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Abstract: Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP)
systems. Because EHP systems show their best performance at optimum charge, predicting the RCA
is important. There has been considerable development of data-driven techniques for predicting RCA;
however, the current data-driven approaches for estimating RCA suffer from poor generalization and
overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a
basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing
data-driven approaches. The data for designing models were collected from two EHP systems with
different specifications, which were used for the training and testing of models. In addition to the data
obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties
as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction
performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model
training and model testing, the hybrid DNN model has a 6% prediction performance difference,
indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves
data-driven approaches and can be used for designing efficient and energy-saving EHP systems.

Keywords: building energy; energy use; energy efficiency; prediction model; deep neural network;
electric heat pump; refrigerant charge amount

1. Introduction

The refrigerant charge amount (RCA), which plays an important role in the effective operation of
an air-conditioning system, is one of the primary parameters that influence energy consumption in an
electric heat pump (EHP) [1]. Non-optimal maintenance and operation of air conditioning systems
such as the undercharging or overcharging of refrigerants contribute either directly or indirectly
to the inefficient system operation, increased power consumption, and high maintenance cost of
air-conditioners (ACs) [2–4]. To compare the performance of ACs, experiments were conducted under
a range of charging conditions [5,6]. Depending on the units and operating conditions, the results of
laboratory data analysis demonstrate that the effect of improper RCA on system capacity varies because
a lower RCA was observed to cause a significant reduction in both cooling and heating capacity [7].
Braun [8] reported that a 25% reduction in RCA reduced the average energy efficiency of ACs by ~15%
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and decreased the capacity by ~20%; moreover, improper RCA can further reduce the efficiency of
on-site ACs by 10–20% [9].

In a field study, the refrigerant was improperly charged for ~50% of the on-site heating, ventilating,
and air-conditioning (HVAC) systems [8,10]. Furthermore, more than half of the residential cooling
systems showed improper RCA problems [8]. For the long-term operation of systems, mechanical
wear or improper maintenance could lead to refrigerant leakage or overcharge, which, in turn, resulted
in reduced system operation efficacy and increased energy consumption [11]. Moreover, improper
RCA can result in decreased system performance, increased energy consumption, and reduced life
span of the system [12]. In the long run, from an economic point of view, improper RCA can lead to an
increase in the operational cost of a building system; thus, if the RCA of a running system in a building
can be effectively estimated, it can be positively used to solve the abovementioned problems.

The topic of RCA detection is not widely discussed in the literature and only a few studies have
been conducted for detecting RCA [13–17]. For example, a polynomial expression-based RCA detection
algorithm was developed using only subcooling. The results showed relatively good predictions within
a relative deviation of 8.0% [13]; however, although approaches based on mathematical expression
models allow accurate predictions of RCA, they are often designed for individual systems, thus
making their applications on other on-site EHP systems difficult [2,14]. Moreover, they may require
several sensors to implement, thus leading to increase in cost. Other studies report data-driven
methods for improving the prediction capabilities of virtual refrigerant charge (VRC) sensors, which
are inexpensive and noninvasive measurement devices developed to estimate RCA in packaged
ACs [15–17]. For instance, to improve the prediction performance of VRC sensors of a variable
refrigerant flow (VRF) system, a study by Li, Hu, Chen, et al. [15] used multiple linear regression and
non-linear support vector regression; however, VRC sensors suffer from difficulties in estimating the
RCA in systems that use accumulators [18].

Algorithms based on artificial neural network (ANN) are extensively applied for estimating RCA.
Guo, Li, Chen, et al. [19] developed a backpropagation neural network for the fault diagnosis of a VRF
system in the heating mode. The model showed a fault detection accuracy of 90%. Similarly, Son, Nam,
Kang, et al. [20] developed an algorithm that detects the appropriate levels of RCA for multi-split VRF
systems using a feed-forward backpropagation neural network. While ANNs show significant success
in fault detection and diagnostics (FDD) of HVAC systems, they are still prone to poor generalization
and overfitting [21,22]; consequently, ANN implementation for predicting the RCA is still a challenge.
Shi et al. [21] attempted to address the issue of poor generalization of ANN models using Bayesian
regulation for the fault diagnosis of a VRF system.

In this study, an approach incorporating a DNN model and a thermodynamic model is proposed.
This approach is validated using experimental data obtained from an EHP system with different
specifications compared to those of the EHP system used for model development. By verifying the
predictive performance of the developed model, we identified whether a novel approach can address
the overfitting and generalization issues faced in previous studies on RCA prediction.

The remainder of this paper is organized as follows. Section 2 discusses the model development
strategy along with a description of the DNN and thermodynamic model. Moreover, the details of the
experimental setup, including EHP systems and measurement conditions, as well as the description of
measured data, are presented in Section 2. Section 3 describes the correlation analysis of measured
variables and the comparative analysis of prediction performances on developed models. Finally, both
the discussion and conclusion are mentioned in Sections 4 and 5, respectively.
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2. Methods

2.1. Experimental Setup

2.1.1. Electric Heat Pumps (EHPs)

The psychrometric calorimeter test facility comprised both indoor and outdoor chambers.
The variables associated with refrigerant temperatures have been experimentally measured under
variable experimental conditions in a psychrometric calorimeter test facility. Moreover, the specifications
of the heat pump systems for both cooling and heating modes were identified. Regarding the EHP
system used for training the model, Table 1 lists the capacity, power, and current for both cooling and
heating. The system comprises indoor (Model number: AC145RN4PBH1) and outdoor units (Model
number: AC145RX4PHH3). The operating temperature of the outdoor unit is −15–50 ◦C in the cooling
mode and −25–24 ◦C in the heating mode. Moreover, the actual capacity of the compressor is 4.12 kW.
In the EHP system, a liquid pipe with an internal diameter of 9.52 mm and a gas pipe having an
internal diameter of 15.88 mm were installed. The refrigerant used in the system was R410a, one of
the major alternatives to R22; moreover, an electronic expansion valve (EEV) was used to operate the
refrigerant in the system.

Table 1. The specifications of the electric heat pump (EHP) system for model development.

Capacity (kW) Power (kW) Current (A)

Cooling Heating Cooling Heating Cooling Heating

Minimum 4.3 4 0.8 0.69 2 1.5
Standard 14.5 16.7 4.8 4.8 7.8 7.7

Maximum 17.4 19.5 6.5 7.5 10.3 12

Figure 1 shows the schematic of the EHP system for model development. It shows both physical
connections and placement of the components such as the outdoor fan motors, indoor fan motors,
heat exchangers, compressors, accumulators, and valves. Moreover, the valve types include EEVs
used for refrigerant operation, four-way solenoid valve used for controlling the flow rate of the chilled
water flowing into the heat exchanger, and service valves used for liquid and gas pipes. The four-way
valve caused the chilled water to flow more into the heat exchanger when the ambient temperature
increased. The heat exchangers were divided into the primary and sub heat exchangers; moreover, the
temperature of the refrigerant at the inlet, inside, and the outlet were measured. Note that the system
operates on a single compressor.

