(w) =
1

ki(ki − 1)∑j,k

( ∧
wij

∧
wjk

∧
wki

)1/3
. (9)

We design an algorithm to obtain Ci(w). First, we count the number of triangles
involved in node i and calculate the geometric mean of the normalized weights of the three
edges for each triangle. Second, we sum the aforementioned weights as the weight of node
i. Next, we consider the degree of node i as ki. Finally, we obtain Ci(w) by substituting wi
and ki in Equation (9).

For example, as shown in Figure 5, there exist three triangles involving node i, and six
neighboring nodes, that is, ki = 6. Thus, wi of node i can be calculated by summing the
weights of the three triangles. Specifically, wi can be calculated as

wi =

 3
√
(0.12/0.32) ∗ (0.05/0.32) ∗ (0.32/0.32)+

3
√
(0.15/0.38) ∗ (0.06/0.38) ∗ (0.38/0.38)+

3
√
(0.17/0.38) ∗ (0.07/0.38) ∗ (0.38/0.38)


= 2.068

Finally, the weighted clustering coefficient Ci(w) = 2.068/[6/(6− 1)] = 0.0689.
Note that the numerator and denominator in Equation (9) are zero if the neighbor

nodes of node ni are less than 2. In this case, we set Ci(w) as zero. Moreover, Ci(w) ranges
from 0 to 1.

3.2.4. Weighted Companion Behaviors

The companion behaviors [22] can reflect the nodal influence through the calculation
of the similarity between the node and its neighbors. The Jaccard coefficient (JC) of an
edge is employed to reflect the similarity of any connected nodes in the complex network.
The JC of nodes i and j in the unweighted network can be expressed as in Equation (10)
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JC = (E|i, j) =

∣∣ni ∩ nj
∣∣∣∣ni ∪ nj
∣∣ , (10)

where ni and nj represent the neighbors of nodes i and j, respectively;
∣∣ni ∩ nj

∣∣ and
∣∣ni ∪ nj

∣∣
represent the number of the intersection and unions of the neighbors, respectively. From
another perspective, if ni ∩ nj is not empty, for any node k in ni ∩ nj, nodes i, j, and k form
a triangle. Thus,

∣∣ni ∩ nj
∣∣ is also equal to the number of triangles formed by node i and j,

and any node in ni ∩ nj.
The weighted

∣∣ni ∩ nj
∣∣ can be calculated as follows. First, we count the number of

triangles involving node i and j. Second, for each triangle, we sum the weights of the two
edges connected to node i and j. Finally, we sum the weights for all the triangles involving
node i and j as the value of weighted

∣∣ni ∩ nj
∣∣. For the weighted

∣∣ni ∪ nj
∣∣, we consider the

sum of the nodal strength i and node j. Note that the weight of the edge of node i and j is
calculated twice, and the duplicate weight must be removed from the weighted

∣∣ni ∪ nj
∣∣.

Subsequently, we can obtain the weighted JC of node i and j, as JCw.
For example, Figure 6 presents a simple network, for the JCw of node i and node j, the

weighted
∣∣ni ∩ nj

∣∣ = 0.35 + 0.62 + 0.06 + 0.24 = 1.27; the
∣∣ni ∪ nj

∣∣ = 0.62 + 0.02 + 0.24 +
0.18 + 0.18 + 0.06 + 0.52 + 0.15 + 0.35− 0.18 = 2.14; thus, the JCw = 1.27/2.14 = 0.593.

Finally, we can obtain the weighted companion behaviors of node i by summing the
JC around node i; see Equation (11) and Figure 6.

CBw(i) =
n

∑
j=0

JCw(j|i), (11)

where CBw(i) is the weighted companion behaviors of node i; JCw
(
nj|ni

)
represents the

weighted JC of node i and node j.

Figure 6. Illustration of calculation process. (a) JC of edge ij; (b) Companion behaviors of node i.

