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Abstract: To sustain a clean environment by reducing fossil fuels-based energies and increasing
the integration of renewable-based energy sources, i.e., wind and solar power, have become the
national policy for many countries. The increasing demand for renewable energy sources, such as
wind, has created interest in the economic and technical issues related to the integration into the
power grids. Having an intermittent nature and wind generation forecasting is a crucial aspect
of ensuring the optimum grid control and design in power plants. Accurate forecasting provides
essential information to empower grid operators and system designers in generating an optimal wind
power plant, and to balance the power supply and demand. In this paper, we present an extensive
review of wind forecasting methods and the artificial neural network (ANN) prolific in this regard.
The instrument used to measure wind assimilation is analyzed and discussed, accurately, in studies
that were published from May 1st, 2014 to May 1st, 2018. The results of the review demonstrate the
increased application of ANN into wind power generation forecasting. Considering the component
limitation of other systems, the trend of deploying the ANN and its hybrid systems are more attractive
than other individual methods. The review further revealed that high forecasting accuracy could be
achieved through proper handling and calibration of the wind-forecasting instrument and method.

Keywords: environment; sustainability; quality of life; forecasting; instrument; ANN; wind energy

1. Introduction

The advancement of civilizations, and their capability to withstand bulk populations, are similar
challenges to changes in the volume and nature of energy available to meet the demand for nourishment,
quality of life and to complete tasks [1-3]. Lower access to energy is an undesirable impact of poverty
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and the most probable cause of inferior efficiency and a human’s quality of life. Indeed, energy is
fundamental to providing sufficient services such as food, primary healthcare, water, education,
communication, and reasonable employment. The majority of electricity used by our societies has
been generated from fossil and nuclear fuels, which are today facing severe issues, such as diminished
supply and security, financial affordability, ecological sustainability and disaster hazards [4,5]. For fix
these undesirable issues, many countries are enacting sustainable energy policies to focus on increasing,
integrating and developing renewable energy technologies. Resources are increasing significantly in
the energy mix around the globe [4,6]. Among renewable energy resources, the wind is one of the
oldest renewable sources used for power generation worldwide. Global wind power generation has
reached about 20% annually within the past decade. Figure 1 depicts the annual addition and previous
year’s capacity atlas of wind power (2014-2018), while the world top 10 countries wind energy capacity
is presented in Figure 2 [7].
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Figure 1. The world annual addition and previous year’s capacity atlas of wind power (2014-2018).

Wind install capacity of world top ten countries

180000
160000
140000
120000
100000
80000
60000
40000

20000
: I e [

Commutative installed capacity (MW)

m China mUSA m United Kingdom m Germany
| Spain m Canada m Italy m France
| India | Brazil

Figure 2. The world top 10 countries atlas of installed wind power capacity in 2018 [7].

Wind energy has become an essential source of energy worldwide, and in 2018, the global capacity
reached 600 GW, so the construction of a new generation of wind energy varies from year to year and
by region. For example, in Europe, wind power capacity has decreased by 32% in 2018, compared to
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2017. The countries with the largest wind capacity are China, the United States, the United Kingdom,
Germany, Canada, Italy, France, India, and Brazil [7].

China’s installed capacity is 221 GW, and is the world leader in wind energy, producing more than
a third of the world’s capacity. The province of Gansu has the largest onshore wind farm in the world,
and currently has an output of 7965 MW: five times more than its closest rival. The farm currently
operates at only 40% of its capacity, and a total of 120,000 MW can be installed by 2020 to achieve a
total capacity of 20,000 MW (20 GW), which is expected to cost USD 17.5 billion. Despite their size,
Gansu turbines appear to be “scarecrow inactive”, due to lower demand [8,9]. The USA occupies
second place, with 96.4 GW installed capacity, and is particularly resistant to onshore wind energy.
Six of the ten largest onshore wind farms are located in the United States. These include the Alta
Wind Energy Center in California, the second-largest onshore wind farm in the world with an output
of 1548 MW, Shepherd’s Flat wind farm in Oregon (845 MW), and the Roscoe wind farm in Texas
(781 MW). Texas alone produces 24.9 GW of American wind power, delivering more wind power
than the other 25 countries. Germany has the highest installed wind power in Europe with 59.3 GW.
The largest offshore wind farm is Gode Windfarms (phases 1 and 2), with a total output of 582 MW.
The Nordsee One offshore wind farm, with an output of 382 MW and 400,000 households, is also
located in Germany. According to Wind Europe, Europe installed 11.7 GW of wind energy in 2018,
with Germany increasing 29% of this capacity to less than 3.4 GW—2.4 GW—on land and less than
3.4 GW—1 GW—on the ocean. India is the second-largest wind power in Asia and is the only Asian
country with 35 GW outside China [10,11]. Indonesia has a wind turbine in Muppandal in Tamil Nadu
(1500 MW) in southern India and a wind farm in Jaisalmer in Rajasthan (1064 MW) in northern India.
The Indian government has set itself the goal of installing 60 GW of wind power by 2022 and plans to
install 25 GW over the next three years.