Using 204-type NTC thermistors, the temperature of the refrigerant at the outlet and top of the
compressor was measured, and the refrigerant temperature at the condenser and heat exchanger
were measured using 103-type NTC thermistors. As shown in Figure 1, the outdoor dry-bulb
temperature, indoor dry-bulb temperature, and indoor wet-bulb temperature were measured, while
the T-type thermocouples were used as measurement sensors. Table 2 lists the specifications of the
experimental apparatus.

For testing the model, the capacity, power, and current of the EHP system were identified. Table 3
lists the minimum, standard, and maximum values for each specification. Table 3 also shows that the
standard capacities of EHP systems for model training and testing have the same value; however, they
differ in power consumption. The testing system comprises indoor (Model number: AC145JN4PBH1)
and outdoor units (Model number: AC145KX4PHH3). The internal diameters of the liquid and gas
pipes of the EHP system for the model testing were 9.52 and 15.88 mm, respectively; these values are
equal to the diameters of the EHP system used for developing the model. For refrigerants, we used the
same R410a used in the EHP system as that for model development.
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Table 2. The specifications of experimental apparatus.

Apparatus Uncertainties Calibration Range Resistance Value at 25 ◦C

T-type thermocouple ±0.5 [◦C] −10–125 [◦C]
204-type NTC thermistor ±T [%] −40–150 [◦C] 200 [kOhms]
103-type NTC thermistor ±TC [%] −55–155 [◦C] 10 [kOhms]

Table 3. The specifications of the EHP system for model test.

Capacity (kW) Power (kW) Current (A)

Cooling Heating Cooling Heating Cooling Heating

Minimum 3.7 4.1 0.95 0.71 2 1.5
Standard 14.5 16.7 4.5 4.55 7.3 7.4

Maximum 16.7 19.5 6.4 7 10.1 11.5

Figure 1. Schematic of the EHP system for model development and outdoor unit system (Outdoor
Unit image was obtained from [23]).

2.1.2. Experimental Conditions

Under various RCAs, experimental conditions were set to measure variables associated with the
compressor, condenser, and evaporator. Table 4 shows TOdB, TIdB, TIwB, and RCA values for each
of the seven conditions from A to G. Under all experimental conditions, the undercharge, normal
charge, and overcharge states of the RCA were set, and the states ranged from 60% to 120% with a
12% interval between successive states. Moreover, in the laboratory, the cooling mode of the EHP
system was implemented. For most systems, the nominal RCA at rated conditions can be determined
in the cooling mode [1,15]. Condition A–C show that TIdB is higher than TOdB, whereas conditions
E–G show the state where the TOdB is higher than TIdB. For condition D, both TIdB and TOdB are set
to 27 ◦C. As shown in Table 4, TOdB, TIdB, and ID WB ranged from 5 ◦C to 43 ◦C, 20 ◦C to 32 ◦C, and



Sustainability 2020, 12, 2914 5 of 23

15 ◦C to 27.5 ◦C, respectively. Moreover, most of the on-site installed EHP systems were found to be
installed under the environmental condition of TOdB being < 40 ◦C. Under experimental conditions,
the TOdB from 5 ◦C to 43 ◦C was used to predict RCA in a wider range compared to the temperature
range readily accessible at most sites.

Table 4. Experimental conditions of the EHP system for model development.

Outdoor Dry-Bulb
Temperature (◦C)

Indoor Dry-Bulb
Temperature (◦C)

Indoor Wet-Bulb
Temperature (◦C)

Refrigerant Charge
Amount (%)

Condition A 5 20 15

60–120
(with a 12% interval)

Condition B 5 32 27.5

Condition C 15 20 15

Condition D 27 27 19

Condition E 35 27 25.7

Condition F 43 20 15

Condition G 43 32 27.5

2.2. Data Collection

To easily apply the proposed approach in on-site systems, all experimental results were collected
using sensors and data loggers. The data measurement interval of the sensors was 10 s. For the training
dataset, in addition to the 42 static state data, 2381 dynamic state data were added to the training
dataset; however, for the testing dataset, a total of 18 data were measured when the RCA was 60%,
70%, and 100%. Finally, the training dataset had 2423 entries while the testing datasets had 18 entries.

Table 5 lists the details of the 22 selected variables. These features were used as input variables
to develop the DNN-based RCA prediction models. ∆Tcond and ∆Tcomp were calculated as the
difference between the Tcond,out and TOdB and the difference between Tcomp,out and TOdB, respectively.
The dataset for developing the basic DNN model was obtained based on the variables measured
with the sensors. The thermodynamic properties of the refrigerant in the compressor, condenser,
and evaporator were obtained using a thermodynamic model based on measured variables. For
the compressor, the refrigerant temperature, pressure, enthalpy, entropy, and superheat at the inlet
and outlet were estimated for model development. Note that refrigerant enthalpies at compressor
outlet (hcomp,out, Scomp,out) were the values assumed to be isentropic. Scomp,out is the value obtained
when 100% efficiency of the isentropic was applied. The superheat of refrigerant was calculated as
the difference between the saturation temperature corresponding to the refrigerant pressure at the
compressor outlet and Tcomp,out. Moreover, for the condenser, the pressure, enthalpy, and subcooling
of the refrigerant at the outlet were calculated using the thermodynamic model. The subcooling of
the refrigerant was calculated as the difference between saturation temperature, corresponding to
refrigerant pressure at the compressor outlet and condenser outlet. Moreover, the dry-bulb temperature
and the pressure of the refrigerant at the evaporator inlet were estimated; ∆P and ∆h were calculated
as the difference in the refrigerant pressure and enthalpy in the compressor, condenser, and evaporator.
The variables measured under various experimental conditions and the thermodynamic properties
obtained through the thermodynamic model using these variables constitute the dataset required for
implementing the hybrid DNN model.
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Table 5. Abbreviations of the selected variables.

No. Abbreviation Name of Variable Unit Acquisition Method

1 hcomp,in Refrigerant enthalpy at compressor inlet kJ/kg Thermodynamic model
2 hcomp,out Refrigerant enthalpy at compressor outlet kJ/kg Thermodynamic model
3 hcond,out Refrigerant enthalpy at condenser outlet kJ/kg Thermodynamic model
4 Pcomp,in Refrigerant pressure at compressor inlet kPa Thermodynamic model
5 Pcomp,out Refrigerant pressure at compressor outlet kPa Thermodynamic model
6 Pcond,out Refrigerant pressure at condenser outlet kPa Thermodynamic model
7 Pevap,in Refrigerant pressure at evaporator inlet kPa Thermodynamic model
8 Scomp,in Refrigerant entropy at compressor inlet kJ/kgK Thermodynamic model
9 Scomp,out Refrigerant entropy at compressor outlet kJ/kgK Thermodynamic model

