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Abstract: The rapid pace of economic exploration of the Arctic against the backdrop of progressing
environmental change put a high priority on improving understanding of health impacts in the
northern communities. Deficiencies in the capability to capture the complexity of health-influencing
parameters along with a lack of observations in circumpolar territories present major challenges to
establishing credible projections of disease incidence across varying northern environments. It is
thus crucial to reveal the relative contributions of coacting factors to provide a basis for sustainable
solutions in the sphere of public health. In order to better understand the adverse effects associated
with public health, this study employed six-stage multiple regression analysis of incidence rates
of fourteen diseases (International Classification of Diseases (ICD-11) codes most widespread in
the Russian Arctic) against a set of environmental, nutritional, and economic variables. Variance
inflationary factor and best-subsets regression methods were used to eliminate collinearity between
the parameters of regression models. To address the diversity of health impacts across northern
environments, territories of the Arctic zone of Russia were categorized as (1) industrial sites, (2) urban
agglomerations, (3) rural inland, and (4) coastline territories. It was suggested that, in Type 1
territories, public health parameters were most negatively affected by air and water pollution, in Type
2 territories—by low-nutrient diets, in Type 3 and Type 4 territories—by economic factors. It was found
that in the Western parts of the Russian Arctic, poor quality of running water along with low access to
the quality-assured sources of water might increase the exposure to infectious and parasitic diseases
and diseases of the circulatory, respiratory, and genitourinary systems. Low living standards across
the Russian Arctic challenged the economic accessibility of adequate diets. In the cities, the nutritional
transition to low-quality cheap market food correlated with a higher incidence of digestive system
disorders, immune diseases, and neoplasms. In indigenous communities, the prevalence of low
diversified diets based on traditional food correlated with the increase in the incidence rates of
nutritional and metabolic diseases.
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1. Introduction

Over the previous decades, many studies, including those conducted in the framework of the
Arctic Monitoring and Assessment Program (AMAP), have explored major aspects of public health
in circumpolar communities, as well as assessed various stressors on human populations living in
the North [1]. The Arctic, however, is changing rapidly in many ways. The once established patterns
are transforming and bringing new potential risks to human health, such as contaminants, climate
change, industrialization, urbanization, economic disruptions, and nutritional transitions. Among the
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current health effects, whose study is prioritized by the AMAP, are immunological, neurobehavioral,
cardiovascular, metabolic, diabetogenic, developmental, reproductive, endocrine, and epigenetic [2].
To address the diversity of ongoing changes, there is a need to investigate multivariate interactions of
environmental contaminants, dietary nutrients, and other factors and reveal their combined effects on
health outcomes across Arctic communities [3].

Air pollution in the Arctic has been emerging as one of the threats to ecosystems and public health
since the 1950s [4]. According to Arnold et al. [5], Arctic air pollution includes harmful trace gases,
such as tropospheric ozone, particles, such as black carbon and sulfate, and toxic substances, such as
polycyclic aromatic hydrocarbons. They are responsible for detrimental effects on human health even at
low concentrations [6,7], ranging from physiological changes in pulmonary functions and the respiratory
and cardiovascular systems to premature death [8]. Pope et al. [9] and Dockery et al. [10] found out
that long-term exposure to fine particles and sulfur oxide-related air pollution was positively associated
with death from lung cancer and cardiopulmonary. Naess et al. [11] discovered the particularly strong
effects of the concentration of air pollution on chronic obstructive pulmonary disease.

Increased air pollution due to the ongoing industrialization and urbanization in the Arctic creates
new challenges in relation to the quality of water, sanitation, and wastewater handling [12]. According
to Dudley et al. [13] and Parkinson et al. [14], environmental disruptions in the North could spur
the discharge of pathogenic microorganisms from wastewater treatment systems into marine and
freshwater environments, emerging human health risks. Out of four types of water and infectious
diseases categorized by White et al. [15], two are believed to be of crucial importance in the Arctic:
waterborne infectious acquired by consumption of contaminated water and water-washed diseases
acquired through person-to-person spread that can be interrupted by the use of water for washing [16].
Hennessy et al. [17] demonstrated a direct positive association between the lack of complete plumbing
and higher incidence rates of respiratory and skin infections. The households with in-home water
service have lower infant hospitalization rates for pneumonia and respiratory syncytial virus [18].
An exposure to inappropriately treated wastewater is recognized as one of the reasons for higher
rates of infectious diseases in circumpolar communities, such as tuberculosis and methicillin-resistant
Staphylococcus aureus [19,20].

