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Abstract: The useful planning and operation of the energy system requires a sustainability assessment
of the system, in which the load model adopted is the most important factor in sustainability
assessment. Having information about energy consumption patterns of the appliances allows
consumers to manage their energy consumption efficiently. Non-intrusive load monitoring (NILM)
is an effective tool to recognize power consumption patterns from the measured data in meters.
In this paper, an unsupervised approach based on dimensionality reduction is applied to identify
power consumption patterns of home electrical appliances. This approach can be utilized to classify
household activities of daily life using data measured from home electrical smart meters. In the
proposed method, the power consumption curves of the electrical appliances, as high-dimensional
data, are mapped to a low-dimensional space by preserving the highest data variance via principal
component analysis (PCA). In this paper, the reference energy disaggregation dataset (REDD) has
been used to verify the proposed method. REDD is related to real-world measurements recorded at
low-frequency. The presented results reveal the accuracy and efficiency of the proposed method in
comparison to conventional procedures of NILM.

Keywords: load disaggregation; non-intrusive load monitoring (NILM); dimensionality reduction;
principal component analysis (PCA)

1. Introduction

Energy is one of the most important aspects of industrial and economic development in all
countries. Future energy systems must be equipped to provide sustainable, affordable, and reliable
energy, and to provide consumers with the ability to guarantee sustainable development. Effective use
and energy efficiency are essential for sustainable development [1]. Therefore, energy consumption
monitoring processes and planning in conserving energy in buildings are considered to be energy
management for sustainable development. Due to rising costs and environmental impacts of energy
consumption, the importance of energy conservation and planning is growing significantly [2]. Today,
policy efforts to reduce CO2 emissions from energy sources are one of the major expert efforts of
environmentalists. On the other hand, energy demand of consumers is increasing exponentially, and
the energy demand is projected to double by 2030. Therefore, several researches have been conducted
on the effective management of energy supply and demand [3,4]. Nowadays, worldwide smart
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electricity meters are widely installed and used in homes and other places. According to research, it is
estimated that by the end of 2020, approximately 72% of European homes will have electricity smart
meters installed [5,6]. With the advances in smart electricity metering technologies, consumers are
aware of their energy consumption patterns over days, weeks, or months. Adding features such as
power/energy consumption onto the surface of home appliances will make them “smart” users of
energy. In addition to monitoring the energy consumption of the entire home, they can monitor the
energy consumption of each device [7].

Load monitoring or energy disaggregation is a very effective and useful step in energy management.
Obtaining this information about the active loads of a grid is very effective and useful to the energy
management system. Monitoring the load level of home appliances can be measured by two types:
intrusive load monitoring (ILM) and non-intrusive load monitoring (NILM). In the ILM method,
a sub-meter is attached to each appliance. This method is expensive and inconvenient, because an
ILM-based power system with several appliances to read and record data needs a magnitude of
sensors, which incur a prohibitive extension cost, and it does not respect consumer privacy. In contrast,
NILM, or load disaggregation, can analyze the aggregated power consumption data of the appliances’
exclusive power consumption via the appliance power consumption patterns, with no need to have
data recorder sensors (Figure 1) [8,9].
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(NILM).

In NILM, all measured power consumption is processed in the smart meter. This process is
continued until the required information about the time and amount of home electrical appliances
consumption is calculated. Electrical smart meters have the capability to record the total customer
energy consumption of the building. Using the information that electrical smart meters record from
home power consumption can have several useful benefits in the areas of energy, trade, and economics,
such as improving short and long term forecasts of demand profiles, load forecasting, providing
consumers with detailed feedback on their energy consumption, designing demand management
plans, and measuring and validating energy efficiency plans of buildings. Therefore, the development
of techniques to improve load disaggregation problems, which can recognize the individual appliance’s
signal signatures through reading the total power consumption, has emerged as an interesting research
topic in academic and industrial fields [10,11].

Data collection, event discovery, pattern recognition, and appliance identification are the four
principal steps of an NILM system. Identifying electrical appliances operating at the same time in a
home is the core of the NILM system [12].

There are many methods to improve the NILM system problems. Some of these methods are
based on numerical indices, classical methods, and optimization. In some studies, different approaches
for load disaggregation based on hidden Markov models (HMM), are used to model each appliance.
In [13], segmented integer quadratic constraint programming is used to solve the load disaggregation
problem. In [14], the load disaggregation problem is solved via increasable factorial approximate
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maximum posteriori. In [15], the event-based load disaggregation method is suggested, in which
multiple signatures including distortion, active, and reactive powers are used. The information coding
perspective of the load disaggregation is proposed in [16], in which appliances with similar power
draws are recognized. In [17], the segmented integer quadratic programming problem is suggested to
improve the NILM problem. Recognition of the simultaneous on and off state of multiple devices is
dealt with a Cepstrum smoothing-based load disaggregation in [18]. Optimization-based methods to
solve the NILM problem are proposed in [9,19–21].