10 Tcomp,in Refrigerant temperature at compressor inlet ◦C Thermodynamic model
11 Tcomp,out Refrigerant temperature at compressor outlet ◦C Measurement
12 Tcond,out Refrigerant temperature at condenser outlet ◦C Measurement
13 TdB,evap,in Dry-bulb temperature at evaporator inlet ◦C Thermodynamic model
14 Tevap,in Refrigerant temperature at evaporator inlet ◦C Measurement
15 TIdB Indoor dry-bulb temperature ◦C Measurement
16 TOdB Outdoor dry-bulb temperature ◦C Measurement
17 Tsc Refrigerant subcooling at condenser outlet ◦C Thermodynamic model
18 Tsh Refrigerant superheat at compressor outlet ◦C Thermodynamic model
19 ∆h kJ/kg hcond,out–hcomp,out
20 ∆P kPa Pcomp,out–Pcomp,in
21 ∆Tcomp

◦C Tcomp,out–TOdB
22 ∆Tcond

◦C Tcond,out–TOdB

2.3. Thermodynamic Model

Thermodynamic properties such as pressure, density, heat capacity, enthalpy, and entropy, which
are obtained through a thermodynamic model, are important for determining the performance of EHP
systems. Moreover, they are required for simplifying equipment operation and design [24]. In this
study, the National Institute of Standards and Technology (NIST) REFPROP program was used as a
thermodynamic model to obtain the abovementioned properties. Moreover, this model is referred to
as a white-box model because it clearly explains the influencing input variables and how the outcomes
are obtained. The following sections explain the combination of this thermodynamic model with
a DNN model to make a hybrid model that increases the number of variables and RCA prediction
performance. The NIST REFPROP program, which has different coefficients and exponents for each
mixture, uses the equation of state (EoS) to calculate the thermodynamic properties of RCA mixtures
with different compositions. The calculated RCA values demonstrated that experimental data could
be reproduced within the reliable experimental uncertainty of the data [25,26]. For thermodynamic
properties such as density, the results conform with experimental data [27].

The EoS, expressed in terms of Helmholtz energy, has been extensively used as a reference equation
to calculate the thermodynamic properties for multiple refrigerant mixtures [28]. The equations could
be used to calculate the thermodynamic properties of the mixture in various compositions. These
equations and their computational usage have been incorporated into the NIST REFPROP database.
While properties obtained using fluid-specific correlations cannot be denied, NIST REFPROP proved
to produce reliable performance [29]. The estimated uncertainties of calculated properties are 0.1% in
density and 0.5% in heat capacity [30]. The NSIT REFPROP results showed good agreement compared
with experimental data of Ar and C3H8 [31]. Kim and Shin [32] and Haung, Ding, Hu, et al. [33]
confirmed the enthalpy, temperature, pressure, and mass flow values using NIST REFPROP. An
error range of ±0.2% was discovered compared to experimental data. In this study, thermodynamic
properties were calculated through mixture equations presented in NIST REFPROP by reflecting the
characteristics of R32 and R125, which constitute the mixture R410a, which has received considerable
attention and has been increasingly used as a working fluid in many air-conditioning and heat pump
applications [34,35]. Appendix A presents the details of the thermodynamic model.
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2.4. Deep Neural Network Model

2.4.1. Deep Neural Network (DNN)

To ensure the algorithm works better, traditional machine learning algorithms require the user’s
knowledge about the data and the machine-learning algorithm. Moreover, these algorithms are
prone to overfitting and less generalization ability because the data amount increases; however, deep
learning has the potential to overcome drawbacks of using traditional machine learning algorithms
by discovering the intricate structure in data sets using backpropagation algorithms [36,37]. Major
advances in deep learning have been made for addressing challenges that have resisted the best
attempts of the machine learning community for many years [38]. Using deep structures, rather than
shallow ones, DNN is able to capture useful information from raw data and approximate complex
non-linear functions with a small error [39]; hence, we adopted DNN in this study.

DNN models are capable of learning high complex patterns within the presented data and
provide a scope for reducing the generalization error. Figure 2 shows a typical architecture of a DNN
model, which is composed of one input layer, several hidden layers, and a single output layer. This
architecture permits incremental learning and the layer-by-layer manner in which increasing complex
representations are developed and jointly learned.

Figure 2. A Deep Neural Network (DNN) algorithm.

During the DNN training process, neurons weights and biases are updated and adjusted using
the supervised learning backpropagation and optimization technique such as stochastic gradient
descent [40]. The activation functions of hidden layers play a major role for mapping the nonlinear
relationship between both input and output. Therefore, without the activation functions, non-linear
patterns among variables cannot be learned [41]. The nonlinear activation function, f, is detailed in
Equation (1). α represents the weighted combination and b represents activation thresholds of neurons.
Both xi and wi represent the neuron’s input values and weights, respectively.

Of the activation functions, Rectifier, Tanh, and Maxout have recently been used for implementing
the most accurate prediction performance in DNN and have been effectively applied [42]. The formula
for Rectifier, Tanh, and Maxout are denoted as Equations (2), (3), and (4), respectively.

f(α)= f

 n∑
i=1

wixi+b

 (1)

f(α)= max(0,α) (2)
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f(α) =
eα−e−α

eα+e−α
(3)

f(α1,α2)= max(α1,α2) (4)

To avoid overfitting and increase the generalizability in DNN, regularization techniques such
as dropouts and weight regularizers are used. The use of dropouts is a technique where randomly
selected neurons are ignored during the training process [43]. If the neurons randomly drop out during
training, they are prevented from overlearning or co-adapting; consequently, the developed model has
a low generalization error. Using L1 (Lasso) and L2 (Ridge), weight regularization can be achieved.
These are used to add stability and improve generalization by setting the values of multiple weights to
smaller values. L1 and L2 enforce penalties and modify the loss function by minimizing them [44,45].
The regularization process of L1 and L2 is denoted in Equation (5). The size of penalty is determined by
hyperparameters λ1 and λ2. R1(W, B|j) and R2(W, B|j) show the sum of the absolute values of weights
and the sum of the squared weights, respectively. The penalty is performed by adding λ1R1(W, B|j)
and λ2R2(W, B|j) to the result of loss function.

L′(W, B|j)= L(W, B|j)+λ1R1(W, B|j)+λ2R2(W, B|j) (5)

2.4.2. Model development

Figure 3 shows the developmental structure of basic DNN and hybrid DNN models that predict
RCA for EHP systems. The basic DNN model is a typical black-box model developed with experimental
modeling techniques that use only measured data. However, a hybrid DNN model is a gray-box model
combining a black-box model and a white-box model. In addition to the measured data, the hybrid DNN
model uses thermodynamic properties calculated using the thermodynamic model. The measured data
are outdoor dry-bulb temperature (TOdB), indoor dry-bulb temperature (TIdB), refrigerant temperature
at evaporation inlet (Tevap,in), refrigerant temperature at compressor outlet (Tcomp,out), and refrigerant
temperature at condenser outlet (Tcond,out). Section 2.3 discusses the thermodynamic properties in
detail. All data used for designing the models were collected from two EHP systems with different
specifications. The data from one EHP was used for training, whereas that from the other EHP was
used for testing. To remove missing and null values, data fitting was performed via statistical methods
such as cumulative histogram, scatter plots, and box plots. The testing dataset was used to evaluate
the performance and generalizability of the developed prediction models. The optimal parameters
of DNN used for developing both prediction models were selected using a Cartesian random search.
Parameters such as the number of hidden layers and activation functions were optimized using a
random search; the process is discussed in Section 2.4.3 in detail. In terms of computational capacity,
the workstation used for model development and testing has an NVIDIA GeForce GT 710 graphics
processing unit (GPU), Intel®core™i5-7500 central processing unit (CPU) with a processor of 3.4GHz
and a memory of 32GB. The computational time for model development was approximately 1 hour for
the basic DNN model and 2 hours for the hybrid DNN model.