3.3. Results of Identifying the Congestion Areas

In this section, we aim to identify the congestion nodes in the traffic flow network.
To this end, we employ four local nodal metrics, including the nodal strength, average
strength, weighted clustering coefficient, and weighted companion behaviors, to identify
the congestion nodes. We design an algorithm to conduct this process. First, we calculate
the nodal attribute values based on the four different metrics for all the nodes in the traffic
flow network. Next, we rank the nodal attribute values in descending order. Larger nodal
attribute values correspond to a higher possibility of congestion. The following section
presents the results, including those of the statistics of the nodal attribute values, congestion
nodes, and evaluation of the four metrics.

3.3.1. Statistics of Nodal Attribute Values

In this paper, we obtain the attribute values of the nodes in the traffic flow network
based on the four local weighted metrics. The nodal attribute values can reflect the traffic
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status of different areas. In this section, we calculate the statistics for the nodal attribute
values to investigate the distribution laws of the congestion nodes reflected by the taxi GPS
trajectories. Figure 7 presents the frequency distributions of influential values using the
local weighted metrics. In Figure 7, the lower curve is the frequency distribution of all data
and the upper curve is a local zoom of the first interval. The details are as follows.

First, the distribution of the nodal strength is 0∼1800, with the maximum and min-
imum values of 1720.04 and 0.000065, respectively. Moreover, 96.3% and 80.9% of the
nodes correspond to values of 0.000065∼100 and 0.000065∼10, respectively, as shown in
Figure 7a. Second, the average strength distribution of the nodes is 0∼550, with the max-
imum and minimum values of 539.56 and 0.000065, respectively. Moreover, 99.5% and
89.2% of the nodes correspond to values of 0.000065∼50 and 0.000065∼5, respectively,
as shown in Figure 7b. Third, for the weighted clustering coefficient, the maximum and
minimum values are 0.5 and 0, respectively. Moreover, 93.4% and 76.6% of the nodes
correspond to values of 0∼0.05 and 0∼0.005, respectively, as shown in Figure 7c. Finally,
for the weighted companion behaviors, the maximum and minimum values are 19.1312
and 0, respectively. Moreover, 80.8% and 57.3% of the nodes correspond to values of 0∼1
and 0∼0.1, respectively, as shown in Figure 7d.

The statistical results indicate that for the four local metrics, although the scale of the
nodal attribute values of the congestion nodes is different, the distribution of the nodal
attribute values exhibits similar trends. Specifically, the distribution of the nodal attribute
values is uneven for the four different local metrics. Most nodes are in a lower congestion
state, while a few nodes exhibit higher congestion levels, which is consistent with the
actual traffic status. Thus, the small number of congestion nodes with higher levels can
be identified based on the employed metrics. In the following section, we indicate the
congestion nodes with higher levels on the map of Beijing.

3.3.2. Illustration of the Congestion Nodes

To clearly illustrate the results, we select the top 300 congestion nodes based on the
nodal attribute values for the different local metrics. Moreover, we mark these nodes on
Beijing’s map by using different symbols, with each symbol representing a circular area
with a radius of 50 m; see Figure 8.

The results indicate that the distribution of the top 300 congestion nodes is uneven
for the four local metrics. More top congestion nodes exist in certain areas, whereas fewer
top congestion nodes exist in the other areas. In real life, certain areas are more congested
than the other areas during the morning rush hours in Beijing, such as railway stations and
commercial centers. Thus, the distribution of the top 300 congestion nodes is consistent
with the traffic status in Beijing.