On the other hand, data mining methods are widely used to solve energy management problems.
Some works have been done on this basis to solve the NILM program. These methods are usually
divided into two types: supervised and unsupervised. The main difference between these two methods
is in learning the features that are in the essence of data. Unsupervised methods do not need to learn
these features.

Supervised applications such as artificial neural networks, support vector machine applications,
deep learning, feature learning, etc., use the training dataset of each appliance to identify and extract
the features and build a feature dictionary [22–28]. In [23], a deep long short-term memory (LSTM)
recurrent network is used to classify the types of electrical appliances into a set. A convolutional neural
network (CNN) for recognizing multi-state appliances is suggested in [24], in which low-frequency
power measurements are used. In [24], a support vector machine (SVM) is used to improve NILM
problems, so that the K-means is considered to reduce the SVM training set size. A deep convolutional
neural network is used in [26] to implement a practical data reinforcement technique with the need of
sub-metering for new unseen houses, which makes a post-processing technique to solve the NILM
problem. In [27], load disaggregation based on deep learning methods is proposed, in which deep
dictionary learning and deep transform learning techniques are used. The transform learning method
is also proposed in [28] for solving the NILM problem.

Unsupervised methods [29–31] collect features through power consumption data sets. In [32], the
graph-based signal processing (GSP) load disaggregation is developed without the need for training.
NILM based on unsupervised learning is proposed in [33], in which the fuzzy clustering algorithm
called entropy index constraints competitive agglomeration (EICCA) is improved and utilized for
solving the load disaggregation problem.

In this paper, a transparent unsupervised approach based on dimensional reduction is used to
improve the residential load disaggregation problem via a visual and transparent process. Here, the
power consumption curves of home electrical appliances are acting as a vector in high-dimensional
space. The high-dimensional power consumption curves, related to household electrical appliances,
are diminished to low-dimensional ones via principal component analysis (PCA) to disaggregate
them. The proposed method does not require the training of specific networks by the use of training
data to identify their characteristics, so some probabilities, based on inaccurate learning, will reduce
the accuracy of the problem. The proposed method uses a feature space to transfer data from a
high-dimensional space to a low-dimensional one. Because every household electrical appliance has
its own consumption pattern, it is possible to obtain the inherent characteristics and patterns of each
appliance by extracting eigenvalues and eigenvectors of the consumption curve of each appliance.

To apply the proposed method, the low-frequency data of power consumption readings at the
meter, related to the REDD dataset [34], is utilized. This data shows the power consumption of several
home electrical appliances in the real world. To obtain the best results in this paper, transient state
information for each appliance are considered, because selecting the operating state of each appliance
has a great impact on the aggregation operation.

The rest of this paper is structured as follows: PCA is elucidated in Section 2. Section 3 describes
in detail the case study. How to apply PCA on data, experimental results, and load disaggregation
results via proposed method are presented in Section 4. Finally, Section 5 concludes the paper.
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2. Principal Component Analysis

In statistical analysis, principal component analysis (PCA) was introduced by Hotelling as a tool
for dimension reduction of data in 1933. PCA is a convenient and useful method to compress images,
reduce dimensions in high-dimensional data, and a common application for pattern recognition
and feature extraction of big data [35,36]. The fundamental idea of PCA is to find an orthogonal
linear model, which designs the high-dimensional data on a low-dimensional space known as the
principal component (PC), while maximizing the variance of the data and minimizing the mean
squared reconstruction error [37,38]. Achieving this idea first requires the calculation of the covariance
matrix (CM) and then the obtaining of the eigenvalues and eigenvectors. In this paper, the PCA
is used to identify eigenvalues and eigenvectors of power consumption curves of home electrical
appliances, and to re-display them in a low-dimensional space. Let us suppose each database has
power consumption curves of home electrical appliances with a column vector Fi, the length of which
consists of n eigenvectors that are in the power consumption curves of home electrical appliances
inside the original space. For m items of Fi vectors related to power consumption curves, F-matrix
with the size of n×m could be defined [39]:

F = [F1, F2, F3, . . . , Fm] (1)

The F data matrix can be transformed into a low dimensional space using PCA:

P = HTF (2)

where eigenvectors of data matrix F have formed the columns of scheme matrix H, and HT is the
transpose of the matrix H.

