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Abstract: The penetration of renewable energy sources (RESs) equipped with inverter-based control
systems such as wind and solar plants are increasing. Therefore, the speed of the voltage controllers
associated with inverter-based resources (IBRs) has a substantial impact on the stability of the
interconnected grid. System strength evaluation is one of the important concerns in the integration
of IBRs, and this strength is often evaluated in terms of the short circuit ratio (SCR) index. When
IBRs are installed in an adjacent location, system strength can be weaker than evaluation by SCR.
This study proposes an inverter interaction level short circuit ratio (IILSCR) method by tracing IBRs
output flow. The IILSCR can accurately estimate system strength, wherein IBRs are connected in
adjacent spots, by reflecting the interaction level between IBRs. The study also demonstrates the
efficiency of IILSCR by applying this method to Institute of Electrical and Electronics Engineers (IEEE)
39 bus test system and future Korea power systems.

Keywords: inverter-based resources; inverter interaction level; renewable energy resources; system
strength; voltage oscillation

1. Introduction

Power systems are undergoing rapid changes mainly due to the increase of inverter-based
resources (IBRs) supply, such as wind and solar power generation. This increase in IBRs lowers
the inertia and system strength, which in turn affects frequency and voltage stability; therefore, it is
necessary to pay attention to IBRs concentration areas. In addition, since IBRs are affected by the
environment, it is installed in windy areas with abundant sunlight. Therefore, it is located far from
the load center and there are few synchronous generators in such areas. In other words, IBRs are
installed in areas where the system strength is relatively weak. When connected to systems with
low system strength, the output sensitivity of IBRs has a direct impact on the output of the point
of interconnection (POI). Wind and solar power control loops with inverter-based control schemes
provide reactive/active power injections that react almost instantly to voltage changes at the POI. This
dynamic response can lead to high voltage sensitivity to reactive power in weak power systems; small
changes in reactive power can cause large fluctuations in voltage. When multiple IBRs are connected
to weak power systems, power system stability issues related to voltage stability and quality can be
exposed to serious consequences. In Korea, The Ministry of Trade, Industry, and Energy (MOTIE) has
announced the “New Renewable 3020 Plan,” which aims to expand the proportion of renewable energy
to 20% of the total generation by 2030 [1]. To achieve this goal, MOTIE plans to distribute 48.7 GW of
renewable energy generation facilities from 2018 to 2030 and supply clean energy such as solar and
wind power to more than 95% of renewable energy generation facilities. In order to accommodate
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this large amount of renewable energy, it is necessary to evaluate the system strength beforehand and
prepare measures to cope with any problems. In particular, large-capacity wind and solar generators
are concentrated in certain areas and are likely to interact with renewable energy sources (RESs) in the
vicinity. Therefore, when IBRs are concentrated in electrically connected areas, evaluation of system
strength becomes necessary to reflect the interaction of IBRs. In the meantime, many studies have been
undertaken to assess system strength as a means of accessing renewable energy and identify potential
problems. Research has been focused on the case of output and voltage oscillation by renewable
generators, specifically when connected to weak systems [2–4]. IEEE [5] first introduced the concept of
short circuit ratio (SCR) to evaluate Active Current / Direct Current (AC/DC) system strength when IBR
is connected to the grid. However, SCR do not reflect the interaction impact of IBRs in the vicinity. In
the case of an integrated system based on inverters, in [6], Saad et al. evaluated system strength using
the interaction factor. Researchers [7–9] overcame the disadvantage of solely considering IBR capacity
connected to the bus, i.e., the SCR approach. Methods such as weighted short circuit ratio (WSCR)
were developed by Electric Reliability Council of Texas (ERCOT), taking into account the interaction
between IBRs. The study [10,11] considered the actual electrical interaction when IBRs are connected
to nearby areas. Impedance metrics were used to estimate the interaction from IBRs installed in the
vicinity and evaluate weak systems. Several researchers [12–15] have presented extensive research on
the voltage stability issues that occur when large wind farms are connected to weak grids. The above
methodology was mainly a measure of the system strength for renewable energy connections. Several
studies [16–19] have proposed a system strength evaluation and design for linking high-voltage direct
current (HVDC) and wind farms. Certain studies [20–22] have introduced inverter parameters and
controls that affect the stability of inverter-based equipment connected to the grid.