For each map, we select several areas with more top congestion nodes, and these
areas are marked by circles. For example, Figure 8a presents the top 300 congestion nodes
identified by the nodal strength. The selected circular areas have more top congestion
nodes than those in the other areas. Specifically, circular areas 1∼3 are located around the
Beijing airport expressway and Beijing railway station and between the South Third and
Fourth Ring Roads. In terms of the average strength, Figure 8b shows that the distribution
of the congestion nodes is similar to that of the nodal strength. To verify this aspect,
we select three identical circular areas corresponding to the nodal strength. The results
indicate that more top congestion nodes exist in these areas, which is consistent with the
results of the nodal strength. In the case of the weighted clustering coefficient, circular
area 1 is located around the Asian sports village and Anhui overpass, circular area 2 is
located around the Beijing railway station, and circular area 3 is located near Beijing Happy
Valley; see Figure 8c. In terms of the weighted companion behaviors, the distribution of
the congestion nodes is more concentrated than that in the case of the other three metrics.
Areas 1 and 2 are located near the Beijing airport expressway and Beijing railway station,
respectively, similar to the aforementioned results. In contrast, circular area 3 is located
near the Beijing west railway; see Figure 8d.
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These results indicate that several congestion areas with high levels can be accurately
identified based on the four weighted metrics, including railway stations, airport express-
ways, and amusement parks. In real life, these locations are key transportation nodes and
often experience congestion events, thereby corresponding to more top congestion nodes.
The results indicate that the traffic flow network can be used to identify congestion nodes
in real life in a reliable manner.
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Figure 7. Frequency distributions of influential values using the local weighted metrics. (a) Nodal Strength; (b) Average
Strength; (c) Weighted clustering coefficient; (d) Weighted companion behaviors.

3.3.3. Comparative Evaluation When Using Four Nodal Metrics

In this paper, we consider four local metrics to identify the congestion nodes from
different perspectives. The results can reflect the reliability of the four local metrics. For
example, all the four local metrics can identify the congestion areas to be within circular
area 2. Moreover, three local metrics (nodal strength, average strength, and weighted
companion behaviors) identify the congestion areas as being in circular area 1. To verify
these findings, we select two areas within the rectangles; see Figure 8. The areas within
the rectangles include only a few top congestion nodes. The results of identifying the
congestion nodes are thus consistent in the aforementioned areas.
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(a) (b)

(c) (d)

Figure 8. Distributions of top 300 congestion nodes identified using the weighted metrics. (a) Nodal Strength; (b) Average
Strength; (c) Weighted clustering coefficient; (d) Weighted companion behaviors.

These results demonstrate the similarity of the four metrics in identifying the con-
gestion areas, which reflects the reliability of the four local metrics. Moreover, the results
demonstrate the reliability of the traffic flow network.

4. Discussion

In the section, we present the reliablity, advantages, and disadvantages of the traffic
flow network. Moreover, the potential further work based on the traffic flow network will
be discussed.
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4.1. Reliability of the Traffic Flow Network in Identifying the Congestion Areas

In this paper, we build a new traffic flow network model to investigate the traffic
congestion problems based on taxi GPS trajectories. Moreover, we apply this network to
identify the congestion areas. The results indicate that the traffic flow network is reliable.

First, the datasets are reliable. During the taxi operation, the running route and time
are completely determined by the passengers. Thus, taxies can reflect the spatial and
temporal rules of the traffic status. Moreover, we extract the taxi GPS trajectory data
from 7 a.m. to 9 a.m. from the whole dataset and analyze only the taxi GPS trajectories
that appear within the Fifth Ring Road. The selected dataset is sufficiently large and
involves sufficient traffic flow, which can contribute to the effective identification of the
congestion nodes.

Second, the weights and weighted local nodal metrics of the traffic flow network are
reliable. We consider the congestion coefficient as the weight, which can directly reflect the
congestion levels based on the reciprocal of the average velocity through the given edge.
Moreover, the weighted local nodal metrics are defined based on the weights and can thus
reflect the congestion status of the nodes.

Third, based on the traffic flow network, we can identify the key congestion areas in
Beijing, such as railway stations, airport expressways, and amusement parks. The results
of the real case demonstrate the reliability of the traffic flow network.

4.2. Advantages in the Use of the Traffic Flow Network

In this paper, we build a new traffic flow network model to investigate the traffic
congestion problems based on taxi GPS trajectories. In this context, the traffic flow network
model involves the following advantages.

First, the traffic flow network based on the taxi GPS trajectories is dynamic and can
thus reflect the real traffic status and overcome the limitations pertaining to the use of the
static traffic network. Moreover, the traffic flow network is scalable. More datasets can
be added to easily build the traffic flow network, which can facilitate the investigation of
the traffic congestion. For example, if all the history datasets are employed to identify the
congestion areas, we can reliably obtain the congestion areas from a global perspective.
In addition, in real life, the congestion nodes may vary due to external factors. We can
build different traffic flow networks based on the datasets in different periods. Using these
traffic flow networks, we can evaluate the influence of the external factors on the traffic by
identifying the changes in the congestion nodes.