Spain has 23 GW of electricity, accounting for 18% of Spain’s electricity supply, and is a major
player in wind energy. In terms of onshore and offshore wind farms, it does not rank in the top 20 in
terms of capacity but ranks fifth in the world. In recent years, the Spanish wind power industry has
shrunk dramatically. After adding no energy in 2015, the energy mix from 2016 to 2017 only expanded
to 104 MW. Employment opportunities in this industry have also dropped to 22,500 from 41,500 in
2008 [7,12]. The UK is the third-largest country in Europe, with a total installed capacity of over
20.7 GW. The UK is particularly worth mentioning in the offshore wind power industry. Among the
10 most powerful offshore wind power projects in the world, there are six in the UK. One of them is
the Walney project on the coast of Cumbria in northwest England. This is the largest offshore wind
power project in the world. Walney 1 and 2 (367 MW) and Walney Extension (659 MW) total 1026 MW.
The Walney plant will be completed in 2020, and the Hornsea One project in Beihai will be transformed
with 1218 MW. France ranks seventh among the top ten wind power countries. The company is
currently moving away from nuclear energy, which accounts for 75% of its national energy needs,
and will close the gap by increasing the renewable energy budget for 2019-2028 to 71 billion euros.
As a result, by 2030, its onshore wind power capacity will triple. However, France’s hostility to “wind
energy is deeply ingrained”. Brazil’s largest installed capacity of wind power in South America is
14.5 GW, which is a significant increase. According to the latest data, wind power has increased by
8.9% [7-9,12]. Wind energy ranks fourth in the entire energy structure of Brazil and accounts for about
8% of the total Brazilian energy capacity—162.5 GW. Under the leadership of the populist President
Jair Bolsonaro, there is concern about the future of wind energy. On the one hand, they expressed
their support for the development of wind energy, but a neo-liberal economic policy could reduce
the subsidies. Canadian renewable energy capacity is 12.8 GW, and the newly installed capacity in
2018 is 566 MW. A total of 299 wind farms and 6596 wind turbines generate this energy. Ontario has
the largest wind energy, with an installed capacity of more than 5 GW. These include the 230 MW
Niagara area north of Toronto and the 199.5 MW Cai wind farm. The largest wind farm in Canada
is the Riviere-du-Moulin project in Quebec, with a total installed capacity of 300 MW. Wind power
accounts for 5% of Canadian renewable energy sources, including 67.5% hydropower. The top ten
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wind energy generated by Italy in 2018 was just over 10 GW. Until recently, wind energy in Italy was
solely dependent on onshore wind energy. This month, German wind turbine manufacturers Senvion
and Renexia signed a contract to build the first offshore wind farm near the Apulian coast in southern
Italy. The Italian wind industry focuses on the south and the island. For example, the entire onshore
wind energy of the Italian energy company ERG is located in the south of Rome, and the strongest
markets are Apulia (248.5 MW) and Campania (246.9 MW) [10,11].

Since the 50% of the world’s wind energy has been mixed in the past five years and it is currently
the prominent source of new energy capacity in Europe and many other countries [8,9], so, it is essential
to study the performance dependent parameters and measurement tools to gain better efficiency.
It should also be emphasized that wind-based energy plays a vital role in mitigating climate change,
which has become a priority for the international community [7,12]. Climate variation solely is a
potential hazard for the generation of electricity from wind, because changes to the climate can change
the dynamics of the atmosphere and affect wind patterns [10,11,13]. Therefore, it is more essential to
assess the influence of imminent climate variations with wind speed, and other factors that may affect
wind energy production, as these factors contribute to a high risk for investors [14,15]. Wind turbines
increase not only capacity but also size, which marks them even more sensitive.

During the last decade, much research has been done to predict long-term wind models in the
context of climate variation. Most of this research focused on developed countries, especially in China,
the United States, etc. [16-18]. In recent years, several developing countries have also considered
adopting wind energy [18-20]. Most of these studies predict a future decrease in wind speed [20,21].
Some studies suggest that average wind speed and energy density probably do not change more than
the inter-annual variability [21,22]. However, the nature of wind is intermittent, and wind energy led to
difficult integration and reliability features, including complex technology and costly solutions [23-25].
In addition, the availability of resources for wind depends on the specific weather characteristics and
its location [26,27].

Effective energy production planning is an essential function of energy companies, especially in the
area of forecasting. As the grid evolves, planning and procedures must adapt to these changes [28,29].
Therefore, in the context of economic operation, accurate forecasting techniques should be used to
predict wind power generation. For many reasons, an accurate forecast of wind energy is essential
because it is a crucial element of the planning process. Considering the forecast of wind as a primary
essential factor in ensuring sustainable electricity output, the manufacturers and end-users of wind
energy need an improved method to predict wind energy. Different factors affect wind energy forecasts,
such as environmental conditions, time of day, and weather. The weather is interrupted, and sudden
significant and unexpected changes can ruin the weather forecast. The earliest reference for wind
volume data prediction is from 1977 [16,27]. This document describes the use of random time series
modelling in the technical description. Many wind resource prediction methods have been proposed
since 1977, and many scholars agree that different prediction ranges require different methods [17,30].

The non-linear function of energy production based on weather conditions and artificial intelligence
as an alternative method to predict wind energy has attracted extensive attention [31]. A hybrid
system—Dbased on an artificial neural network (ANN) and analogue set (AnEn) to forecast the amount
of electricity generation of the wind power plant—the numerical weather forecast is used as a forecast
system, which improves the efficiency of the proposed method compared to traditional methods [32].
The improved results are observed by the proposed method and are shown in large-scale wind
farm systems that require much computational analysis. This outcome is reliable, according to the
results of subsequent research by Ni et al., which optimizes ANN and multi optimization-avant-garde
objectives [33]. The algorithm is used together with a new method system for the short-term energy
forecast in wind farm energy management [34].