The existing methods for evaluating the system strength does not reflect the interaction of nearby
IBRs, or assumed IBRs to have a 100% interaction within a boundary. However, it is very difficult
to calculate the boundary within the actual system, and different results will be derived depending
on the range of boundary. Therefore, to overcome these challenges, it is necessary to calculate the
exact effect from nearby IBRs. In this paper, we propose a method to calculate the interaction level
by tracking the output of IBRs. Power tracing method was used to reflect the impact of nearby IBRs.
Thus, the interaction level of the IBRs can more accurately estimate the system strength when the
renewable generator is connected to adjacent points. In addition, this study establishes a future
system based on the power system of Southwest, the region where Korea’s renewable energy will
be concentrated. Modeling of the connected IBRs adopts Western Electricity Coordinating Council
(WECC) Type 4 to comply with grid codes. In this system, the proposed method to evaluate system
strength has been derived. Thus, it can be quantitatively analyzed for system voltage stability. Based
on the analysis results, the accuracy of the system strength evaluation limits the number of renewable
connections at the POI. Therefore, the risk of the renewable energy at the POI can be minimized when
planning the grid. Finally, the dynamic simulation results verify the performance of the proposed
method. The rest of this paper is organized as follows. Section 2 formulates a new methodology to
overcome existing methodology limitations. Section 3 evaluates and verifies the system strength in
IEEE 39 bus test system and South West region of Korea. Section 4 discusses the causes of reactive
power oscillation in IBRs. Finally, this paper concludes with a brief explanation in Section 5.

2. Techniques Pertaining to the Interactions among the Inverter-Based Resources

2.1. Relationship Between Inverter Interaction Level and System Strength

This study aims to accurately evaluate the system strength when IBRs are connected to the system.
When renewable power plants are installed in nearby areas, and if the system strength cannot be
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accurately identified, it may cause voltage problems such as control stability and control interaction.
The general system strength evaluation method is based on the following formula.

SCRi =
SCMVAi

PIBRi

(1)

where SCMVAi is the short circuit capacity at the POI without the current contribution of the
inverter-based resource, and PIBRi is the nominal power rating of the IBR being connected at the POI.
This system strength evaluation method is very useful when one IBR is connected to the system as
shown in Figure 1. When evaluating the system strength through SCR, only the connection capacity at
the POI is considered. As shown in Figure 2, it is easy to determine whether the system strength is
strong through the PV curve. However, because this method does not reflect the interaction between
the IBRs installed nearby, it may not provide an accurate evaluation of the system strength. In order to
solve this problem, ERCOT has developed a WSCR method to evaluate the system strength reflecting
the interaction between the wind farms in the Panhandle region.

WSCR =

∑N
i SCMVAi ∗ PIBRi(∑N

i PIBRi

)2 (2)

where SCMVAi is the short circuit MVA at bus i before the connection of IBR and PRESi is the MW
rating of IBRi to be connected. N is the number of IBRs fully interacting with each other and i is the
IBR index. The proposed WSCR calculation method is based on the assumption of full interaction
between the IBRs as shown in Figure 3. This is equivalent to assuming all IBRs are connected at the
same POI. The SCR obtained with this method provides a more conservative estimate of the system
strength. For a real power system, there is typically some electrical distance between POIs and all IBRs
will not fully interact with each other. However, the other jurisdiction of ERCOT, South Texas, is not
considered because application of this method is difficult in this area. It is also becoming increasingly
difficult to apply this method in the Panhandle region due to the growing number of transmission
lines, which is obscuring the boundaries required for calculating WSCR. Thus, the existing method has
two limitations, which are as follows:

• SCR, the basic method, can evaluate the system strength through a simple method; however, it is
difficult to apply due to the large-scale, large-capacity, and power electronics-based facilities of
the renewable generators that cause interaction effects.

• WSCR is the method wherein the connection buses are equalized and weighted to reflect the
fully interaction effects of renewable generators installed in the vicinity. However, it is difficult to
clearly calculate for the boundaries being equalized. Moreover, the result may be very different
depending on the boundary setting.
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The IBRs such as wind and solar plants are connected to power systems through power electronic
controllers. The voltage/reactive power control loops within these IBRs are capable of providing
almost instantaneous reactive power injections in response to the voltage change at the POI. Such rapid
dynamic responses could result in high voltage sensitivity with respect to reactive power, i.e., a small
change in reactive power will lead to a large oscillation in voltage. Therefore, the speed of the voltage
controllers associated with IBR has a substantial impact on the stability of the interconnected grid.
When a large amount of IBRs are connected to the weak points of a power system, undesirable system
stability issues, especially those related to voltage stability and quality may be exposed and this
may result in serious consequences. In the worst-case scenario, such system stability issues could
be wide-spread and lead to loss of power generation and/or damage of IBR equipment if adequate
protective measures are not implemented. Placing renewables at a distance from the main grid can
result in problems when controlling the power injected to the grid. Moreover, the POIs of these IBRs
are usually weak, hence voltage stability issues are more likely to occur in case of oscillation of reactive
power. In the planning stage, therefore, it is important to evaluate the system strength that reflects the
interaction of IBRs.