2.4.3. Model Optimization and Evaluation

For deep learning, the DNN hyperparameters required for achieving the model learning process can
considerably affect model performance; however, because of the complexity of the data to be analyzed
increased, tuning hyperparameters has become an intractable task [46]. These hyperparameters include
the number of hidden layers, the number of neurons in each layer, the maximum number of epochs,
loss function, optimizer, learning rate, and regularization method. A good model uses the optimal
combination of these hyperparameters and achieves good generalization capability.

Using both manual and automatic approaches, DNN hyperparameters are adjusted [47]. The
manual approach, which is tedious, is based on expert knowledge where the expert inspects how the
hyperparameters affect the performance of the model. Moreover, the search space expands exponentially
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with respect to the number of hyperparameters. Automatic hyperparameter optimization uses
algorithms that combine a list of the hyperparameters. Grid search and Random search are two popular
algorithms. Grid search evaluates every model corresponding to each hyperparameters combination
provided in the list, whereas Random search tries random combinations of the hyperparameters to
identify the best model. This study used Random search because it helps identify models that are as
good as the models obtained by Grid search within minimal computation time [47].

Figure 3. Model development strategy.

Previously, studies have reported a simple mathematical formula (Equation (6)) that determines
the number of neurons in hidden layers [48,49]. Thus, Equation (6) was used to set the minimum
number of neurons in the hyperparameters list in Random search for the basic and hybrid DNN
models: 15 neurons and 45 neurons were obtained, and 7 and 22 inputs were used to develop the basic
and hybrid DNN models, respectively.

Number of neurons = 2n + 1, n = number of inputs (6)

For both DNN models, the number of hidden layers ranged from 2 to 6. The maximum number of
epochs was set to 1000 epochs. The lists of activation functions included Rectifier, Tanh, and Maxout,
and L1 and L2 regularization were used to identify the best regularizer.

The models were evaluated using the coefficient of determination (R2) and root mean squared
error (RMSE). A good model uses the highest R2 and lowest RMSE in both the training and testing
dataset. Equations (7) and (8) describe the calculations of R2 and RMSE, where yk and ŷk are the actual
and predicted values at step k, respectively.
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RMSE =

√∑n
k=1 (y k − ŷk

)2

n
(7)

R2 = 1−


∑n

k=1(yk − ŷk)
2∑n

k=1(yk − yk)
2

 (8)

3. Results

3.1. Relationship between Measured Variables and RCA

The relationship between the measured variables and RCA under various experimental conditions
was measured (Table 4) and discussed in Section 2.1.2. Table 6 shows the Pearson correlation coefficient
(R) values between the measured variables and RCA. The value of R ranges from −1 to 1; the
sign of the correlation coefficient indicates the direction of the relationship (positive or negative).
The strength of the relationship is proportional to how close the R value is to −1 or 1. In this study,
statistical significance was determined at P > 0.01; moreover, all the measured variables (i.e., Tevap,in,
Tcond,out, Tcomp,out) correlated with RCA and the correlations were statistically significant (P > 0.001)
except for the relationship between RCA and Tcomp,out under experimental condition B (R = 0.103,
P < 0.001). Moreover, results showed that Tevap,in is positively correlated with RCA, whereas Tcond,out

and Tcomp,out were negatively correlated with RCA under all experimental conditions. For example,
under experimental condition A, R between RCA and Tevap,in, RCA and Cond, and RCA and Tcomp,out

were 0.917, −0.477, and −0.894, respectively. To summarize, the strongest correlations were observed
between RCA and Tevap,in, followed by RCA and Tcond,out and RCA and Tcomp,out. For example, R
between RCA and Tevap,in were > 0.70 under all experimental conditions except for experimental
conditions B, C, and E. Similarly, R between RCA and Tcond,out was > 0.70 under all experimental
conditions except for experimental conditions B, C, and F. However, R between RCA and Tcomp,out was
< 0.70 under all experimental conditions except for experimental conditions D, F, and G. Moreover, we
observed that R between RCA and all the three measured variables (i.e., Tevap,in, Cond, Tcomp,out) was
> 0.70 under experimental conditions D and G.

Table 6. Correlation matrix of measured variables.

Evaporator Inlet
Temperature (◦C)

Compressor Outlet
Temperature (◦C)

Condenser Outlet
Temperature (◦C)

Refrigerant charge amount (RCA) at
condition A 0.917 * −0.477 * −0.894 *

Refrigerant charge amount (RCA) at
condition B 0.453 * 0.103 −0.591 *

Refrigerant charge amount (RCA) at
condition C 0.319 * −0.308 * −0.513 *

Refrigerant charge amount (RCA) at
condition D 0.804 * −0.758 * −0.945 *

Refrigerant charge amount (RCA) at
condition E 0.668 * −0.483 * −0.801 *

Refrigerant charge amount (RCA) at
condition F 0.866 * −0.853 * −0.473 *

Refrigerant charge amount (RCA) at
condition G 0.801 * −0.741 * −0.882 *

Correlations > 0.700 indicated in italics * Correlation is significant at the 0.01 level (2-tailed).
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3.2. Prediction Performance

3.2.1. Random Search Results

For neural network-based algorithms, in each hidden layer, the number of neurons has considerable
influence on the prediction performance of developed predictive models. Generally, the number
of neurons in input and output layers is the same as the number of input and output variables,
respectively; however, there are no standard rules for determining the appropriate number of neurons
per hidden layer [50]. To determine the optimal number of neurons in each hidden layer, empirical
approaches have been determined. Subsequently, studies have developed simple mathematical formula
to determine the number of neurons in hidden layers (i.e., 2n + 1) [48,49]. In this study, such a formula
was used to determine the minimum number of neurons in hidden layers. Based on the formula, the
minimum number of neurons for the basic DNN model (7 input variables) and hybrid DNN model (i.e.,
22 input variables) at 15 and 45 neurons were determined. For the basic DNN model, the initial setting
of the parameters model was as follows: the L1 regularization was set to 1 × 10−3, the L2 regularization
was set to 1 × 10−3, the number of epochs was set to 1000, and the activation function was set to
Rectifier. Subsequently, a 5-layer DNN model that included input and output layers was developed.
For this model, the number of neurons was set to 15 neurons based on the abovementioned formulae.
We then iteratively increased the number of neurons by 15 until there was no further increase in R2 or
a decrease in RMSE. For the 5-layer DNN, the optimum performance was found with 75 neurons in
the second and second to the last hidden layers and 150 neurons in the middle layer. These conditions
were maintained as the number of hidden layers was increased; consequently, for all the developed
models, the number of neurons in the second and second to the last hidden layers was 75, whereas
the neurons in the middle layers were maintained at 150 neurons. Consequently, the hidden layers
composed of combinations based on 75 and 150 neurons were used for the random search. In the
random search, hidden layers and training scheme were optimized as follows: (1) the number of
hidden layers (ranging from 2 to 7); (2) the activation function (including Rectifier, Tanh, and Maxout);
(3) the L1 regularization (0, 1e-4, and le-6); and (4) the L2 regularization (0,1e-4, and le-6). For the
activation function, the Rectifier function is the most extensively used; however, Maxout and Tanh
were used for random search to evaluate the change of model prediction performance by various
activation functions. For the hybrid DNN model, the number of neurons was maintained as mentioned
previously. Moreover, the range of parameters determined for the random search was set to the same
value as that of the basic DNN model.