Many exciting results have revealed the potential of ANN in the forecasting of wind power
generation [35]. The implementation of a hybrid ANN system with other algorithms can further
improve the accuracy of ANN prediction [36]. This article provides a more detailed description of
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wind measurement instruments and ANN implementation in wind power forecasting. The first part of
this article introduces the background of weather forecasting and the instruments used to measure
wind speed, and then introduces forecasting methods. The second part of this article reviews the
implementation of ANN in the field of wind prediction. The last part of this article is based on a
five-year retrospective analysis that evaluates the research trends in predicting wind power generation
in the implementation of artificial neural networks.

Search Strategy

Published and unpublished studies from six significant databases, namely, (1) Direct Science,
(2) IEEE Xplore, (3) Google Scholar, (4) MDPI, (5) SAGE Publication, and (6) Scopus, between May
1st, 2014 to May 1st, 2019 were examined in this review paper, and overall workflow is presented in
Figure 3.
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Figure 3. The overall workflow of the adopted methodology.

2. Wind Forecasting Background

Wind speed measurement is usually carried out using wind cup anemometers [37,38]. The wind
cup anemometer has a vertical axis and three wind cups that capture the wind [39]. The device
generates a voltage related to wind speed or electronically records the number of revolutions per unit
time. Generally, anemometers are associated with wind vanes to detect the wind direction [40,41].
Other types of anemometers include ultrasonic anemometers that detect changes in the phase of a
sound, and laser anemometers that use coherently scattered light from air. The hot-wire anemometers
detect wind speed based on the small temperature difference between the wires placed between
the wind and the downwind side (shadow) of the wind [42—44]. One advantage of non-mechanical
anemometers is that they are less sensitive to icing. However, cup anemometers are usually used
anywhere, and unique models with electrically heated windows and cups can be used in the Arctic.
Spiral anemometers are also commonly used in practice [45,46]. The method to measure wind
speed at the potential location of the wind turbine is to mount the anemometer on top of the mast,
which is the same height as the expected height of the wind turbine to be used. For adopting this
method, the un-specificity caused by converting the wind speed to another altitude is avoided [47].
Various techniques/methods have been implemented to predict wind speed [45]. Besides, compared to
the standard fan-shaped power curve, it is also possible to obtain the power curve of the wind direction
determined by LIDAR, in which the shaft is behind the turbine to be tested [46]. The simulation study
shows that the measurement of the wind speed at different heights in the swept rotor area determines
the electrical power based on the “equivalent wind speed” taking into account wind intensity and
turbulence. It can be seen that electricity has a better correlation with the single point wind speed at
hub height, compared to the equivalent wind speed. Even in locations with simple configurations,
where high-quality measurements are made at hub height and at a reasonable distance from the
potential wind turbine, significant errors in the assessment of the wind speed can occur. Mounting the
anemometer on top of the mast minimizes interference with the airflow of the mast itself. If the
anemometer is located on the side of the mast, it must be placed in the prevailing direction of the wind
to minimize the wind shadow of the tower.
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3. Wind Extraction Method

Although wind speed can easily be predicted by the approaches deliberated in the section above,
the practical improvement of forthcoming wind speed has not yet established. In this study, we discuss
the wind speed forecasting method based on memory. We start with a mathematical model of wind
speed and then build a predictor of a stage of wind speed. An average estimate of wind energy is
required at a potential site of the wind [47,48]. It needs long-term wind variation information to obtain
improved wind energy forecasting. However, collecting measurement data at potential locations is
expensive, especially in national investigations. Usually, wind farms are projected in open fields,
but not at weather stations. Several characteristics of the altitude and terrain lead to accurate wind
speed prediction. Therefore, wind speed to the proposed wind farm is adjusted according to the
neighbouring weather station at the height of the turbine. By relying on this practice, wind production
can be estimated by matching the perceived wind speed information with the power curve of the
turbine. Also, we used the actual output power to refine the theoretical estimate of wind energy
performance during threshold relapse. The obtained model can be used to estimate the average
wind energy outcomes of further weather stations. The hourly information of the weather station
is implemented to estimate the generation of electricity by the wind turbine and at the ground,
where wind speed varies significantly with altitude. Contrary to the use of predefined wind direction
and wind coefficients to estimate wind speed, the best practice in the field of wind energy is to make
different measurements of wind speeds at different heights and to obtain the height of the wind shear
coefficient at a specific interval from the power law, as shown below. The following formula is adopted
to assess the inconsistency of wind-based on its up-height [49-51].

a= —ot 1 1
In(zp) — In(z1) @)
where, v1 represents the wind speed at reference position z; and v, represents the wind speed at the
elevated position z;.

3.1. Weibull Distribution—Wind Speed Modelling

The Weibull distribution has gained recognition by analyzing wind speed information [52,53].
The Weibull distribution of two parameters contains shape parameters and scale, and the Weibull
distribution can be projected by using wind speed distribution. Following is the Weibull distribution
function of probability density (PDF):

fo) = 52}t @

where:

¢ > 0 represents the scale parameter of the distribution
k > 0 represents the shape parameter

Among the techniques applying the estimation of distribution, the Weibull parameters and the
maximum value of likelihood evolution (MLE) exceed other approaches [54,55]. Therefore, the MLE
technique is used to iteratively estimation for distribution Weibull parameters c and k by deploying the
mentioned values [56,57].

-1

. ?:1 Ui'{ In(v;)P(v;) ?:1 In(v;)P(v;)
= ( iy Ufp(vi) P(v > 0) ] 3)

1 n 1/k
o (P(v e U?P(vi)) @
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where v; is the wind speed central to bin 7,  is the number of bins, P(v;) is the frequency with which
the wind speed falls within bin i, P(v > 0) is the probability that the wind speed equals or exceeds zero.
While Equation (3) must be solved iteratively, after which Equation (4) can be solved explicitly.

