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Abstract: Presently, energy is considered a significant resource that grows scarce with high demand
and population in the global market. Therefore, a survey suggested that renewable energy sources
are required to avoid scarcity. Hence, in this paper, a smart, sustainable probability distribution
hybridized genetic approach (SSPD-HG) has been proposed to decrease energy consumption and
minimize the total completion time for a single machine in smart city machine interface platforms.
Further, the estimated set of non-dominated alternative using a multi-objective genetic algorithm
has been hybridized to address the problem, which is mathematically computed in this research.
This paper discusses the need to promote the integration of green energy to reduce energy use costs
by balancing regional loads. Further, the timely production of delay-tolerant working loads and
the management of thermal storage at data centers has been analyzed in this research. In addition,
differences in bandwidth rates between users and data centers are taken into account and analyzed at
a lab scale using SSPD-HG for energy-saving costs and managing a balanced workload.

Keywords: load balancing; green energy; genetic algorithm; renewable energy

1. Discussion on Green Energy Consumption and Workload Management

In the present area of research, it is very normal to see that many machines stand idle while a
person enters a fabricating plant floor. There can be significant costs to maintain idle machines running
in the plant section [1]. In a report by an airline supplier, it was found that, on average, computers
stand idle at an 8-h cycle, with 16% of the time. During these inactive times, at least 13% of the total
energy consumption is avoided by simply turning the machine off when workers are not handled. In
order to save energy, compressors can be used in industrial settings when the machines are inactive,
which consumes about 50 percent of the maximum energy. It may be better to shut them off rather than
leave them idle for a long time [2]. Turning a machine off when it is not needed and not running a car
when waiting for someone can save electricity [3]. The climatic conditions also play an important role
in saving electricity, many studies have explored the integration between environmental issues into a
decision-making approach [4]. The usage of electricity Can be underestimated when a timetable is set
and offers a way of arranging a machine’s activities thereby reducing energy use and overall execution
period goals by intelligently turning the computer between the scheduled tasks instead of leaving the
system idle [5,6]. At present, Internet service providers usually build multiple data centers located
in different geographical areas to give information on Web applications, such as social networks [7].
The data centers require significant amounts of electricity to fuel the IT and cooling systems. Data
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centers’ electricity consumption for web-based applications used 1.5% of the power in 2010, which is
expected to rise by about 8% by 2020 [8]. Therefore, Internet service companies have been making
intensive efforts to reduce their data centers’ electricity costs. [9,10] Moreover, the desire of Internet
service providers is rising to be “sustainable,” allowing them to reduce their environmental impact to
the economic impact of their data centers. The worldwide electricity generated from fossil-fuel plants,
such as coal and gas power stations, provides two-thirds of electricity generated by the electricity
supply system [11]. Hence, the renewable generators, being popular in construction costs, become
more and more desirable choices for running data centers, particularly as policy measures promote
renewable energy [12]. By comparison to current brown electricity from energy networks, though,
green energy coming from renewable sources, such as wind and sun, is unreliable and uncontrollable,
creating a major challenge for data centers to use is efficiently.