2.2. Techniques to Analyze the Inverter Interaction Level

Line power flow tracing algorithm is a useful method to determine the distributive path of the
nodes from a specific generator to the final consumption of the electric load. Using this algorithm, it is
possible to gain information about an IBR’s effect on other buses. Equation (3) shows the amount of MW
inflow from another IBR. The detailed derivation of (3) is presented in the Appendix A. Therefore, it is
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feasible to decompose the effect of only one IBR from those of other components. Figure 4 describes
the mechanism of interaction between IBRs at the power systems.

dPm−ie =
dPm−ie

Pi
Pi = dPm−ie

Pi

N∑
m=1
dA−1

u eimPGm

= αi1PG1 + αi2PG3 + · · · · · ·+ αimPGm
where 0 · · ·αim · · · 1 f or m = 1, 2, · · · · · · , N
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2.3. Inverter Interaction Level Short Circuit Ratio

Interaction level short circuit ratio (IILSCR) tracks the amount of power output from the IBRs
to reflect the interactions between the IBRs. The output of the IBR is divided based on a matrix that
reflects the system’s lines and loads, allowing for accurate mutual impacts. Therefore, as shown in
Figure 5, it is possible to reflect the output of IBRs flowing from nearby as well as the amount of
renewable connections connected to the bus. Therefore, equalization of renewable energy resources
installed in the vicinity and calculation of the boundaries are not required. Equation (4) shows a new
system strength method that reflects the interaction between IBRs.

IILSCRi =
SCMVAi

PIBRi +
∑N

m=1,m,i PIBRm−i

(4)

where SCMVAi is the short-circuit capacity connected to IBR on bus i, PIBRi is the capacity of the IBR
installed on bus i, and PIBRm−i is the inflow from the nearby IBR. In the power system, the system
is generally considered weak if the SCR is less than 3 and weak if the WSCR is less than 1.5. Since
IILSCR does not equalize buses like WSCR, the system strength can be determined by individual bus
evaluation method such as SCR as shown in Figure 6.
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3. Numerical Studies

In this section, the proposed method is validated. The wind and solar generator to be installed
is a WECC Type 4 (fully rated converter) generator model. According to the Korean grid code [23],
the power factor is modeled as a power factor of ± 0.95 for wind generators and as 1 for solar generators.
The detailed Korean grid code about reactive power requirements are presented in Appendix B.
Applied to the IEEE 39 bus test system and the Korean power system, vulnerable buses were selected
in each system by comparing SCR, WSCR, and IILSCR.

3.1. Analysis of the IEEE 39 Bus Test System

In order to verify the effectiveness of IILSCR, we applied it to the IEEE 39 bus test system [24]
as shown in the Figure 7. Conventional generators installed at buses 35 and 36 have been replaced
by WECC Type 4 generator model. As shown in Table 1, the IBR output was limited so that the SCR
value of the buses to be connected was 5, 4, 3. Bus 36 is not affected by IBR output connected at bus 35.
However, bus 35 is affected by IBR output connected at bus 36. All three cases are considered strong in
SCR (above 3) and WSCR (above 1.5), but in case of IILSCR, risk is indicated in CASE3.
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Figures 8–10 show active power output, reactive power output, and voltage magnitude in detailed
time-domain dynamic simulation following a fault in system. As can be seen in the case of Case 2,
IILSCR 3.33, it recovers stably after fault. However, in the case of CASE3 where IILSCR becomes 2.24,
it can be seen that oscillation occurs after fault.
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Table 1. Comparison among various indices for IEEE 39 bus test system.