3.2. Electricity Generation

For facilitate the calculation with the expected electricity generation, the performance curve of the
wind turbine is estimated in several equations [58,59]. The deterministic part corresponds to the actual
behaviour of the wind turbine, and the stochastic part corresponds to other external factors, such as
wind turbulence. The output power of the wind turbine is described as a stochastic process that fulfils
the Markov property and can, therefore, be divided into a drift and a diffusion part [58,59]:

P(t) = Pstat(u) + p(t) ®)

where P(t) is the time series power data, Py is the stationary power value dependent on the wind
speed u, and p(t) corresponds to short-time fluctuations around this value caused by wind turbulence.
However, the expected amount of electricity generation generally deviates from the actual production.
This can be due to mechanical restrictions, fluctuations in the speed of the wind, and further undetected
dynamics. Authors [60], used the threshold regression to establish the difference between actual and
expected electricity generation:

Py = Cp+ Bukp + o Eg—Fﬁgl E;-l—ﬁzg Eg—I-E;Ep ehl=1,...... M (6)

where Pp is definite electricity production, Ep is estimated electric generation, I; is the I-th threshold
interval, and M is the number of threshold intervals.

4. Overview of Wind Instrumentation and Measurement

Currently, the wind energy industry is facing an inaccuracy prediction risk, which is a threat to the
entire industry. Global estimates indicate that wind farms are 10% worse than the pre-building energy
efficiency estimates in all regions [61,62]. Wind farm best location choice is the first significant step in
physical advancement [63]. Wind energy assessment report commonly referred to as a “bank report
which attracts and influences the decision of investors to invest in this project.” Usually, these bank
reports need a rigorous valuation of wind conditions within 12 months before the investment. Industry
experts suggest that the presence of wind measurement technology in-ground facilities is not a task to
provide sufficient data or to accurately assess the potential of wind resources at a given location. It is
partly due to the lower air pressure of the extracted wind direction and speed data, and the incapability
of fully considering existing turbulence technologies.

4.1. Anemometer

The origin of word anemometer arises from the Greek word “anemos”, so it means measuring
the wind [16]. In 1450, documented evidence revealed the first time wind speed was measured
by the Italian architect Leon Ballista Alberti, who produced a movable plate and designed the
first known anemometer [64]. In 1664, Robert Hooke introduced a new version of the modified
deflection anemometer, and it was re-designed by Roger Pickering in 1744. A British meteorologist,
E.D. Archibald, flew a kite to elevate the anemometer for 500 m to quantify wind speed in 1833 [64,65].
In 1846, the Irish scientist, Dr John Thomas Robinson, made a breakthrough in the development
of the anemometer by the introduction of the single-cup design. Then, the four-cup anemometer
design was introduced by Robinson’s [66,67]. After modifications, the EN 61400-12-1 model adopted
as a measuring instrument for the wind energy industry. In 1889, during the Royal Meteorological
Society meeting, British meteorologist William Henry Dines offered the prototype of a pressure tube
anemometer [68,69]. The first instrument named anemometer was adopted to measure wind speed
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and direction and relied on measurements of pressure tubes and rotating blades to keep the tubes in
line with the wind [70].

The wind energy application forecasting models with various time horizons. Are presented in
Table 1 [71], while the numerous types of anemometers that can forecast wind speed, cup anemometers,
sound anemometers, and laser Doppler anemometers are listed in Table 2. The cup anemometer
consists of rotating blades with cups at both ends of the blade, which rotate to measure the wind
speed [72]. Laser Doppler anemometers use a beam of light to measure the speed of moving particles,
which effectively characterizes air velocity [73]. The sound anemometer uses sensors to send and
receive sound pulses through the route. The speed of the pulse determines the wind speed. Wind speed
measurements are essential for determining climate hazards, especially for tornado warnings and
exposure to high-speed winds [73,74].

Table 1. Wind energy-forecasting methods with various time horizons and application [71].

Property Description
. Very short-term
Time horizon ¢ Shorfc—term
) Medium-term
o Long-term

Turbine installation rules
Power market robustness
Pre-load sharing

Power allocation

Power system management
Equipment maintenance

Application

4.2. Cup Anemometer

With the penetration of wind power share in the electric industry, cup anemometer utilization
is growing and is shown in Figure 4 [37]. It is a fact that these instruments have a huge need for
adjustment because accuracy is essential for estimating the installed wind speed by an anemometer on
a wind-based generator, so any flexibility/error will have the effect of a profound economic revenue
impact because the generated power is directly proportional of wind speed [75]. So far, many articles
have been published and analyzed experimentally and analytically for the use of wind speed tests [75].
An exhaustive review of the literature on published research related to this instrument was carried out.
This review includes research carried out for more than a century, and the first research was published by
T.R. Robinson [39,75]. The development of the research associated with this instrument is summarized
in several kinds of literature: Robinson was the first scientist who characterized the development
and expansion of this field [2-6], and, further, only a few analytical readings and the experimental
work of Brazier. Within a short time after this preliminary period, two investment contracts were
signed. Three cups, instead of four, methods were introduced by Patterson, who well-defined the
pre-eminent rotor geometry for a cup anemometer, which achieved the significant work on a cup
anemometer, a significant analytical approach based on aerodynamics performance of the cup test [39].
The third period starts at the beginning of 1030, which signifies the efforts to understand the mature
behaviour and flexibilities of the cup anemometer, the new analytical approach, and the impact of
wind unpredictability [75]. In [76], the authors defined the last period, which began with the work of
Busch and Kristensen [77], which has well-defined the cup anemometer. Such systems affected by the
vertical and horizontal acceleration of disturbances of wind speed and present the statistical analysis
in modelling.
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4.3. Hot-Wire Anemometer

The hot wire form of anemometer used in environmental research, in which the hot wire electrically
heated element is lowered down in temperature by the wind, and the heat loss rate is measured as
wind speed, which is depicted in Figure 4 [37]. Unlike mechanical wind meters, these devices have a
rapid response time and a lack of mechanically moveable parts, which are installed near the ground or
inside the system, where it can measure small vortices and the impact of the local climate. However,
relative unit spending is prohibitive for many environmental applications [78-81].