The main challenge is the task of managing electricity supply and demand instantaneously,
which can particularly resolve the issue of green energy with large-scale electric energy collected
from renewable sources, as shown in Figure 1, based on the generation, transmission and distribution
systems. Although it is helpful to manage geographical loads, there are two potential possibilities
for promoting the introduction of renewable energies in data centers [13], which is coordinated based
on the control center. In the control center, the difference between an interactive workload and batch
workload follows two aspects [14]. The first aspect are computational requirements for the interactive
workload which is small and batch workload is large [15]. Further, the second aspect is the response
time that refers to the output system for the virtual workload [16]. Hence, it is the overall workload
within a period of time. The important point for the cooling system offers a large share of electricity
consumption in a data center [17]. If the price of the power is high, the stored resources can be used
to support the data center to cool down for energy saving [18]. The examination is done with the
issue of shared regional charge, balance time tolerance preparation, and workload management in
geographically distributed data centers. They often take the connectivity expense for cloud customers
and data centers into consideration, as well as the brown energy costs. The major aim of this research
is to reduce the energy emissions of data centers through sustainable energy management at data
centers with less delay tolerance. Renewable energy is typically sporadic and volatile, in comparison
to conventional electricity energy. Whether to best utilize green electricity in data centers from such
clean sources is a problem. In this paper, to promote renewable energy adoption and minimize costs of
energy usage by spatial load balancing, opportunistic scheduling of delay-tolerant workloads control
in data centers has been accomplished using SSPD-HG. This approach focuses on a multi-objective
framework for energy consumption and to minimize the total completion time for a single machine.
Furthermore, in this paper, bandwidth rates between users and data centers are analyzed using
SSPD-HG for energy-saving and managing a balanced workload. The rest of the paper is organized
as follows: Section 2 reviews the related work, Section 3 provides insights regarding our proposed
SSPD-HG approach, further, in Section 4 mathematical model for green energy consumption and
workload management for data centers is analyzed, in Section 5, the findings of the study related to
SSPD-HG work are discussed. Finally, the paper closes with its conclusion and future scope.
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renewable energy. In fact, differences in bandwidth rates are recognized between customers and data 
centers [22]. This paper illustrates how to choose the lowest range of active base stations (BS’s), which 
can sustain the service quality (the minimum data speed) desired by consumers, ”as a consequence 
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consume significant amounts of energy and the migration technology of the virtual machine (VM), 
by consolidating virtual machines on a minimal number of servers, which can be applied to reduce 
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algorithms for lower social level agreement (SLA) violations induced by overloaded servers [29]. 
Hence, the high renewable energy penetration, for the development of energy-efficient cooling 
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2. Background Study on Workload Management in Data Centers and Minimal
Energy Consumption

Many research works have been carried out [19,20] where the authors discussed the mathematical
model to minimize the energy consumption and decrease the overall completion time of one machine.
Further authors reported a multi-objective genetic algorithm to achieve minimal energy consumption
at the data centers. The mathematical model can change significantly on a computer when other design
priorities are mathematically analyzed, hence, based on the solution strategy the exception of the
linear system that produces the estimated front of Pareto can adjust the genetic algorithm according
to the sort of programming goal. In [21] the author proposed the use of the opportunities offered by
global charge equilibrium, the ability to such plan workloads for delay tolerance and the control of
thermal storage in data centers, can promote the improvement of renewable energy. In fact, differences
in bandwidth rates are recognized between customers and data centers [22]. This paper illustrates
how to choose the lowest range of active base stations (BS’s), which can sustain the service quality (the
minimum data speed) desired by consumers, “as a consequence of energy consumption minimization
(ECM)”. The EMC algorithm empties the collection of active BSs and attaches one by one based on
BS accordingly [23,24]. Cloud data centers are resources that consume significant amounts of energy
and the migration technology of the virtual machine (VM), by consolidating virtual machines on a
minimal number of servers, which can be applied to reduce energy consumption [25]. A new model
of energy efficiency has been set up that formulates and integrates device costs [26], transfer costs,
and relocation costs [27,28], which has been reported by several researchers. Two additional heuristics
for VM placement have been introduced and the examination of the time complexity indicates that
the algorithms presented are scalable for optimizing delay tolerance and the management of thermal
storage at data centers. The implementation of the proposed algorithms in a specific cloud platform can
be taken into account for energy consumption, VM migration drawbacks may include enhancing the
overuse prediction algorithms for lower social level agreement (SLA) violations induced by overloaded
servers [29]. Hence, the high renewable energy penetration, for the development of energy-efficient
cooling systems and flexibilities can be widely used for the energy storage system. Through the use of
stochastic modeling techniques, it is suggested that a centralized management approach allows data
centers, in compliance with long-term service quality of service (QoS) criteria, to respond to irregular
renewables demand, coolant volatility, IT workload shifts, and energy prices [30]. Furthermore,
potential approaches will include modeling techniques with more realistic electricity leakage storage
units, including the cost of energy transport from storage units, as well as the layout of the power
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network transmission. To overcome all these drawbacks, SSPD-HG approach mainly focuses on
minimal energy consumption and reducing the total completion time for a single machine. Furthermore,
in this paper, bandwidth rates between users and data centers are analyzed for energy-saving and
managing a balanced workload using the SSPD-HG approach.