Table 7 shows random search results for both basic DNN and hybrid DNN models. Table 7
shows the top five models with a high prediction performance using R2 and RMSE values among
the models developed via a random search. Moreover, it presents the parameters optimized using
random search. For the basic DNN model, a model developed with Rectifier and two hidden layers
showed optimal prediction performance. Moreover, models developed using Maxout as an activation
function showed a relatively high R2 value; however, models using Tanh as an activation function
showed a reduced predictive performance regardless of the number of hidden layers. In addition
to the basic DNN model, the hybrid DNN model was found to have a relatively reliable predictive
performance when using Rectifier and Maxout as activation functions. Most models developed using
Rectifier and Maxout functions had satisfactory R2 values of > 0.8 regardless of the number of hidden
layers. In particular, models developed with Rectifier as an activation function and using three and six
hidden layers, respectively, had R2 values of > 0.9.

For both basic and hybrid DNN models, models developed with Rectifier showed very reliable
prediction performance. Rectifier, which has good sparsity properties because of its real zero value
and can represent any non-negative real value, has recently been proposed as an efficient activation
function [51]. Moreover, the Rectifier function has been effectively applied to DNN-based prediction
modeling [42,51]. Furthermore, we reported that when not using “dropout” as a parameter, models
developed with Maxout, which works by multiplying the input vector by a matrix, has relatively lower
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predictive performance compared to models developed using the Rectifier function. Furthermore,
compared to the models developed with Rectifier and Maxout functions, models developed with Tanh
have a low predictive performance. This may be attributed to Tanh being a type of sigmoidal activation
function bounded by minimum and maximum values, thus causing saturated neurons in the higher
layers of the neural networks. Consequently, these saturated neurons limit the depth of the neural
network that can be trained.

Table 7. Random search results of developed models.

No. Activation Hidden Layer L1 L2 R2 RMSE

Basic
DNN
model

1 Rectifier (75, 75) 1.5E-5 4.5E-5 0.7217 0.0787
2 Maxout (65, 130, 65) 0.0 7.7E-5 0.6932 0.08
3 Maxout (25, 50, 50, 25) 9.3E-5 5.1E-5 0.6873 0.0808
4 Tanh (65, 65) 2.5E-5 5 8.6E-5 0.6799 0.0817
5 Maxout (65, 130, 130, 65) 3.6E-5 0.0 0.6754 0.0823

Hybrid
DNN
model

1 Rectifier (75, 150, 75) 3.6E-5 7.8E-5 0.9312 0.0395
2 Rectifier (45, 45) 8.6E-5 9.8E-5 0.9211 0.0406
3 Rectifier (75, 75) 2.1E-5 9.9E-5 0.9175 0.0415
4 Tanh (85, 170, 85) 1.3E-5 4.9E-5 0.9172 0.0415
5 Maxout (75, 150, 150, 75) 3.1E-5 8.1E-5 0.9068 0.0441

3.2.2. Prediction Performance on Training Dataset

Figure 4 shows the prediction performance of the developed basic DNN model and hybrid DNN
model under each experimental condition using the training dataset. The x-axis represents the number
of data points and the y-axis represents RCA. The basic DNN and hybrid DNN models can explain
the reason for 96% and 99% of total variance in RCA, respectively. The prediction performance of
developed models differed according to experimental conditions. However, on an average, the basic
DNN model showed a predictive performance of 95%, whereas the hybrid DNN model showed a high
predictive performance of 99% under all conditions except condition A. For the basic DNN model, the
prediction performance was relatively low for experimental conditions A and G; however, it had a
high prediction performance of >98% at experimental conditions B, C, D, and E. Figure 4 shows that,
especially under the experimental condition E, the values predicted through both developed models
were highly similar to measured values.

According to the indoor and outdoor temperature, the experimental conditions can be classified
into three types of cases: the first case indicates conditions when TIdB is higher than TOdB, the second
case indicates conditions when TIdB and TOdB are the same, and the third case indicates conditions
when TOdB is higher than TIdB. The developed models showed a higher predictive performance under
the second case compared to the first and third cases. The developed basic DNN and hybrid DNN
models, under the second case (i.e., TIdB greater than TOdB), could explain the reason for the 98% and
99% of the total variance in RCA, respectively. Moreover, the difference in the predictive accuracy
between the basic DNN model and the hybrid DNN model under the first and second cases was < 1%.
However, under the third class, the predictive accuracy of the hybrid DNN model was 4% higher
compared to the basic DNN model.

Figure 5 shows the RMSE values of development models according to RCA. As shown in Figure 5,
the RMSE gap between the developed models increased as the charge amount increased under
conditions when the charge state is > 84%. The difference in the performance of the two models was
better observed when the RCA was in an overcharge state (i.e., 120%). Moreover, the lowest RMSE
values of 0.0176 and 0.0143 for the basic DNN model and hybrid DNN model, respectively, were
observed at the RCA of 84%. Furthermore, the hybrid DNN model had a RMSE value of <0.04 at all
charge states and showed the lowest RMSE value of 0.006 at a charge state of 108%.
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Figure 4. Comparison of predictive values of developed models for training under various conditions.

3.2.3. Prediction Performance of Testing Datasets

Figure 6 shows the prediction performance of basic DNN and hybrid DNN models. The y-axis
shows the RMSE and R2 values for each model. The results obtained using both training and testing
datasets show that the hybrid DNN model had a relatively higher R2 value and relatively lower RMSE
value compared to the basic DNN model. For the training dataset, the basic DNN model had an R2

value of 0.9646 and a RMSE value of 0.0426; however, the hybrid DNN model had an R2 value of
0.9913 and a RMSE value of 0.0197. For the testing dataset, the basic DNN model had an R2 value of
0.7217 and a RMSE value of 0.0797, whereas the hybrid DNN model had an R2 value of 0.9312 and
a RMSE value of 0.0395. As shown in Figure 6, the prediction performance for the testing dataset is
relatively lesser than that for the training dataset for both models; however, the difference between the
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predictive performance using the training and testing dataset was larger for the basic DNN model
compared to the hybrid DNN model. For example, the difference in prediction performance between
the training dataset and the testing dataset was 24% and 6% for the basic DNN model and the hybrid
DNN model, respectively.