Doppler radar
~ P & = =%
a2 B
\  anemometer /=
\\,,,,\ - »»_,_,.];/ Hot-wire
\ sensor

~ e

Figure 4. Cup and hot-wire, hybrid anemometer, Reprinted from Francisca et al. [40] with permission
under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0.

4.4. Wind Vane

The weathervane has two metal plates, one for the cup type weathervane and other for the
Y-shaped vane shown in Figure 5 [39]. The cup and moving angles are about 20 degrees, and weight;
M is attached to the upper part of the shoulders to maintain balance. Steel pipes pass through the top
and are connected to the roof, and the shafts are connected by steel. For indicate the rotational angle of
the blade, the compass mounted directly on the rotation axis. To remotely indicator the rotation angle
of the blade, a Selwyn potentiometer or motor is mounted on the rotation shaft. Previous studies have
improved the measurement of wind forecasting by using an anemometer and are tabulated in Table 1,
while selected methods of anemometer-based wind-forecasting measurement are presented in Table 2.

Win

B M
Wind direction plate

@ L
[

ol L

Types of wind vane

Vertical axis

Metal tube —>

<+— Wind direction plate

Indication needle vl .

Figure 5. Wind vane and its types.
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Table 2. Summary of anemometer technology characteristics of measuring wind.

. . . Range Sampling & - Turbulence Vert. Wind Horiz. Recognized in
Anemometer Wind Speed  Wind Dir. (m/s) Record Rate Precision Measurement Shear Wind Shear Weather Standards
Perfect Anem. Yes Yes 0-200 1000 Hz 100% Yes Yes Yes All weather Yes
Cup Anem. Yes No 4-75 1Hz +2% Yes but limited No Yes All weather Yes
Wind Vane No Yes 0-360° 1Hz <+1% No No No All weather Yes
Sonic Anem. Yes Yes 0-65 20 Hz +5% Yes No Yes Notheavy  Yes some peripheral
rain, Snow standards
Pressure Sphere Yes Yes 50-200 10 Hz Low n Yes No Yes All weather Not on market
0-50 m wind
. All except Yes (but the
Dines Anem. Yes Yes 4-75 Hourly Low No No No extreme cold  standards are dated)
Hot-wire Anem. Yes No 0-200 >1000 Hz +1% Yes No No No No
LIDAR Yes Yes 0-75 1Hz +5% Yes No Yes Not heavy No
rain, snow, etc.

No (except in Not heavy

SODAR Yes Yes 0-75 1Hz +5% L. .
clear conditions) rain, snow, etc.

No
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The most extensively recognized wind measurement instruments in international standards
are anemometers and wind vanes. However, recent research has highlighted concerns about their
operating parameters, as investors demand increased wind energy security in one location. The new
sound anemometer has higher wind speed sampling and recording rates, but, because of its sensitivity
to faults in harsh environmental conditions and the inherent errors and interference associated with
the use of anemometers, the technology does not meet international standards. Recognized researchers
have developed a device called a metometer, which exceeds the specifications of other instruments
currently on the market based on initial test results. The means of measuring the wind by anemometer
methods are summarized in Table 3, while a complete flow chart of the anemometer-based ANN
system is drawn in Figure 6.

Table 3. Anemometer-based wind forecasting measurement selected methods.

Method Findings/Results Author
Perceptron of two-layer multilayer (MLP) Functions for linear activation Pelletier Francis et al.
Machine- techniques learning Power curve modeling Marvuglia and Messineo.
Compared curve fitting approach Genetic algorithm Goudarzi, et al.
Compared approaches Complex terrain Bulavskaya et al.
Evolutionary programming (EP), genetic
algorithm (GA), particle swarm optimization =~ Application of the DE algorithm Lyda et al.
(PSO)

Feed-forward neural network-based single

. WRF wind simulation Z. Guo and X. Xiao.
layer function
Two power curve techniques Outlier detection method Guo and Xiao.
Neural network model Power curve estimation Lietal
Inconsistent data forecasting for wind power Novel power curve model Wang et al.
High-Order neural network structures Identification of Dynamic Systems Kosmatopoulos, Elias B, et al.
B SN
Temperature ) | )
Micro 4" Target Data
Controller
Anemometer ‘ Wind Speed '—
T ANN

Figure 6. Wind power forecasting system.

5. Wind Power Forecasting Methods

Many wind forecasting techniques have been identified [82], and these techniques can be
classified into numerical weather forecasting (NWP), statistical methods, and hybrid methods [83].
The positioning, navigation and timing (PNT) method is probably the forecasting performance for
short-term speed. Generally, the statistical approach and numerous cutting-edge hybrid techniques
based on observations will be more productive and accurate over a small period of forecasting [84].

5.1. Persistence Method

The persistence is one of the most straightforward possibilities to estimate the speed of wind and
direction. This technique simply supposed that t + x is similar to wind speed at the wind variations
at the time t rate. Simply, the hypothesis of a high correlation is based on robustness tools amongst
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the current and future wind direction [85,86]. This approach has been industrialized as an evaluation
tool to adjunct the PNT models by meteorologists. However, in short-term forecasts (minutes to
hours), the simplified scheme is more effective than the Numeric Weather Prediction (NWP) model [87].
Model accuracy is likely to decrease dramatically as forecast latency increases.