3. Minimal Energy Consumption and Total Completion Time Mathematical Model (SSPD-HG)

The representation of task or job is given by l. m and n have been modeled for each job, where the
machinery specific data, such as total power (strengthtotal) and install energy (strengthinstall), (strengthrest),
have been used in the machine. The total completion time is modeled and can be represented in
the mathematical Equation (1). Hence the (strengthtotal), as shown in Equation (3), is the total power
consumed by the machine during on condition, (strengthinstall), is defined as the turn off and then turn
on (sequence) condition of the machine. (strengthrest) is the idle state condition for the machine, which
has been processed based on the processing state.

min
(∑x

m=1 qm
)
strengthtotal + (max

m dm −
mim
m dm) ∗ strengthrest −

∑x
m=1

∑x
n=1 ,m ymn+

strengthinstall
(1)

strengthtotal = thetotalpowerconsumedbymachine (2)

strengthtotal = strengthworking − strengthidle (3)

strengthworking is the power consumed by a machine during working conditions.

• (maxmdm −minmdm ∗ strengthrest) is the total rest power of sequence of jobs.

• min(
x∑

m=1
qm) is the main objective of total completion and total energy consumption time.

• ymn is the installation and the total marginal energy consumption between jobs m and n.

The goal of SSPD-HG is listed as follows:

(i) To demonstrate the effects of thermal storage together with accommodating workload management
in data centers, to reduce working costs, and

(ii) To get clear clarification between cost savings, working load delays and thermal storage capacities
and the information has been taken from Google data centers. The output distribution is relative
to the distances between cities and energy costs between proxies and data centers based on the
buffer and non-buffer, condition as shown in Figure 2. strengthidle is the energy consumption for
server in one period and it is given by strengthidle= 100 W *1/6 h and strengthworking is the busy
state and the energy consumption of each server strengthworking = 250W∗ 1/6 h.
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SSPD-HG approach mainly deals with the total energy consumption and workload management
of data centers. Hence, by considering a cloud service company with workload management and
data collection, which are shown in Figure 3 submission for job or operation first hits the proxy k
and the proxy will determine the data center to handle the job application. The proxy does not have
a storage buffer based on a request which enters the proxy, where a data center can be diverted for
immediate retrieval.
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The traces of wind and solar energies are gathered for every 10 min and the speed of the wind and
solar radiation are measured based on the workload management. The traces are well-scaled hence the
total renewable energy generation in each data center will reach half the average energy consumption.
The first two days show a share of solar and wind energy in two regions and the mathematical model
can be represented in Equation (4)

K∑
k=1

Xa
k(t) ≤ Xa

max∀a, t (4)

At the end of proxy k the work or job request arrives. Here the Xa
k(t) is the time for proxy k with

the type of job, where the rate of arrival of the workload is denoted as X(t) = Xa
max, ∀a, t. Hence, the

total arrival work of job a is given by constant value Xa
max. Here, each data center has a thermal storage

system installed based on the optimal section. During this time, the optimal charge and discharge
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conditions have the system that becomes the peak refreshing energy consumption, which has been
shown in Figure 4.
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The number of the type of work which is denoted by a reaching at proxy k in time t as Xa
t . The

work arrival rate vector at time t is denoted as X(t) =
(
xa

t (t),∀a, t
)

and the time average of the vector
is given by = E

{
X(t)

}
. Hence, the finite and the optimistic constant to Xa

max needs to be limited for the
cumulative arrival rate of form a workers.

M∑
l=1

λa
lk(t) = Xa

k(t),∀a, k, t (5)

λa
lk(t) ≥ 0, ∀a, l, k, t (6)

λa
lk(t) is used to represent the number of works that are routed from proxy k to the data center l, in

time t, λa
k(t) = λa

lk(t), where ∀l represents the routing vector for the a type of work at proxy k, which
has been modeled in Equations (5) and (6). Notice that previous studies focus primarily on reducing
energy costs by taking bandwidth costs into account for routing workloads.