Year Bus No. SCC
(MVA)

IBR
Capacity

(MW)
SCR WSCR Inflow from

Nearby IBRs (MW)
Total IBRs

Inflow (MW) IILSCR

CASE1
35 2127 452.61 5

2.2
- 452.61 5

36 1624 382.76 5 86.26 469.02 3.95

CASE2
35 2127 531.64 4

2.0
- 531.64 4

36 1624 405.93 4 81.51 487.44 3.33

CASE3
35 2127 708.85 3

1.6
- 708.85 3

36 1624 541.24 3 73.66 614.90 2.64
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3.2. Analysis of the Korea Power System

Korea’s MOTIE has announced the ‘New Renewable 3020 Plan’ to increase the share of renewable
energy to 20% of total generation by 2030. To this end, MOTIE plans to supply 48.7 GW of renewable
energy generation facilities. More than 95% of the renewable energy power generation facilities,
which will be installed from 2018 to 2030, will be sourced by clean energy such as solar and wind
power. The southwest region, in which most of the installation is expected, is the region farthest from
the load center and without any synchronous generators. Figure 11 shows the southwest regional
system one-line diagram (345 kV, 154 kV) in Korea and shows the highest concentration of IBRs in the
southwest. To verify the effectiveness of IILSCR, the system strength of IBRs, which will be installed
in the southwest region, is evaluated. Figure 12 is a schematic of the Southwest region where the
renewable energy resources are installed. The buses 1 to 10 were selected in study areas. Table 2 and
Figure 13 show the results of the system strength evaluation based on the amount of renewable power
generation to be installed in the study area. The Short Circuit Capacity (SCC) value, which represents
the strength of the AC system, gradually increases over the years; this is the result of the system being
reinforced gradually. However, the system reinforcement does not occur, and the connection amount
of IBRs is observed to increase. From 2019 to 2021, SCR, WSCR, and IILSCR were all higher than
the weak criteria. However, when comparing the results of 2022, SCR and WSCR were evaluated as
system strength at bus 2, while IILSCR was less than 3. The different results regarding IILSCR from
the previous two methods can be attributed to the difference between how these circuit ratios reflect
interactions. In the case of the SCR, it only reflected the amount connected to its bus, which resulted in
relatively positive results. The second cause is the effect of the boundaries of the buses being equalized
in the WSCR. In this study, the WSCR calculation is equalized only when a renewable generator is
connected within one level away from the bus. If equalized within three levels, the results would be
different. In the case of IILSCR, equalization is not required; hence, the system strength on each bus
can be assessed and consistent results obtained.
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Table 2. Comparison among various indices for southwest side of Korea power systems.

Year Bus No. SCC
(MVA)

IBR
Capacity

(MW)
SCR WSCR

Inflow from
Nearby

IBRs (MW)

Total IBRs
Inflow
(MW)

IILSCR

2019
1 2090 150.0 13.93

10.81
- 150.0 13.93

2 2101 43.5 48.30 150.0 193.5 10.86

2020
1 2090 400.0 5.23

4.39
- 400.0 5.23

2 2101 76.0 27.65 400.0 476.0 4.41

2021

1 2094 400.0 5.24
4.40

- 400.0 5.24
2 2106 76.0 27.71 400.0 476.0 4.42

4 3576 60.0 59.60 - 239.3 299.3 11.95
6 2917 37.5 77.79 - 239.3 276.8 10.54

2022

1 2101 673.0 3.12
2.63

- 673.0 3.12
2 2112 268.0 7.88 673.0 941.0 2.24

4 3574 60.0 59.56 - 612.1 672.1 5.32
6 2920 37.5 77.88 - 289.5 327.0 8.93
9 2980 50.0 59.60 - 175.5 225.5 13.22

2023

1 2124 1112.5 1.91
1.78

- 1112.5 1.91
2 2136 268.0 7.97 1112.5 1380.5 1.54

4 3776 60.0 62.93 - 1009.8 1069.8 3.53
6 2984 37.5 79.57 - 371.2 408.7 7.30
9 3466 50.0 69.33 - 356.0 406.0 8.54
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Figure 13. Annual values (IBR Capacity, SCC, short circuit ratio (SCR), weighted short circuit ratio
(WSCR), and proposed interaction level short circuit ratio (IILSCR)) for the southwest side of future
Korea power system (a) IBR capacity of point of interconnection (POI). (b) Short circuit capacity of POI.
(c) Calculation of SCR and WSCR. (d) Calculation of the proposed IILSCR.