The majority of previous studies on environmental impacts on health in the Arctic focused mainly
on persistent organic pollutants (POPs) and metals [2,21]. Stockholm Convention recognizes that Arctic
ecosystems and indigenous communities are particularly at risk because of the biomagnification of
POPs [22]. However, identified threats from POPs and other contaminants have emerged public health
concerns in the Arctic and reduced confidence in understanding the full picture of environmental
impacts on health [23]. Apart from POPs, the Arctic environment is increasingly affected by new
chemicals of emerging concern (CECs), such as current use pesticides, pharmaceuticals, and personal
care products, and per- and polyfluoroalkyl substances [24], but current understanding of their health
outcomes is limited. In large parts of the Arctic, for some CECs, there is a general lack of toxicological
and other data that are needed to better understand health issues related to such compounds and for
health risk assessments [25]. For instance, no reliable environmental data have been available from
Russia, where spatial and temporal patterns of air pollutant emissions and wastewater discharge are
poorly reported by the manufacturers and thus remain generally unknown. Arctic zone of Russia
is one of the major centers for the production of fluoropolymers with manufacturers that have not
signed on to stewardship programs to reduce long-chain perfluoroalkyl carboxylic and sulfonic acids
in products [26]. For some CECs used in consumer products (siloxanes and phthalates), concentrations
have been found to be higher near settlements and urban sites, particularly, in receiving waters
impacted by sewage effluents [22,25].

Alongside with air and water pollution, the fact of poorer nutritional status of people in the Arctic
communities of Russia compared to other parts of the country is believed to be one of the most adverse
impacts on public health [27,28]. A poor-quality diet has long been associated with increasing obesity,
diabetes, and glucose intolerance in many circumpolar communities [29]. In the Arctic zone of Russia,
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there are critical gaps in per capita consumption of milk and dairy products (about 55% below the
national average), eggs, potatoes, and bread (45% lower each), and meat and meat products (30%
lower) [30]. Due to the shortages of milk and dairy products, vegetables, and fruits, there is a shift
of macronutrients in the diet towards carbohydrates (an abundance of sugar, confectioneries, bread,
pasta, cereals) and, therefore, a lack of almost all types of vitamins, mineral nutrients (particularly
calcium, phosphorus, magnesium, potassium, iodine, zinc, fluorine, etc.), and contamination of food
by pesticides, metals, antibiotics, nitrates, and biological agents.

Many studies have advocated traditional food as a premier source of healthy diets and
improvement of public health parameters in indigenous communities. Kuhnlein et al. [31] and
Lambden et al. [32] considered traditional food as critical for providing many essential nutrients in
balanced diets and recognized the progressing transition to high-energy market food in circumpolar
communities as a basis for obesity and other related health problems. However, due to climate change
and environmental pollution, traditional food is becoming a less obvious solution to health problems
in the North. Concentrations of some CECs are increasing in Arctic air and wildlife, indicating their
potential for bioaccumulation and biomagnification, including in food webs [33]. Climate change
acts through alteration of food web pathways for contaminants [34], while pollution increases the
risk of disease transfer from animals to humans as a large volume of marine and terrestrial wildlife is
consumed by humans in the Arctic, often raw and inadequately frozen [35]. Dudarev et al. [36,37]
found that blubber of marine mammals in Chukotka was highly contaminated by POPs and some
metals, which was the reason for the high exposure to those contaminants by indigenous people
whose diets included marine mammals. The higher temperature of ocean water moves warmer marine
species towards the northern latitudes [38]. Along with the change of the polar water habitats and the
effect of ocean acidification, such migrations bring new biological threats to the health of the Arctic
inhabitants (diseases and microorganisms previously not met in the North).

Along with the environmental and nutritional imbalances, northern territories report higher
morbidity and incidence rates of many diseases and health disorders compared to the national
average [39,40] (Figure 1).
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The major health issues are the diseases of the respiratory, genitourinary, and digestive systems
(Table 1); the extremes recorded in the Nenets and Yamal-Nenets autonomous districts.
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Table 1. Major diseases and health disorders in the Russian Arctic, average in 1997–2017, incidence
rates per 1000 people.

Diseases and Health
Disorders *

Russia Arctic Zone
of Russia

Territories **

1 2 3 4 5 6 7 8

Diseases of the
respiratory system 333.66 430.46 366.94 404.63 561.92 464.59 435.86 273.94 416.65 519.18

Diseases of the
genitourinary system 47.61 62.00 49.56 55.88 108.71 60.25 73.12 45.80 47.10 55.60

Diseases of the skin and
subcutaneous tissue 46.02 56.34 50.95 48.64 69.04 70.11 56.09 45.22 54.09 54.86

Diseases of the
digestive system 34.84 53.36 29.81 48.63 106.31 32.85 53.38 35.27 66.30 54.29

Infectious and parasitic
diseases 31.07 47.08 42.44 49.63 66.63 54.19 49.60 39.49 34.45 40.22