Figure 5. Comparison of the RMSE of developed models for training under various RCA.

Figure 6. Prediction performance of developed models.

Table 8 shows predictive values of models developed using the testing dataset. Because of
verification of the standard deviation of the error between the predicted values and the measured
values, the basic DNN model and the hybrid DNN model had values of 11% and 6%, respectively. The
performance of the developed models under the three categories of the experimental conditions was
analyzed; the first case was when TIdB is higher than TOdB, the second case was when TIdB and TOdB

are the same, and the third case was when TOdB is higher than TIdB. The basic DNN model performed
better (R2 = 96%) under the third class (TOdB > TIdB) compared to the first case (TOdB < TIdB) where R2
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= 87%. Similarly, the hybrid DNN model showed a better predictive performance under the third case
(R2 = 97%) compared to the first case (R2 = 94%).

Table 8. Comparison of predictive values of developed models for testing.

Experimental Condition Refrigerant Charge Amount (%)

Outdoor Dry-Bulb
Temperature (◦C)

Indoor Dry-Bulb
Temperature (◦C)

Indoor Wet-Bulb
Temperature (◦C)

Experimental
Values

Predicted Values
of Basic DNN

Model

Predicted Values
of Hybrid DNN

Model

44.2 31.7 27.5 100 92 99
35.7 26 19 100 96 106
26.6 26.8 25.7 100 112 99
14.6 19 15 100 93 102
4.7 19.5 15 100 95 108

44.2 31 26 70 64 66
44 32.1 27.5 70 71 68

36.1 26.2 24.4 70 66 68
35 26.4 19 70 66 72

27.3 26.2 24.4 70 69 67
27.3 23.1 21.5 70 64 66
26.8 26.8 25.7 70 93 77
15.7 19.6 18.6 70 77 82
15.6 23 21.5 70 79 69
14.7 19.4 15 70 66 70
4.6 19.7 15 70 66 69

15.7 23.2 21.5 60 68 61
15.6 20.1 18.6 60 64 58

For model testing, RCA was set to 60%, 70%, and 100%. Both developed models had the smallest
RMSE error at a charge state of 60% and the largest RMSE at a charge state of 70%. The basic DNN and
hybrid DNN models had RMSE of 6.27% and 1.47% at a charge of 60%, 8.41% and 4.73% at a charge of
70%, and 7.58% and 4.6% at a charge of 100%, respectively. Moreover, the hybrid DNN model had a
smaller RMSE compared to the basic DNN model in all charge states.

4. Discussion

This study reports a hybrid DNN model for predicting the RCA of heat pumps by incorporating a
DNN model and a thermodynamic model. The values predicted using a hybrid DNN model agreed
with the measured values. Recently, estimating the RCA in EHP systems has attracted considerable
interest [15,52]. However, because of the difficulty in developing an appropriate physics-based
estimation model, most estimation algorithms developed in existing studies rely on experimental
modeling [52,53]. The developed physics-based mathematical algorithms showed relatively good
prediction performance with a relative deviation of 8.0% [13]; however, they are often designed for
individual systems and have problems with time and implementation costs. In this study, DNN-based
experimental modeling was performed for RCA prediction using variables measured from on-site
installed systems. Furthermore, a hybrid DNN model using thermodynamic properties obtained
through the theoretical-based thermodynamic model was developed. The hybrid DNN model predicted
RCA with a reliable accuracy of 97% under all seven experimental conditions with different set indoor
and outdoor dry-bulb temperature.

RCA is an important optimization parameter in the EHP system because it considerably affects the
coefficient of performance (COP) and the energy efficiency of the systems positively; therefore, it needs
to be intensively controlled [7,8]. Moreover, because of the emergence of improving the energy efficiency
of VRF systems using a technology built on direct expansion heat pump platform [54,55], efficient
detection and control of RCA is essential. To efficiently control RCA, understanding the exact amount
under various conditions is important. However, except for developing VRC sensors, very few studies
have estimated the exact RCA. However, most studies have focused on developing the FDD strategy to
diagnose fault situations of the EHP system because of faulty RCA via ANN-based learning [20,21,56].
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Moreover, the primary content of diagnosis for fault-related situations is determining the charge
conditions such as undercharge and overcharge [19,21]. In this study, under a wide range of operating
conditions by changing indoor and outdoor temperatures, the exact RCA was predicted. A RMSE value
of <0.04 for all charge states, such as undercharge, normal charge, and overcharge, was confirmed
using a developed model. According to various operating conditions, this approach can be used as
part of an installed control or monitoring system to predict optimal RCA.

Another contribution of this study is related to variables used to study and estimate RCA.
Previously, studies have examined RCA using factors such as outdoor dry bulb temperature and
factors related to subcooling and superheating. These factors are important for estimating RCA,
e.g., the outdoor dry-bulb temperature is essential for determining the fan step of the outdoor unit;
therefore, it has considerable influence on the refrigerant flow in the EHP system [57]. Similarly, both
subcooling and superheating have been reported to significantly affect RCA [2,13,58]. In addition
to factors affecting RCA identified in previous studies [2,13,57,58], this study reveals the effects of
three additional factors (i.e., Tevap,in, Tcond,out, and Tcomp,out) on RCA and shows the relationship
between RCA and these factors under diverse experimental conditions (Section 3.1). Generally, the
RCA was considerably affected by the refrigerant temperature at the evaporator inlet compared to the
refrigerant temperature at compressor and condenser outlets. Furthermore, refrigerant temperature at
evaporator inlet was positively correlated to RCA, whereas refrigerant temperature at both compressor
and condenser outlets was negatively correlated to RCA. This information is useful for developing
predictive models to estimate RCA. One important process for developing predictive models is
the feature selection process; a process that involves determining important factors to be used as
explanatory variables for training the model. In this study, the importance of refrigerant temperature
at evaporator inlet, compressor outlet, and condenser outlet for estimating RCA was identified and
validated. Therefore, future studies on the prediction of RCA should consider these factors (i.e., Tevap,in,
Tcond,out and Tcomp,out) for developing RCA-predictive models.