3.2.1. Validation through Dynamic Simulation

In the previous section, a dynamic simulation was explained to verify the differences in the system
strength evaluation that occurred in 2022. Dynamic simulation assumes a single line 7–8 fault of 154 kV,
three levels away from 2 buses in 1 s, and the fault was eliminated in 1.1 s. Bus 1 flows through bus
2 so that all the power generated by bus 1 can reach the center of load. As a result, bus 2 is affected
by the amount of renewable energy generated by bus 1. Therefore, IILSCR of bus 2 is calculated by
adding 673 MW of renewable power connected to bus 1 as well as 268 MW of bus 2. This would cause
the IILSCR to decrease to 2.24, resulting in a very weak bus 2. In order for the IILSCR result to be
greater than or equal to 3, it is necessary to limit the number of renewable connections on buses 1 and
2. In this study, we limit the number of IBRs connected to bus 1 because we propose a method for
evaluating the system strength that reflects interaction. Therefore, bus 1 connection was limited from
673 MW to 400 MW. If the 273 MW connection is restricted, the IILSCR value for bus 2 will be 3.12.
Figures 14–16 show dynamic simulation results for the IILSCR of bus 2 with 2.24 and 3.12. As shown in
the figures, if the IILSCR is 3 or less, the original equilibrium point cannot be found after the failure and
the voltage, reactive power, and active power are oscillated. Renewable generators based on inverters
respond quickly to faults in the system using fast switching devices. If the renewable connection bus is
not strong, the reactive power injected by the renewable generator can cause large changes, causing
causes oscillations. However, when the IILSCR is 3 or higher, the influence of the renewable generators
has less influence on the AC system. As shown in Figures 14–16, if IILSCR is 3 or more, after the fault,
oscillation does not occur and a new equilibrium point is reached.
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3.2.2. Oscillation Source Tracking

With dynamic simulation, if oscillation occurs on bus 2 after a fault, the oscillation will flow
through the system. If oscillation occurs from the point of view of the system operator, the source of
the oscillation should be identified to eliminate the cause and facilitate stable operation. Therefore, it is
necessary to confirm whether the source of the generated oscillation, IILSCR, is from the lowest rated
bus 2. To confirm this, the DEF (dissipating energy flow) method was applied. Using the DEF method
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based on the energy approach, we can find sources of weakly damped natural or forced oscillations
in the power system. After obtaining the values of voltage, frequency, reactive power, and active
power in the bus through dynamic simulation, the source of oscillation was traced using the following
equations [25,26]. From [25], an energy function form in the network has been derived as Equation (5)
to express that the energy dissipates at the network by the damping torque.

WD
ij =

∫
(∆Pi jd∆θi j + ∆Qi jd(∆ ln Vi)) (5)

where ∆Pi j and ∆Qi j are deviations from the steady-state values of the active and reactive power flow
in branch i-j; ∆θi and ∆ fi are deviations from the steady-state values of bus voltage angle and frequency
at bus i; Vi is the bus voltage magnitude. ∆ ln Vi = ln Vi − ln Vi,s, where Vi,s is the steady-state voltage
magnitude. Equation (6) is an approximated form of Equation (5) for the computational purpose [24].

WD
ij ≈

∫ (
∆Pi jd∆θi j + ∆Qi j

d(∆Vi)
V∗i

)
=

∫ (
2π∆Pi j∆ fi jdt + ∆Qi j

d(∆Vi)
V∗i

) (6)

From this stage, there are no need to take steady-state quantities, but a mean value for the
studied frequency or period by applying fast Fourier transformation (FFT) does work sufficiently.
From Equation (6), values with ∆ means that the deviation between each of the mean values for studied
period. Additionally, V∗i = Ṽi + ∆Vi and Ṽi is the average voltage in this studied period. Furthermore,
Equation (6) is modified to consider discrete inputs and dissipating energy outputs for each step [26],
by constructing a recurrence relationship as follows,

WD
i, j,k+1 = WD

i, j,k +

2π∆Pi j,k∆ fi,k·ts + ∆Qi j,k
∆Vi,k+1 − ∆Vi,k−1

2V∗i,k

 (7)

where ts is the time step between samplings for the dynamic simulation and index k for each quantity
reflects the time sample number for the time instant. Figure 17 shows the magnitude and direction of
oscillation energy after failure. As with the IILSCR results, it can be seen that the oscillation energy is
highest on bus 2. Figures 18 and 19 show the energy of increasing oscillations that occur after in the
study area over time. Therefore, IILSCR shows that it is possible to evaluate the system strength more
accurately when connecting renewable sources.
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4. Discussion