Second, for the same dataset, the traffic flow network is changeable and can be used
to investigate the congestion problems at different spatial scales. In this paper, we define
a circular area with a radius of 50 m as an identification unit, which is sufficiently small
in real life. The small identification units can help narrow the identification range of the
traffic congestion areas, thereby facilitating the identification of the problems that lead to
congestion. By changing the size of the identification units, we can identify the congestion
areas from a larger perspective.

Third, as discussed in the previous sections, the traffic flow network has been proven
to be reliable.

4.3. Disadvantages in the Use of the Traffic Flow Network

Although the traffic flow network has been proven to be reliable, it involves certain
limitations.

First, for the congestion coefficient, the distance of an edge is calculated according to
the GPS coordinates, which represent the distance of a straight line. However, due to the
change in the taxi driving direction, the real distance between adjacent nodes may be larger
than the calculated distance. Moreover, the duration of an edge may contain the waiting
time for traffic lights, resulting in a larger traveling time. The congestion coefficient and
nodal attribute values may vary in such cases.
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Second, although the network based method has been proven to be reliable, the
identification results lack the relevant benchmark data. By using the benchmark data,
we can adjust the weighted local nodal metrics to match the benchmark data, which
can help obtain more accurate metrics. However, it is challenging to obtain the actual
benchmark data.

4.4. Outlook and Future Work

In this paper, we build a new traffic flow network model to investigate traffic con-
gestion problems based on taxi GPS trajectories, which can help make decisions in traffic
planning. For example, the current dataset can be employed to identify the congestion
areas. For these congestion areas, several measures, such as widening urban roads, setting
traffic lights, developing public transport systems, and improving the structure of walking
networks, can be taken to ease the traffic congestion. Among them, the development of
public transport system and the improvement of walking network can reduce the demand
for private cars from the source.

Furthermore, the method of building the traffic flow model can be applied to other
datasets to investigate novel traffic problems. For example, we can employ the taxi GPS
trajectories during evening rush hours to investigate the traffic characteristics. Moreover,
we can use the GPS trajectories of private cars or buses to build traffic flow networks that
can be used to investigate traffic congestion problems from other perspectives.

Moreover, congestion events are usually related to the static topology of the urban
roads. To investigate traffic congestion, the urban static traffic network and dynamic traffic
flow network can be combined. In terms of the top congestion nodes, we can determine
the relationship between the road topology and traffic congestion to formulate strategies
for traffic planning.

In addition, more baseline data must be incorporated in the proposed method, using
which, more accurate results can be obtained. Specifically, more new metrics and effective
weights can be applied in the traffic flow network to achieve more accurate results. In
addition, more analytical methods pertaining to complex networks can be considered to
investigate traffic flow networks.

5. Conclusions

In this paper, we build a new traffic flow network model to investigate traffic con-
gestion problems based on taxi GPS trajectories. In the traffic flow network, the nodes
represent the real areas, and the weights of the edges reflect the traffic status based on the
congestion coefficient. The traffic flow network is scalable and reliable; the approach can
be used to analyze traffic congestion problems and provide references for traffic planning.
Moreover, to verify the traffic flow network, a real case of identifying the congestion areas
is presented. Several local nodal metrics are employed to rank and identify the congestion
areas. The results indicate that the traffic flow is reliable. The following research directions
can be considered in future work. (1) More new datasets can be employed to build traffic
flow networks based on the proposed method, and the new networks can be applied to
investigate traffic problems. (2) The urban static traffic network and traffic flow network
can be combined to provide suggestions for traffic planning. (3) Additional methods and
metrics in the complex network can be applied to the traffic flow network to investigate the
traffic problems. The proposed traffic flow network can provide methodological references
in traffic planning, especially to solve traffic congestion problems.
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