The steps of PCA are as follows [39]:

• approximation of the CM,
• eigen-dissociation of the CM and selecting the k highest eigenvalues,
• building the feature matrix I via respective eigenvectors, and
• mapping the main power consumption curves to the k-dimensional vector space by applying

the I.

Considering m items of power consumption vectors, a CM is obtained from the following
equation [40]:

CM =
1
m

m∑
i=1

Fi.FT
i (3)

where T represents the transmission of the vectors. Solving the following eigenvalues equation is
required to conduct a specific analysis of the CM [39,40]:

λI = CM.I (4)

where I and λ show the identification matrix and eigenvalues, respectively. The total variance of the
main matrix (dataset) elements for the average zero is equivalent to the sum of the eigenvalues [38].
After the transmutation, the variance of the ith element equalize λi. To discover the adequate number
of PCs to discriminate home electrical appliances, the accumulative contributory ratio (ACR) can be a
useful parameter [41]. If the obtained eigenvalues are sorted in descending order, the ACR related to
the first k PCs is explained as

γk =

∑k
i=1 λi∑n
i=1 λi

(5)

Having obtained the CM and computed the eigenvalues, we arrange their eigenvectors in
descending order. To create the feature space, finding the first k PCs in which their γk exceeds 0.85 is
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necessary [41]. After finding these k principal components and placing their eigenvectors in a matrix,
the feature matrix I is formed. As the final result of PCA, matrix P is obtained from Equation (6).

P = I.CM (6)

Every electrical appliance has its own unique consumption pattern, but in most NILM problem
solving techniques, some of the features of the power consumption curves are lost. The PCA method,
by using its ability to detect the intrinsic structure and nature of data, can disaggregate the share of any
electrical appliances’ power consumption of the total home power consumption. Figure 2 illustrates
the flowchart of the proposed method in this paper for load disaggregation. Figure 3 shows the basic
principal diagram of the work done in this paper, step by step.
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3. Case Study

In this paper, experiments were performed on the REDD dataset. The REDD dataset contains
low-frequency data for 6 homes in Massachusetts, USA, including the total power consumption of the
home, and the power consumption of each individual electrical device in the home [34]. Given that the
main grid is sampled at 1 Hz, we used a 3 s interval to match these readings with the main grid, on
both the main and plug levels (1/3 Hz), for on-line disaggregation. Because this data is relevant to
real-world use, it has been used in most studies in NILM fields. To apply the proposed method, data
from three houses including REDD house 1, REDD house 2, and REDD house 3 were used. Table 1
presents the types of household electrical appliances that the proposed method was able to identify.

Table 1. The names of the electrical appliances considered from reference energy disaggregation dataset
(REDD) houses.

REDD Houses Appliances
House 1 Wall oven, refrigerator, dishwasher, kitchen outlets, lighting, washer

dryer, microwave, bathroom ground fault interrupters (GFI), electric
heat, stove, different

House 2 Kitchen outlets, lighting, stove, washer dryer, microwave, refrigerator,
dishwasher, garbage, different

House 3 Electronics, lighting, refrigerator, unknown, dishwasher, furnace,
washer dryer, microwave, smoke alarms, garbage, bathroom GFI,

kitchen outlets, different

4. Experimental Results

It is necessary to identify and extract the features and consumption patterns of the appliances,
to load/energy disaggregate and to assess the consumption of each electrical appliance from the total
power consumption of the whole house. In this paper, extraction of features and consumption patterns
of household electrical appliances is done using PCA.

Using the proposed method requires a database as input. We used the power consumption curves
of the electrical appliances presented in Table I as inputs. In this database, the power consumption
curve of the two-day (2880 min) operation of each appliance was considered as a sample of each
appliance. Four samples from each appliance (power consumption for the first eight days of each
house) were considered as inputs. Figure 4 illustrates the data considered for the power consumption
of the appliances in REDD House 1, as the network input.

After collecting the database, the steps were performed as presented in the flowchart of Figure 1.
For more accuracy, load disaggregation was conducted based on dimension reduction. This method
maintains the highest variance and eigenvalue for each power consumption curve in the principal
component. The five highest values of the calculated eigenvalues, and the computed ACRs for
them, are given in Table 2. It is visible that k exceeded 0.90 using two PCs. Thus, the power
consumption curves of home electrical appliances in high-dimensional space could be reduced to
vectors in two-dimensional space by sustaining the highest variance. Figure 5 shows the results of
the separation of the power consumption pattern of each electrical appliance in the studied homes
of the REDD dataset via PCA. It can be seen that the proposed method was able to disaggregate the
power consumption patterns of electrical appliances in two-dimensional space by extracting the power
consumption curve features.
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Table 2. The five highest eigenvalues in descending order and their accumulative contributory
ratios (ACRs).