In addition to the cost of using thermal storage devices, as described earlier, there are two main
aspects for the total operating costs which are listed as follows,

• One is the cost for the energy consumption in data centers and
• The other is the cost of connectivity between consumers in the proxies and data centers in the

cloud, as represented in Equation (7).

min
x∑

m=1

dm. (7)

dm − qm ≥ zi∀m = 1 . . . .x (8)

Based on the mathematical formulation and the statistic that of SSPD-HG beats all benchmark
schemes, as shown in Equation (8). In fact, the thermal storage can help to reduce the total
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electricity cost, while SSPD-HG takes into consideration the time-limited price of electricity, this
is intermittent and does not work until the energy price is low enough. The algorithm for the
SSPD-HG algorithm is shown below and mathematically formulated based on the total completion time.

Algorithm 1. SSPD-HG algorithm.

Input: dn, qm, dm, TD

Output: ymn,∀m,∀n

If ((dn − qm) − dm) −TD

ymn = ((dn − qn) − dm) ∗ strengthrest

Else ymn = 0, ∀m = 1 . . . .x, ∀n = 1 . . . .x , m
End if
dn − qn ≥ dm or qn ≤ dm − qm,
Case1: if
∀m = 1 . . . .x
∀n = 1 . . . .x , m
dj, ymn ≥ 0
Else
∀m = 0
∀n = 0
dj, ymn ≥ 0
Close

As inferred from Algorithm 1, the main objective of the total completion time of the process is
x∑

m=1
dm, and the complete strength consumption can be given as (

x∑
m=1

qm)strengthtotal +
(
max jc j −min jc j

)
∗

strengthrest −
x∑

m=1

x∑
n=1, j

y jk + strengthinstall. Hence, the strength install ((strengthinstall =

strengthtotla
n∑

j=1
p j) is constant and the total amount of strength of the machine at rest condition

between the completion of first and last jobs is (maxmdm −minmdm) ∗ strengthrest. Instead, when
taking bandwidth costs into account, the SSPD-HG algorithm with the basic systems has the cost for
bandwidth, which is negligible in our situation because all operating loads are diverted to the closest
data centers. SSPD-HG can achieve the largest total operating cost savings by considering the different
bandwidth costs between proxies and data centers.

The SSPD-HG approach combines two targets into one target, which can be achieved by applying
the weighted average of both goals. The mathematical model for the weighted problem’s objective
function is given in Equations (9) and (10)

h(∅1,∅2) = ∅1h1 +∅2h2 (9)

h(∅1,∅2)= ∅1
∑x

k=1 dm +∅2((
∑

y((dm + 1− qm + 1) − dm∗

strengthrest +ω ∗ energyinstall
(10)

In this segment, the compensation is the main focus within SSPD-HG for time, total operating
costs and thermal storage power. The associated total operating cost and estimated workload delay
are determined by the various choices. However, the SSPD-HG will reduce its total operating costs
with compensations for the working load period in which the study results are checked in the theorem
by increasing the parameter.

Apart from the expense of using a thermal storage network as previously described, two other
aspects are compensated by the total cost: One is the cost of energy used for functioning in data centers,
and the other is the cost of connectivity for consumers close to cloud proxies and data centers. They
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believe that the marginal cost of producing renewable energy is zero, thereby encouraging the data
centers to use as much as feasible, to encourage the use of green energy from renewables.

The quality of conventional brown energy generated from the grid ranges from place to time and
relies on the wholesale power sector. qi(t) denotes the renewable energy price that is purchased in time
T at the DCi data center on the wholesale electricity market varies in time and depending on the venue.

Hence, it is analyzed that 0 ≤ qi(t) ≤ qmax
i for all periods T and qmax

i ≥ γi/ηi is sectored based on
the total power consumption of the data center, which can be related to Equation (11)

(1− ∝)prest
i + ∝ pworking

i (11)

where prest
i power consumption in the idle state of the system, pworking

i power consumption in the
working state of the system.

4. SSPD-HG Approach

The algorithm for SSPD-HG is given as follows,

1. The thermal energy queues analyze this continuously based on the unpredictable circumstances
as denoted as (sl(t), ql(t)Xa

k(t), ∀a, l, k), which can be modeled in Equation (12)

0 ≤ Ri(t) ≤ Rmax
i ,∀l (12)

2. The vector (sl(t), ql(t)Xa
k(t), ∀a, l, k) is the periods and constant ∅ such that δ+ ω1εΩ has the

workload line length that satisfies the unpredictable circumstances process.