5.2. Numeric Weather Prediction (NWP)

Based on the procedure of meteorological information with cutting-edge meteorology to forecast
wind speed and energy, numerous physical models have been industrialized [88,89]. These models
were industrialized based on several dynamics, including obstacle avoidance, local roughness and
surface changes, terrain effects, acceleration or descent, the scale of local wind speeds within a wind
farm, the fan power curves, and wind farm design. This NWP system frequently delivers a wind
speed forecast for a grid. Depending on the NWP system type, the forecasts have a spatial resolution.
This physical method uses a mesoscale or microscopic model to reduce and interpolate wind variation
forecasts at the level of wind turbines [90]. For run the reduced model, the area surrounding the wind
turbine is described in detail. However, gathering information about the state of the site is one of
the significant difficulties in realizing the physical model. Several other advanced flow modelling
tools, i.e., as mesoscale weather models (MMS5), the computational fluid dynamics (CFD) method was
used to forecast wind variation [91,92]. These cutting-edge models can improve wind flow modelling,
especially in terrain complexity. Nevertheless, more controllers and computer functions are needed
before merging these models into an operation system, because the mathematical complex NWP models
are generally run on supercomputers, which bounds the practicality of NWP approaches to an online
mode or to the operation of energy systems in the very short-term [93]. Meanwhile, high-resolution
weather models are usually to be more accurate, but they need much time in terms of calculations to
generate forecasting information, so they usually cannot update their results. Besides, according to
some operational experience, accurate high-resolution predictions may slightly increase accuracy
but might become expensive. Therefore, the outcomes of practical models are generally satisfied
for an extended period of more than six hours. On the other hand, due to the complexity and
difficulty of obtaining information, it is not suitable for a separate forecast for short-term calculations
(minutes—hours) [93,94].

Unstable weather conditions can lead to useless weather forecasts numerically, which leads to
incorrect wind energy forecasts. In contrast, because the weather conditions are stable, more accurate
power forecasts can be expected, because the most mature input the speed wind is in wind power
forecasting approaches. For forecast short-term wind energy, a common approach is to increase
the results of the NWP model that the meteorological service runs to improve local wind disorders.
The latest PNT model operates twice a day, with a horizontal resolution of five kilometres, and can
predict conditions up to 72 h in advance [95].

5.3. Hybrid Methods

Numerous sets of hybrid models are installed to estimate wind energy [96]. The nature of the
combined model can be (i) statistical, and physical approaches of the mix, (ii) short-medium range
approaches, (iii) alternative statistical approaches in combination. The goal of the hybrid approach
is to benefit from each method and gain the best predictive performance, globally. For example,
in the autoregressive models with exogenous inputs (ARX), more than a few statistical approaches
are managed to determine the best results between online measurements and weather forecasts.
Generally, system participants can be compared by the history of predictions through actual available
output data to track the wind performance of prediction measurement tools. Itis essential to evaluate the
performance of models related to several criteria, especially the use of RMSE and IEA predictions [97,98].
Figure 7 depicts the variation of wind speed over time (hours), while Figure 8 illustrates the atmospheric
effects on the wind-based doubly fed induction generator (DFIG), producing energy and related control
schemes for a sustainable system.
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Figure 7. Variation of wind speed over a time.
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Figure 8. Illustration of the atmospheric effects on the wind-based doubly fed induction generator,
producing energy and related control schemes for a sustainable system.

6. Evaluation of Wind Speed and Power Forecasts

The output energy of wind turbines is directly proportional to the various wind speeds over
a long period, and the change in wind speed can be subject to weather circumstances regionally,
seasonal period and terrain categories alteration [99]. The relationship between the hypothetical per
unit energy of time duration, with wind fleeting through the capture area A (m?) at a speed v (m/s),
is presented in Equation (7) [100]:

P= %pAv‘B @)