Diseases of the nervous
system 15.87 25.20 18.59 18.60 28.76 22.22 34.09 20.57 32.21 26.58

Diseases of the
circulatory system 28.44 23.62 17.78 23.16 32.65 17.81 21.54 27.04 24.67 24.88

Endocrine, nutritional,
and metabolic diseases 11.52 14.34 14.05 11.01 26.94 12.14 13.67 9.92 14.87 12.12

Neoplasms 11.13 11.23 12.57 10.09 12.86 10.56 12.69 12.13 9.14 9.76
Diseases of the blood
and blood-forming

organs
4.68 5.49 3.01 5.11 10.24 5.31 5.34 3.57 5.71 5.63

Note: * In descending order of the incidence rates across the Arctic zone of Russia; ** 1: Murmansk region; 2:
Arkhangelsk region; 3: Nenets Autonomous District; 4: Komi Republic; 5: Yamal-Nenets Autonomous District;
6: Krasnoyarsk region; 7: Republic of Sakha (Yakutia); 8: Chukotka Autonomous District. Source: authors’
development based on the Federal Service of State Statistics of the Russian Federation [41].

While Schmale et al. [42], Law and Stohl [43], Shindell et al. [44], and Kuhnlein et al. [31],
among others, conducted the estimates of Arctic-specific disease incidence through environmental
and nutritional impacts, a question remains whether particular public health parameters might
experience the effects of economic factors [45]. Chen and Kan [8] recognized the people with low
socioeconomic status as high-risk subgroups in terms of proneness to respiratory, cardiovascular,
and other health effects. During the times of economic and social transformations in Russia in the
1990–2000s, the environmental situation in the Arctic deteriorated substantially with by-all-means
emergence of extractive industries. Larsen and Fondahl [46] expected that the industrialization
and urbanization trends in the Arctic accelerate in the future. The emissions of air pollutants and
wastewater discharge will increase and mostly be emitted around existing industrial sites and human
settlements. Due to the environmental disruptions of traditional sources of food and water, circumpolar
communities have become increasingly vulnerable to economic insecurity [47]. Morozova et al. [48],
Erokhin [49], and Liefert and Liefert [50] reported degrading purchasing power of population in Russia,
which resulted in the redistribution of family means in favor of food, as well as a shift to less expensive
food products and more affordable sources of proteins of lower quality and nutrition value [51,52].

Another question that emerges is whether particular circumpolar territories might have health
impacts different from other Arctic regions and whether populations in various environmental and
economic patterns respond differently to the varying combinations of influence parameters. One of
the priorities declared by the AMAP Human Health program is tailoring health-related studies in the
Arctic to address local issues [2]. Adlard et al. [3] and Weihe et al. [53] made a similar recommendation
to consider local specifics and allowed for better cross-territorial comparisons. Chowdhury and
Dey [54] and Schmale et al. [42] found that disease incidence rates varied dramatically between
Arctic countries but also between the territories within a country. As the per-territory disruptions of
public health are becoming increasingly complex, identifying individual factors that affect them is
crucial [55,56]. In this study, an attempt was made to capture overlapping environmental, nutritional,
and economic dimensions and understand their impacts on selected diseases in different types of
circumpolar territories.
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2. Materials and Methods

Based on the previous discussion of diversified public health impacts in the Arctic, the authors
applied multiple regression analysis to reveal the variables Xn that affect the incidence rates of health
disorders Yn. The six-stage algorithm was employed (Figure 2).
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The study started with a selection of Xn regressors to be considered for inclusion in the model and
development of the regression model (Stage 1). To avoid redundancy, variance inflationary factor (VIF)
was computed for each Xn at Stage 2. Based on the criteria developed by Snee [57] and further applied
by Kutner et al. [58], Montgomery et al. [59], and Ermakov et al. [60], that VIF values should be less
than 5, those Xn for which VIF > 5 were excluded from the model. At Stage 3, a best-subsets regression
was performed with the remaining Xn for all models. To finalize the collinearity test, the parameters
of adjusted R2 [61,62] and Mallows’ Cp statistic [63–66] were computed for each subset. The subsets
with Cp > (k + 1) were eliminated; the study proceeded with those “best” subsets for which relative Cp

were the lowest and/or adjusted R2 were high. At Stage 4, multiple regression analysis of the models
chosen was performed across Yn regressands and territories. The revealed correlations allowed us to
categorize the territories based on several parameters (Stage 5) and discover the effects of Xn regressors
on Yn regressands (Stage 6).

2.1. Stage 1

The categorization of major types of diseases was made according to the 11th revision of the
International Statistical Classification of Diseases and Related Health Problems (ICD-11) [67] of the
World Health Organization (WHO). Out of 26 ICD-11 codes, fourteen types of diseases were included
in the study as Yn regressands—those repeatedly reported by the WHO and many scholars among
the most widespread health problems in both indigenous communities and urban settlements in the
Arctic [68–70] (Table 2).
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Table 2. Types of diseases included in the model as regressands.