M ≤
B1V + B2

ω
(13)

0 ≤ Ri(t) ≤ Rmax
i ,∀l (14)

The test SSPD-HG under specific (sl(t), ql(t)Xa
k(t), ∀a, l, k) for assessing thermal storage costs in

terms of operating cost efficiency. The energy queue for each job and the processing state are shown in
Figure 5. The operational cost saving is lower with the rise of the thermal storage cost factor. SSPD-HG
does not use thermal storage at all, and the delay resistance scheduling based on the regional load
balancing for the contribution of costs savings
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Developing an SSPD-HG approach for a certain chromosome would significantly improve the
speed of the algorithm. Once the sequence of the work is set, it reduces the total completion time as
soon as it is available based on the idle state conditions of the machine. For this particular solution, the
SSPD-HG method has an optimal completion time and high energy usage. Certain non-dominated
solutions are available by slowly decreasing energy consumption rates (despite the overall completion
period increase) and by reducing the total completion time from the solution and moving the jobs back
after the implementation of their completion time to the starting time of the next mission. This method
decreases the idle time-consuming resources and raises the start-up time based on the configuration
energy, which is independent of the length of the setup cycle.

The development of heuristic solutions for a certain chromosome would increase the performance
of the algorithm substantially. When the order of the task is set, the next job is completed if necessary.
Further, the machine stays idle, hence, it further decreases the overall completion time because the
order of work is known. This solution has an optimal completion time for this particular solution and
comparable energy consumption based on the idle time-consuming resources. Many non-dominated
solutions can be achieved by reducing energy consumption gradually (although the total completion
time can increase), beginning with the solution that minimizes the overall completion time and moving
the jobs back after deployment until the start time of the next job corresponds to their completion
times. After implementation, all jobs go back to a third job, and continue to another set-up. In addition,
differences in bandwidth rates between users and data centers are taken into account and analyzed
at lab scale using SSPD-HG for energy-saving costs and managing a balanced workload, which is
discussed below.

5. Results and Discussion

Through increasing the crossover rate from 0 to 2, the output metric varies according to the
crossover rate. The optimum convergence rates vary according to the number of jobs listed, the skill
for a low, medium, and high number of jobs with the same characteristics (20, 40, and 60, respectively),
as shown in Table 1.

Table 1. Total number of crossover and total number of jobs.

Rate of Cross over N = 20 (× 104) N = 40 (× 104) N = 60 (× 104)

0 6.542 2.632 5.213

0.2 7.856 1.925 4.653

0.4 6.565 1.825 3.256

0.6 7.120 1.725 4.988

0.8 6.253 1.956 4.215

1.0 6.4654 1.985 4.325

1.2 5.6456 1.8456 3.564

1.4 5.647 1.564 3.562

1.6 6.988 1.243 3.6256

1.8 5.999 1.645 4.265

2.0 6.898 1.856 4.653

The optimum crossover rate of 0.8 numerical factor has been analyzed with the same values that
allow us to perform the same type of experiment to determine the optimum number of individual’s
K in a generation as a function of the number of works to be done, as shown in Figure 6. Hence, a
smaller batch, 25 with reasonable solutions of consistency, has been chosen and depicted in Figure 6.
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If there is a change in the number of generations, the rate of convergence and the number of
people within a generation, it can be seen that the optimal number of generations exceeds the highest
allowable number of people, as shown in Figure 7. It ensures that the number of generations is reduced
to 40 years.Sustainability. 2020, 9, x FOR PEER REVIEW 10 of 14 
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In the change in the number of generations and the number of people in a group, we can see
that the optimal number of generations is at the maximum allowable amount of 200 as shown in
Table 2. Since the thermal storage can help to reduce the total electricity cost, while SSPD-HG takes
into consideration the time-limited price of electricity, this is intermittent and does not work until the
energy price is low enough.



Sustainability 2020, 12, 3140 11 of 14

Table 2. Number of generation and the total number of jobs.