where p is the density of the air (kg/m®) and depends on the air pressure and temperature [101].
The favourable option to convert wind speed into an energy forecast to utilizes the power curve of
the manufacturer [102]. However, here, the actual association between the power produced by the
complete wind farm and capacity speed is more complicated than in Equation (1). It is due to ageing
and control factors of the wind turbine. Besides, the power curve is separated into a sweeping curve,
a turbine curve, and a group curve. The relationship between wind speed and output power should
quantify a random wind speed and non-linear function that varies over time, which cannot be defined
by a precise power curve of the machine, although we can deploy the ANN structure or fuzzy logic
as a power curve for a specific region/area. Also, it is hard to convert wind speed into power where
multiple directions and wind speeds were used to obtain a proper wind farm matrix.
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The literature has shown that almost 20% efficiency can be extracted by employing a power
curve calculated with the proper prediction of wind speed and power that is expected from the RMSE
value compared to using only the manufacturer’s power simulation result [103]. Hereafter, owing to
the non-linearity of the curve power, at the wind-rated speed, where the slope between the speed
wind of the activated turbine and the plateau is large, the wind speed prediction error will increase,
and errors will be suppressed [91]. The emphasis is that the non-linearity of the power curve of the
wind turbine will result in greater error amplification, and a smaller deviation from the wind speed
will affect a larger power deviation. As a result, since a large amount of wind energy can soften the
output power curve, a proper wind farm aggregation approach is desired to perform further prediction
tests [104]. Authors [105], describe several models of statistical forecasting, named the autoregressive
mechanically variant moving average (ARMA) approach, to calculate speed wind and energy addition
in the first-hour markets. Here, it is necessary to mention that the aim of this review study is not to
develop any kind of model that competes with commercial models with precise wind forecasting.
On the other hand, the feasibility of testing a relatively economic statistical forecasting model requires
no data, other than wind energy history. The empirical table shows that those model parameters can be
a time function, and the capabilities of the ARMA predictive model will be different when applied to
diverse time domains [106]. Authors [107] used the ARMA approach to calculate that the average speed
wind per hour increased by 1~10 h. Taking into account the features of seasonal winds, the authors
adopted different approaches for each calendar month [108,109]. Moreover, they emphasized that
the utilization of power in one hour (MWh) from generation power (MW) for a power predictive
parameter. Authors, in [108], proposed a technique for defining the correlation of speeds wind between
adjacent sites. The purpose of this method utilized for wind speeds from nearby locations to forecast
wind speeds at specific locations. The recommended technique includes the development of wind
speed correlation (SCCF) between samples between two adjacent locations, but with several delays.
This calculation will detect that the SCCF has the maximum delay [109]. It is the ANN training phase
time, which will receive in two series. In [47], the authors propose a statistical forecasting system
that combines statistical forecasting equations for wind energy from 1 to 48 h. The combination
coefficients of each model change over time, comparable to non-parametric approaches. The purpose
of the connection is to provide comparatively improved outcomes in a single model. Its benefit is
that a location-independent forecast system is established, which is not only for a particular wind
park but is applicable to other wind farms. In [47], the authors dealt with the next 72-h prediction
of wind speed for meteorological data to indicate possible wind power. The three leading categories
of local recurring ANN were used as estimation models. The essential six network entries contain
wind speed and direction information for the other three closed wind farm locations. The purpose
of this review was to recommend a technique that combines time series and atmospheric methods.
In [105], the authors focused on getting information about wind changes 1 to 10 days in advance,
and used the estimates of NWP computer models performed by the forecasting European Center
for Mid-Range (ECMWP) [110,111]. The model has a spatial resolution of 60 km, and the published
forecasts are each twelve hours’ time duration. Also, these speed wind predictions have become
the output power of the corresponding wind farm. However, the relationship between the speed of
wind and output power is believed to be ideal. In adding, there is no necessary correction among
the results of the NWP project prototype and the final energy of wind forecast. A method has been
developed to model the autoregressive process of the speed of wind time series using Bayesian
skeletons, where the Monte Carlo Markova Chain (MCMC) simulation is deployed to the parameters
of the estimation approach [112]. The output of the Bayesian approach is specified as a probability
distribution. This means that the parameters of the AR approach include the estimated confidence
and mean interval, which will guarantee the correct range of the prediction. The study used annual
and seasonal trends to provide wind speed forecasts one day in advance [113]. The authors point out
that there may be some common trends in wind speed changes somewhere during a specific time.
The preceding year’s result, the speed of the wind, and the current year can be anticipated, based on
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the wind data. However, few improved prognostic results can be achieved without understanding.
Numerical forecasting systems are used for weather forecasting (NWP), but they use spatial coverage,
model performance statistics (MOS), and wind turbine performance curves to develop the power
output of the NWP approach and obtain local energy of wind [87]. The principle of the mentioned
approach is to reduce the PNT forecasting-based error on spatial smoothing the combined power
of many wind farms over a huge area. The basic process for combining the distribution spatial of a
location is the figure of correlations differences between the predicted values and the values in each
location. It also shows that the diversity spatial has a positive outcome on smoothing more or fewer
changes in electricity, and thus develops the accuracy of forecasts of weather [87]. According to this
study, due to the smoothing effect of the geographic spread compared to the error of a single wind
farm, the error in predicting the entire system of many distributed wind farms can be reduced by
around 30-50%.

A study describes a risk assessment technique for the short-term estimation energy of
wind expending meteorological risk indicators (MRT) and production risk indicators (PRI) [114].
The definitions of MRT and RPI measure the outbreak of the forecast of weather and the energy of wind
estimation over a period, indicating the relationship between the energy of wind and high prediction
of weather. The weather-based forecasting system that employs online supervisory control and data
acquisition (SCADA) geometric weather forecasts as energy prediction by wind inputs data [115].
These estimates are informed hourly, based on the updated energy from wind speed measurements.
Forecast accuracy can be based on specific indicators, such as mean absolute error (MAE), absolute scale
error (MASE), mean absolute percentage error (MAPE), evaluation of symmetric absolute percentage
(SMAPE), and the sum of quadratic errors (SSE), the sum of absolute errors (SAE), mean square error
(MSE), or mean square error (RMSE) [114]. In the author’s study [115], minimizing MSS is used to
evaluate the prognostic performance of training RNA, and calculate and evaluate RMSE.

Numerous practical and commercial modules, as well as the energy of wind forecasts, fall into
this category. It also developed a climate stability indicator called the “Meteorological Risk Indicator”,
and established a more or less linear bond between the size indicator of the estimated error for each
farm of wind. The best and worst cases corresponding to the most accurate total error of wind energy
were determined according to the frequency of various climatic conditions, which are indicated by the
meteorological threat index, and with an influence on the deviation standard of the estimate errors of
the energy of wind.