In this study, the dynamic state data, which may occur during the operation lifecycle of the
commercialized EHP system, were used for the development of the RCA prediction model. The
transient nature of the external inputs to EHP systems resulted in dynamic fluctuations of system
variables. Changes in room temperature and operations of components in the system, such as
compressors and fans, induced transient responses [52]. Therefore, diagnosing the system fault through
RCA prediction at various states such as the dynamic state of the EHP system to be commercialized is
important. In particular, dynamic state data play an important role for accurate RCA prediction in
an EHP system in which an accumulator is installed. However, the VRC sensor has been reported to
have difficulty in estimating RCA for systems using accumulators [18]. When the EHP system is not
running at a low outdoor temperature, the overcharged refrigerant is stored within the accumulator.
Subsequently, the refrigerant stored in the accumulator was not easily released even if the compressor
was restarted and changed to a dynamic state. Note that the VRC sensor made an error and detected
this situation as a refrigerant shortage [12]. This study was conducted in EHP system equipped
with the accumulator and reflected the following experimental conditions: (1) various states of RCA
including undercharge and overcharge; (2) a wide range of temperature conditions, including outdoor
temperature from as low as 5 ◦C to as high as 43 ◦C; and (3) experimental data measured in dynamic
states before reaching the set experimental conditions. Consequently, the developed RCA hybrid DNN
prediction model can cope with various circumstances in an on-site installed EHP system; hence, it
confirms the high prediction performance.

To deal with the overfitting and generalization issues, RCA was predicted by applying a hybrid
DNN model that combines a DNN model and a thermodynamic model to a system having a completely
different specification from the EHP system in which the data used in the model development
were measured. ANN has been continuously used in studies based on FDD for detecting faulty
RCA [19–21,56]. Although the ANN has achieved considerable success in the refrigerant field, it still
has a risk of poor generalization ability and overfitting [21,22]. When overfitting occurs, the developed
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model shows good performance for training data but poor generalization to data acquired from other
systems. In this study, the basic DNN model, a type of black-box model based on experimental
modeling, was developed using only measured data and showed poor generalization ability because
of overfitting. It had a prediction performance of 96% and 72% for model training and model testing,
respectively; however, the hybrid DNN model uses thermodynamic properties calculated through
the thermodynamic model, a type of white-box model based on theoretical modeling, as additional
input variables for model development. The hybrid DNN model had reliable prediction performance
and showed outstanding generalization ability. For model training, it had a RMSE value of 0.0197
and an R2 value of 0.9913. For model testing, it had a RMSE value of 0.0395 and an R2 value
of 0.9312. Consequently, a new approach to RCA prediction developed in this study shows that
DNN and the thermodynamic model can be efficiently applied to overcome overfitting and poor
generalization abilities.

To determine optimal parameters for DNN model development, hidden layers and training
attributes were determined using random search. Parameters such as the number of hidden layers, the
number of neurons in each layer, the number of epochs, and activation functions have considerable
influence on the prediction performance of the DNN model [48–50]. However, determining optimal
parameters for various models is important, and it is tedious to verify the number of all cases using the
trial and error method. The random search is an efficient parameter selection method that provides
developers optimal parameters that are suited for their model. It confirms the minimum error value
for the models developed for all parameter combinations. In this study, the number of hidden layers
and activation function optimized for DNN models were identified. First, the number of hidden layers
(ranging from 2 to 7) and the activation function (Rectifier, Tanh, and Maxout) were specified for
various sets to be researched. Various combinations were then compared and analyzed. Consequently,
Rectifier was confirmed to be an optimized activation function for both the basic DNN model and
the hybrid DNN model, and the optimized number of hidden layers was determined to be 2 and 3,
respectively. The random search saved time compared to the trial and error method and was able to
efficiently identify more various combinations of parameters.

The main practical challenge of our proposed approach is how efficiently it can be generalized to
other systems. The thermodynamic properties used for developing the hybrid model were obtained
based on the NIST REFPROP program, but the applicability of this program in on-site systems with
real-time responses should be investigated. In addition, it is important to note that there are systems
that already measure thermodynamic properties through sensors. When applying the proposed
approach hybrid model, care should be taken to check its suitability for the prediction of energy
demand and COP of EHP systems. If the model can predict energy demand and COP, along with the
RCA of an EHP system, then it is expected to play an important role in terms of system optimization
by reducing energy consumption, improving the system efficiency, and maintaining thermal comfort
of the occupants. Further research on the main challenges mentioned above should be undertaken,
thereby ensuring the generalizability of the proposed approach.

Future directions to be considered would be to test the hybrid DNN model after obtaining
sufficient data from on-site EHP systems. This enables us to identify the generalizability of our
approach. One of the major challenges is how to effectively collect a comprehensive dataset for model
testing in terms of cost and time. This challenge could be partially overcome with the use of transfer
learning. Transfer learning is the application of a pre-trained model during the execution of a primary
task to the execution of a new but similar secondary work [59]. Through transfer learning, our model
based on experimental data could be applied to each EHP system without developing a new model.
Existing previous studies that used transfer learning have found it to be able to obtain faster and more
cost-effective results under the process of a model test [60,61].
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5. Conclusions

This study, which applies the DNN and a thermodynamic model, presents a highly efficient hybrid
DNN model that predicts RCA under various temperature conditions. The measured data from two
different EHP systems were used for training and testing of the models. Furthermore, the prediction
performance of the hybrid DNN model was compared with the basic DNN model developed with
only measured variables without using thermodynamic properties. Based on the results, the following
conclusions were drawn:

(1) The temperature variables such as indoor and outdoor dry-bulb temperature; the refrigerant
temperature at the evaporator inlet, compressor outlet, and condenser outlet; and the difference
between outdoor dry-bulb temperature and refrigerant temperature at outlets of compressor and
condenser are used as input variables for the basic DNN model. For the hybrid DNN model, the
thermodynamic properties, enthalpy, entropy, pressure, superheat, and subcooling, were used as
additional input variables.

(2) For DNN models developed in this study, the hidden layers and training scheme were optimized
using random search. The basic DNN model and hybrid DNN model developed with optimized
parameters have two and three hidden layers, respectively, and having the Rectifier as the
activation function in common.

(3) The new sophisticated RCA prediction model (hybrid DNN model) achieved high accuracy
compared to the basic DNN model. For model testing, the RCA was predicted with a precision of
72% for the basic DNN model and 93% for the hybrid DNN model.

(4) Under various experimental conditions, reliable prediction performance was confirmed with
the hybrid DNN model. For model training, it had an average RMSE error of 2.93% for seven
conditions that reflect different indoor and outdoor temperatures and a RMSE of 3.95% for testing.

(5) The hybrid DNN model showed similar trends under various experimental conditions. For both
training and testing, it had a high predictive performance at a normal charged state (~100%)
than at an undercharged state (~70%). Moreover, it showed higher accuracy in conditions where
outdoor dry-bulb temperature was relatively higher than the indoor dry-bulb temperature.

(6) Overfitting and poor generalization challenges, which were identified as the problems of
conventional ANN, were addressed by the hybrid DNN model. When the developed model
was applied to the new EHP system, the RCA prediction performance decreased by 24% in the
basic DNN model but recorded a decrease of 6% only in the hybrid DNN model. The prediction
performance for model training was 99% and 93% for model testing.