λ1 λ2 λ3 λ4 λ5
Eigenvalue 535.24 208.28 65.38 21.07 5.90

ACR 0.713 0.908 0.954 0.987 0.991
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Now, to test and monitor the accuracy and efficiency of the proposed method, new samples of the
power consumption of each electrical appliance were needed. To do this, new samples of the power
consumption of each electrical appliance were considered over a two-day period. The PCA method
was used to extract the features of this data, and the test results for the electrical appliances of each
house by new samples are shown in Figure 6. In this figure the black color was used to represent each
new sample of each electrical appliance.

From the above figures, it is clearly visible that the proposed method fully recognized the power
consumption patterns of the new samples of each of the home appliances and identified them from the
previous samples. However, the basic principle in the NILM is the disaggregation and detection of the
power consumption of each electrical appliance from the total power consumption of the home. In this
regard, samples of whole-house power consumption taken from the home’s electricity smart meter
were considered, each of which represented two hours. This data was used as input for PCA. Figure 7
shows plotted samples of the total home power consumption of each dataset. Dimension reduction via
PCA was applied to the new samples that were obtained from the total home consumption. Figure 8
shows the test results of the proposed method using the new data.

The results of load disaggregation for the intended data revealed the performance and accuracy of
the proposed method. It was found that PCA was able to efficiently display and distribute the nature
and pattern of power consumption for household electrical appliances, in a two-dimensional space.
Identifying the intrinsic behavior of any electrical appliance with regard to its power consumption
could accurately perform the disaggregation of the total power consumption of an entire house in
different hours.
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A comparison of the results should be made to show the accuracy and efficiency of the proposed
method compared to other methods [12]. This is done by calculating the F-score as follows:

F− score =
TI

TI + FI
(7)

where the F-Score is the accuracy evaluation metric for the predicted results, TI represents the number of
samples that were truly identified, and FI represents the number of samples that were falsely identified.
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Direct comparisons of results should be done with extreme caution; this was done by ensuring
that the database used in all cases were similar. Because this paper used REDD data, comparisons
were made with the works that previously used this data, and the results of these comparisons are
stated in Table 3.

Table 3. Performance comparison of the proposed method with other unsupervised solutions for
REDD data.

Appliance Identification Method Remarks F-Score
Proposed Method Using all appliances from REDD houses 1, 2, and 3 94.68%
Basic NILM [42] Using all appliances from REDD 79.7%

Supervised GSP [43] Using 5 appliances selected from the REDD 64%
Unsupervised GSP [32] Using 5 appliances selected from the REDD 72.2%

Unsupervised HMM [44] Using 7 appliances selected from the REDD 62.2%
Unsupervised dynamic time

warping (DTW) [45]
Using 9 appliances selected from the REDD 68.6%

Supervised decision-tree (DT) [45] Using 9 appliances selected from the REDD 76.4%
Viterbi algorithm [46] Using 9 appliances selected from the REDD 88.1%

Since unsupervised solutions have no information (target) about the features of input data (power
consumption curves), they must have the ability to enable the extraction high features of data so that
they can perform the detection operation well. The presented results in Table 3, show the accuracy and
efficiency of the proposed method compared to other unsupervised methods, in identifying power
consumption patterns of household electrical appliances.
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5. Conclusions

To address non-intrusive load monitoring in an efficient and transparent manner, the pattern
recognition of power consumption time series is very helpful. In this paper, principal component
analysis, as an unsupervised approach, was used to extract useful features from power consumption
data to detect consumer type. This approach displays high-dimensional data in a low-dimensional
space by preserving maximum information of the initial data. Extraction of features and recognition of
the consumption patterns of each electrical appliance in the load disaggregation make it possible for the
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consumers to be aware of their own power consumption pattern in any time period. Low-frequency
sampled data from the REDD was used to test the proposed method. Power consumption signatures
received from each home electrical appliance at different times were considered as input data for PCA.
By applying the proposed method to the input data power, consumption patterns of each electrical
appliance in a two-dimensional space was transparently observed. Subsequently, PCA was applied to
the samples of the total home power consumption for load disaggregation. The power consumption
of the household electrical appliances was estimated from the total power consumption of the home
at different times. Clarity and transparency in displaying power consumption patterns of different
electrical appliances in a low-dimensional space, makes the proposed method desirable.
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