In the previous section, we introduced the proposed method to detect interaction phenomena
including oscillation and verified the origin source. In this section, we discuss the relationship between
voltage regulation deadband and the influence of interactions by changing deadband range. The Korean
grid code for IBR contributes to voltage stability by supplying or absorbing reactive power when the
POI voltage is out of the 0.95–1.05 pu range. Figure 20 shows the voltage sensitivity at the 2 bus in
dynamic simulation. IBRs supply reactive power to recover the voltage in the transient period after a
fault. When the system strength is low, the voltage sensitivity is increased, and oscillation is generated.
This is because the reactive power absorption and supply of all nearby IBRs is beyond the deadband
range. In order to prevent the oscillation, if the deadband is increased to 0.9 to 1.0 pu as shown in
Figure 21, the oscillation may be eliminated. As mentioned earlier, increasing the deadband range
may cause voltage oscillation problems, so it is necessary to accurately evaluate the system strength at
the planning stage. To apply the proposed method to real power systems, the exact system topology
is important.
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5. Conclusions

In this study, a system strength evaluation method is derived that reflects the interaction effects
between IBRs. This method was developed by tracing the output of IBR to accurately assess system
strength. Subsequently, this method was applied to IEEE 39bus test system and the future Korea
systems to compare the differences with the existing methodology. The energy decision method
was used to analyze the oscillation source. As a result of simulations, the following conclusions can
be drawn.

1. The system strength evaluation by the proposed method is shown to correspond to the dynamic
simulation results. It has been shown that if the IBRs are concentrated in areas with weak systems,
oscillation problems representing voltage instability may occur.

2. The energy dissipation method showed that the source of oscillation was consistent with the
weakest bus of IILSCR. A bus can be the weakest bus since the bus is influenced by both the IBRs
installed on its bus and nearby the bus.

3. When the IBRs are concentrated in weak area, the deadband range can be selected to eliminate
voltage instability such as voltage oscillation. However, this method can cause power quality
problems. Therefore, the system strength must be accurately evaluated for areas in which
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IBRs are concentrated. Therefore, the methodology proposed in this paper can serve as an
adequate preliminary review to assess the system strength before adopting a detailed approach
to system planning.
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Appendix A

Derivation of (3)
The active power flow of bus i is composed of the sum of MW generated from IBR at bus i and

MWs delivered from other IBR near bus i.

Pi =
∑

j∈α(u)i

dPi− je+ PGi

=
∑

j∈α(u)i

dPi− je

P j
P j + PGi f or i = 1, 2, · · · · · · , n

(A1)

Affected by interaction at bus i with bus j can be expressed mathematically as follows [27,28]:
The active power flows into the bus i can be simply expressed as PGi . By multiplying the inverse
matrix of distribution Au matrix and Pg vec0.tor, which describes the generation of each bus, gives P,
the active power supplied from individual buses.

PGi = Pi −
∑

j∈α(u)i

dPi− je

P j
P j ⇒ PG = AuP. (A2)

Au matrix is an n × n square upstream matrix for power distribution for all buses; individual
elements are given as follows,

dAuei j =


1 f or i = j

−
dP j−ie

P j
f or j ∈ α(u)i

0 f or otherwise

(A3)

Assuming that Au matrix is nonsingular, a vector representing the active power supplied at each
bus P and the supplied MWs at each bus Pi are shown as,

P = A−1
u PG (A4)

Pi =
n∑

k=1

dA−1
u eikPGk (A5)

Additionally, the result of Equation (A6) is an inflow MWs at bus i, which decides how much of
generation component is composed of that bus as a multiple of Au upstream matrix and generated
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power. Using the approaches above, we can describe the inflow from the transmission line i-j to bus i
by proportional sharing rule as,

dPi− je =
dPi− je

Pi
Pi =

dPi− je

Pi

n∑
k=1
dA−1

u eikPGk

= αi1PG1 + αi2PG3 + · · · · · ·+ αinPGnZ
where 0 ≤ αik ≤ 1 f or i = 1, 2, · · · · · · , n

(A6)

Hence, the method is applied as a tracing method among the interaction buses with respect to the
transmission lines. Moreover, Equation (A6) decides the contribution of k-th generator for the amount
of MWs supplied to the transmission line i-j.

Appendix B

Criteria for Reliability and Quality of Electricity System of Korea
Reactive power capability requirements:

• Wind generator: lag 0.95–lead 0.95,
• Tidal energy generator: lag 0.95–lead 0.95,
• Photovoltaic generator: none.

Low Voltage Ride Through standard is shown in Figure A1.
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