The new approach implemented by combining DNN and the thermodynamic model proved to be
an efficient strategy for RCA prediction in EHP systems. Applying the developed model to commercial
EHP systems may be a good solution for solving the problems that can be attributed to the faulty
RCA operations such as thermal discomfort for the occupants, lower COP, and equipment damage. In
addition, the model, which can efficiently predict RCA with insufficient data, can be applied to new
EHP systems.
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Appendix A. The Details of the Thermodynamic Model

The process presented in NIST REFPROP uses generalized equations, applicable to several
mixtures, based on their corresponding states theory and using reducing parameters that are dependent
on the mole fractions of the mixture [30]. The reducing parameters were used to modify the values of
density and temperature for the mixture. Consequently, equations that use density, temperature, and
composition as independent variables can identify thermodynamic properties using simple derivatives.
Table A1 lists the equations for the mixture.

The sum of Helmholtz energy for an ideal mixture (aidmix) and Helmholtz energy for an excess
property of a mixture (aE), which are defined as the actual mixture property is the mixture Helmholtz
energy (a). The ideal gas Helmholtz energy (a0

i ) and residual Helmholtz energy (ar
i ) for aidmix

calculations and coefficients and exponents of excess function for the mixture Helmholtz energy have
been confirmed in a previous study by Lemmon and Jacobsen [62] Table A2 lists the coefficients and
exponents of the mixture equations. Moreover, for the mixture equations of R410a, ζi j, ξi j, and Fi j
values are 28.95, −0.006008, and 1, respectively. The values of pressure, enthalpy, and entropy used for
model development in this study are based on equations in Table A1. Tables A3 and A4 show the list
of physical quantities and the list of superscripts and subscripts, respectively.

Table A1. Equations of thermodynamic properties.

No. Values Equations

1 Helmholtz energy (a) a = aidmix+aE

2 Helmholtz energy for an ideal mixture
(aidmix)

aidmix =
m∑

i=1
xi[a

0
i (ρ, T)+ar

i (δ, τ)+RTlnxi]

3 Reduced values of density (δ) δ = ρ/ρred
4 Reduced values of temperature (τ) τ = Tred/T

5 Reducing values of density (ρred) ρred =

 m∑
i=1

xi
ρci

+
m−1∑
i=1

m∑
j=i+1

xixjξij

−1

6 Reducing values of temperature (Tred) Tred =
m∑

i=1
xiTci +

m−1∑
i=1

m∑
j=i+1

xix jζi j

7 Excess function for the mixture
Helmholtz energy

aE

RT= aE(δ, τ, x) =
m−1∑
i=1

m∑
j=i+1

xixjFij
∑
k

Nkδ
dkτtk exp

(
−δlk

)
8 Compressibility factor (Z), Pressure (p) Z =

p
ρRT= 1 + δ

(
∂αr

∂δ

)
τ

9 Internal energy (u) u
RT= τ

[(
∂α0

∂τ

)
δ
+

(
∂αr

∂τ

)
δ

]
10 Enthalpy (h) h

RT= τ
[(
∂α0

∂τ

)
δ
+

(
∂αr

∂τ

)
δ

]
+δ

(
∂αr

∂δ

)
τ
+1

11 Entropy (s) s
R= τ

[(
∂α0

∂τ

)
δ
+

(
∂αr

∂τ

)
δ

]
−α0
−αr

12 Gibbs energy (g) g
RT= 1 + α0+αr+δ

(
∂αr

∂δ

)
τ

13 Isochoric heat capacity (cv) cv
R = −τ2

[(
∂2α0

∂τ2

)
δ
+

(
∂2αr

∂τ2

)
δ

]
14 Isobaric heat capacity (cp) cp

R = cv
R +

[
1+δ( ∂α

r
∂δ )

τ
−δτ

(
∂2αr
∂δ∂τ

)]2

[
1+2δ( ∂αr

∂δ )
τ
+δ2

(
∂2αr

∂δ2

)
τ

]
15 Speed of sound (w) w2M

RT =
cp

cv

[
1 + 2δ

(
∂αr

∂δ

)
τ
+δ2

(
∂2αr

∂δ2

)
τ

]
16 First derivative of pressure with respect

to density at constant temperature

(
∂p
∂ρ

)
T
= RT

[
1 + 2δ

(
∂αr

∂δ

)
τ
+δ2

(
∂2αr

∂δ2

)
τ

]
17 Second derivative of pressure with respect

to density at constant temperature

(
∂2p
∂ρ2

)
T
= RT

ρ

[
2δ

(
∂αr

∂δ

)
τ
+4δ2

(
∂2αr

∂δ2

)
τ
+δ3

(
∂3αr

∂δ3

)
τ

]
18 First derivative of pressure with respect

to temperature at constant density

(
∂p
∂ρ

)
ρ
= Rρ

[
1 + δ

(
∂αr

∂δ

)
τ
−δτ

(
∂2αr

∂δ∂τ

)]
19 Ideal gas Helmholtz energy (α0) α0 =

m∑
i=1

xi

[
a0

i (ρ,T)
RT +lnxi

]
20 Residual Helmholtz energy (αr) αr =

m∑
i=1

xiar
i (δ, τ)+αE(δ, τ, x)
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Table A2. Coefficients and exponents of the mixture equations.

k Nk tk dk lk

1 −0.007 2955 4.5 2 1
2 0.078 035 0.57 5 1
3 0.610 07 1.9 1 2
4 0.642 46 1.2 3 2
5 0.014 965 0.5 9 2
6 −0.340 49 2.6 2 3
7 0.085 658 11.4 3 3
8 −0.064 429 4.5 6 3

Table A3. List of physical quantities.

Abbreviation Physical Quantity Unit

a Molar Helmholtz energy J/mol
A Helmholtz energy J
cp Isobaric heat capacity J/(mol·K)
cv Isochoric heat capacity J/(mol·K)
d Density exponent
f Fugacity MPa
F Generalized factor
g Gibbs energy J/mol
h Enthalpy J/mol
l Density exponent

m Number of components
M Molar mass g/mol
n Number of moles mol
p Pressure MPa
R Molar gas constant J/(mol·K)
s Entropy J/(mol·K)
t Temperature exponent
T Temperature K
u Internal energy J/mol
v Molar volume dm3/mol
V Volume dm3

w Speed of sound m/s
x Composition mole fraction
Z Compressibility factor (Z = p/ρRT)
α Reduced Helmholtz energy (α = a/RT)
δ Reduced density (δ = ρ/ρc)
ρ Molar density mol/dm3

τ Inverse reduced temperature (τ = Tc/T)
µ Chemical potential J/mol
ξ Reduced density parameter dm3/mol
ζ Reduced temperature parameter K

k Nk tk dk lk

1 −0.007 2955 4.5 2 1
2 0.078 035 0.57 5 1
3 0.610 07 1.9 1 2
4 0.642 46 1.2 3 2
5 0.014 965 0.5 9 2
6 −0.340 49 2.6 2 3
7 0.085 658 11.4 3 3
8 −0.064 429 4.5 6 3
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Table A4. List of superscripts and subscripts.

Superscripts Superscripts

0 Ideal gas property 0 Reference state property
E Excess property C Critical point property

idmix Ideal mixture calc Calculated using an equation
r Residual data Experimental value
′ Saturated liquid state i,j Property of component i or j
” Saturated vapor state red Reducing parameter
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