7. The ANN Prolific in Wind Power Generation Forecasting

Artificial neural networks are extensively used in many areas of application. One of the most
popular is prediction, which is described as a process of predicting future trends or events.
Besides, forecasts in a variety of areas, such as the prediction of weather, asset prices, and economic
downturn forecasts, are fairly common [31,116]. It is essential to emphasize that the predictions do
not start with artificial neural networks since traditionally, many analysis tools have been used to
predict future trends. Examples of algorithms are the Box-Jenkins model and the regression model.
However, the use of artificial neural networks as an essential prediction tool is increasing. A neural
network is an information method with which the relationships between different data can track and
determined internally. Also, academic and industrial researchers have used ANN for a variety of
predictive purposes, as it can compare self-study mechanisms between expected and actual results.
The artificial neural network can teach itself, and its weighting factors can be adjusted to reduce future
errors between the prediction results and the actual results, which facilitates its extensive application
in prediction.

The capacity of ANNS for learning simulations in this manner has enabled them to adapt well
to any application, especially where the dominion has not been well defined, such as in power
generation by wind forecasting data. A three-layer power architecture was implemented as the system
forecasting with the perceptron of the neural network. Based on the previous wind speed observations,
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the selection of input data was established on the correlation of the coefficients. The proposed
technique is implemented to calculate the speed of wind without the required weather data, but in
this case, the achieved accuracy can be poor. In Germany, the ANN approach is extensively used
to forecast daily wind energy. ANN training is used to learn about the physical consistency of
wind speed and wind energy production for forensic meteorological factors and calculated power
data. Additionally, the ANN application can smoothly deploy the weather data, such as to identify
air temperature or pressure to improve the accuracy of forecasting. This technique is better than
other adopted approaches due to the power curves of individual plant observations. Figure 9 [92],
shows ANN-based wind forecasting, model design, system fault diagnosis, and control methods,
where it can be observed that forecasting is more-essential, which is 38%. In contrast, Table 4 shows the
previous five years’ (2014-2018) studies on ANN-hybrid systems. Figure 10 illustrates the individual

and mixed/hybrid neural network methods for wind forecasting.

Table 4. Five years of previous research on the artificial neural network (ANN)-hybrid system for

wind forecasting.

Observation and

Year Research Area Input Parameters = Hybrid System . . Author
Findings
Intelligent ANN-signal Improving the
2014 framework for wind Wind speed processing and wind power Haque, Ashraf U.,
. .o forecasting et al.
power forecasting data mining
performance
Improve the original =~ Temperature, wind Improve the
SOM limitation by direction, ANN- Hebbian accuracy of
2015  adding more typesof  wind speed, and Learning Wind power Ghayekhloo et al.
neural functions for Wind (CHL) generation
input patterns irradiance Prediction.
Statistical hybrid
2015 wind power Statistical hybrid ANFIS Statistical hybrid Ozkan M B,
forecasting technique wind power wind power Karagoz P.
(SHWIP)
. . Forecasting .
2015 ~ Medium-term wind Wind speed ANN- KF efficiency Wang Jianzhou,
speeds forecasting . etal.
improved
Wind Power
2016 Forecasting Computational ANN vs. Wind power Castellani,
techniques in fluid dynamics ANN-CFD forecasting Francesco, et al.
complex terrain
Estimation Of. fractal ANN- different ~ wind speed fractal . .
representation of . .. . Petkovi¢, Dalibor,
2017 wind speed Wind speed training representation ot al
P algorithms established '
fluctuation
Neuro-fuzzy .
Automatic load . intelligent h ybrid . Prakash, S., &
2017 Wind speed multi-generation .
frequency control controller Sinha, S. K.
(ANFIC) power systems
.. . ANN- support an adaptive
2018 sPreG(i;C;;ocilc(l)ifl'ZZ]tliLi Wind speed vector neuro-fuzzy Khosravi, A., et al.
P regression inference system
Survey of artificial . ANNs Identified the most Marugan, Alberto
2018 Wind speed o employed .
neural network classified . Pliego, et al.
techniques
ANN-based Wind speed- ANN- .
2018 comparative analysis temperature Mackey-Glass WrmgiSItJieid Haque, :‘:lhraf U,
of wind speed -pressure equation predictio etak.
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Figure 9. ANN-based approaches.

The performance of predicting wind speed and power for two hours in advance is based on
cross-correlation in neighbouring locations [117]. It is considered, in the latest literature, that the speed
of the wind is relationally delayed to the speed of wind estimating [31]. Therefore, the wind speed is
measured in remote locations and used to predict wind in a local location, and the ANN method is
used to build relationships between time sequences in the remote and local locations. Authors in [92],
introduce an approach that synthesizes ANN expertise and linear regression, in which ANN is
deployed to achieving short-term information patterns on long-term trends, which are provided for the
development identification element that performs the first linear order. The neural network (4-8-1) is
used to estimate the wind energy regression approach [110]. The measured data, including three other
input data on wind speed and the directions of two meteorological towers, are used. Also, four value
compression input functions were deployed to support ANN learning and function improvement.
Authors in [111] introduce an ANN-based approach to estimate the energy of wind power production
directly, based on the speed, direction, and amount of wind without the generation curve, and this
is the best ANN performance related to the capacity to learn the dynamic presence of turbines in
inconstant wind environs.

Previous studies have compared several multivariate ANN models for a week, before predicting
wind energy in Gorakhpur, India [112]. In the case of research, RMSE assessments are used to compare
the performance of various developments of wind forecasting methods [110]. The mathematical
analysis showed that the model has a better average neural network performance. One study used the
ANN algorithm to check the accuracy of wind speed predictions because it is highly dependent on the
integrity data formed by the ANN neural network. The analysis shows that, based on annual wind
intensity data, the accuracy of the forecast is 98%. The authors examined the implementation of the
ANN algorithm in the short term between 1 and 6 h to predict the amount of electricity generated [113].
In their research, mete