K N = 20 (× 104) N = 40 (× 104) N = 60 (× 104)

20 7.8562 2.3526 4.652

40 6.524 1.675 4.562

60 5.952 1.865 3.1526

80 6.532 1.956 3.256

100 6.452 1.56 3.4235

120 8.563 1.456 3.325

140 7.652 1.788 3.352

160 8.152 1.88 3.2567

180 7.652 1.7765 3.967

200 8.652 1.7568 4.0125

As a result, the number of generations will be limited to 60 generations, as shown in Figure 8.
SSPD-HG runs using the second fitness function with specific number of jobs are evaluating the
optimum value of the other parameters. With the optimal set of parameters, we can use the same
parameters to equate two fitness functions and adjust the number of jobs.Sustainability. 2020, 9, x FOR PEER REVIEW 11 of 14 
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SSPD-HG is the approach that permits a consumer to solve the total completion time of a job or
task by the machine and the workload management. Other issues with overlapping goals in different
operating conditions (i.e., with specific preparation priorities and multi machines) need to be addressed.
The total number of jobs and the rate of crossover gives the workload management of the data centers
for each job, as shown in Figure 9
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Total completion and total energy target varied between 0 and 4260, respectively (where all jobs
are scheduled for the maximum start date after work). The ratio has bene chosen between a collection
of non-dominated options based on different parameters and sub-criteria, for the best alternative
solutions. Hence, the number of generations for each job is shown in Table 3.

Table 3. Total Number of generation Vs Number of Jobs.

Generation Number N = 20 (× 104) N = 40 (× 104) N = 60 (× 104)

20 9.542 8.956 5.264

40 8.568 7.652 5.265

60 6.253 6.526 4.256

80 5.265 6.586 4.2366

100 5.3265 6.325 3.256

120 5.1425 6.458 3.256

140 5.125 5.565 3.564

160 4.568 5.242 3.458

180 4.652 5.155 2.965

200 4.864 5.235 2.846

The decision-maker requires a hierarchy of requirements and subscriptions to organize the
problem. In order to determine the importance of each option for consideration, the subject must
also provide a summary of the parameters to pairs. The comparison is done between the number of
jobs and number of generations. Instead, when taking bandwidth costs into account, the SSPD-HG
algorithm with the basic systems has the cost for bandwidth, which is negligible in our situation
because all operating loads are diverted to the closest data centers. Hence, the SSPD-HG can achieve
the largest total operating cost savings by considering the different bandwidth costs between proxies
and data centers.

The production management is able to select from the 105 non-dominated solutions based on
their choice, using the 220-employee question, as shown in Figure 10. Here, each data center has a
thermal storage system installed based on the optimal section based on the number of generation vs.
jobs. During this time, the optimal charge and discharge condition has the system that becomes the
peak refreshing energy consumption.
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6. Conclusion and Future Work

This study provides a guide for manufacturing practitioners to incorporate green engineering
planning and sustainable technologies in an age where environmentally-friendly industrial practices
are very valued. Our purpose is to build a mechanism through which a decision-maker could choose
the most effective schedule at a reasonable level of energy consumption. The problem of a micro
combination of total energy consumption and total production time is a complicated one, and it takes
considerable time to find the right solution. The developed multi-target genetic algorithm provides
a good approximate value in a reasonable time. Hence, the SSPD-HG is the first approach to solve
the total energy completion time problem for a device. Nevertheless, other issues with overlapping
priorities in different operating environments (i.e., different programming goals and several machines)
need to be explored. For instance, where consideration is given to other scheduling objects, where
formulations can be dramatically changed on a single machine. Hence, the approach to the solution
will be identical with the exception of an estimated Pareto front scheduling system and the SSPD-HG
approach may vary according to the type of plan purpose.

Author Contributions: Conceptualization, Z.H.; Formal analysis, P.P. and R.G.C.; Investigation, P.P. and Z.H.;
Methodology, R.G.C.; Project administration, Z.H.; Resources, P.P., Z.H. and O.S.M.; Software, Z.H.; Supervision,
O.S.M.; Validation, R.G.C.; Visualization, P.P.; Writing—original draft, Z.H. All authors have read and agreed to
the published version of the manuscript.
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