Index Regressands

Y1 Certain infectious and parasitic diseases
Y2 Neoplasms
Y3 Diseases of the blood and blood-forming organs and disorders involving the immune mechanism
Y4 Endocrine, nutritional, and metabolic diseases
Y5 Diseases of the nervous system
Y6 Diseases of the eye and adnexa
Y7 Diseases of the ear and mastoid process
Y8 Diseases of the circulatory system
Y9 Diseases of the respiratory system
Y10 Diseases of the digestive system
Y11 Diseases of the skin and subcutaneous tissue
Y12 Diseases of the musculoskeletal system and connective tissue
Y13 Diseases of the genitourinary system
Y14 Congenital malformations, deformations, and chromosomal abnormalities

Note: for all Yn, the measure is the incidence rate per 1000 people. Source: authors’ development.

An array of Xn regressors was established along with three types of variables, reflecting
environmental (X1–6), nutritional (X7–12), and economic (X13–16) dimensions of health-related effects
(Table 3).

Table 3. Regressors included in the model.

Index Regressors Measure

X1 Air pollutant emissions Thousand tons
X2 The capture of air pollutant emissions Thousand tons
X3 Freshwater utilization Mln m3

X4 Recycled and reused water Mln m3

X5
Wastewater discharge into the surface and underground water

sources Mln m3

X6
Percentage of households having running water available in

their homes %

X7 Per capita consumption of meat products kg/year
X8 Per capita consumption of dairy products kg/year
X9 Per capita consumption of vegetables kg/year
X10 Per capita consumption of bread kg/year
X11 Per capita consumption of fish and marine mammals kg/year
X12 Traditional food proportion in a diet %

X13
The proportion of households with a hunter, a herder, or a

fisherman in a family %

X14 The real value of cash incomes Percentage over the
previous year

X15
The proportion of the population living below a minimum

subsistence income %

X16
The proportion of food expenditures in total household’s

expenditures %

Source: authors’ development.

Physical environment, including quality of the air, safe drinking water, and adequate sanitary
facilities, is one of the critical parameters of public health in the Arctic [71,72]. Despite the large gaps
and significant uncertainties, which exist around quantification of influence of Arctic air pollution on
public health [6], emissions can be severe, negatively affecting public health [42], particularly around
the Russian cities of Norilsk, Vorkuta, and Monchegorsk, the areas of highest air pollution in the
Arctic [5,73]. Nilsson et al. [47], Parkinson and Butler [74], and Thomas et al. [75] reported waterborne
infectious diseases among the people living in the circumpolar territories in many Nordic countries.
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Nutritional effects on health are measured as per capita consumption of major food products,
including meat, fish, dairy, vegetables, and bread [49,76]. A parameter of traditional food proportion
in a diet was included in the array like the one relevant in circumpolar and, particularly, indigenous
communities. Many authors consider traditional food systems as essential sources of nutrients, n-3
polyunsaturated fatty acids [77], and vitamins C, B2, and B12 [78]. Sheehy et al. [79] reported that
more traditional foods in a diet translated into greater dietary adequacy for proteins and a number of
vitamins and minerals, including vitamin A, several B-vitamins, iron, zinc, magnesium, potassium,
sodium, and selenium. According to Wesche and Chan [80], traditional food reduces the intake of
saturated fats, sucrose, and excess carbohydrates that often are found in marketed food. However,
while most of the studies report health advantages of traditional food patterns, including a lower
incidence of cardiovascular disease [81], stability of gut microbiome [82], sources of bioavailable
iron [83], among others, there are alternative findings of adverse health effects of traditional food.
For instance, Jeppesen et al. [84] concluded that traditional food was positively associated with type
2 diabetes mellitus, impaired fasting glucose, and fasting plasma glucose. Bjerregaard et al. [85]
found that impaired fasting glucose increased among the Inuit in Greenland with the consumption
of traditional marine food, which might result in impaired insulin secretion – a link revealed by
Færch et al. [86] and Weyer et al. [87,88]. Jørgensen et al. [89] discovered a strong association between
persistent organic pollutants in a traditional seafood and low insulin secretion, while Kuhnlein [90]
found higher health risks of traditional food systems containing sea mammals due to environmental
pollution and increased organochlorine consumption. Contamination of traditional food sources is
one of the reasons for lower β-cell function, an important early stage in the development of type 2
diabetes mellitus.

Among economic variables, the real value of cash incomes is used as one of the parameters of
the economic accessibility of adequate healthcare services and nutrition [91]. The proportion of the
population living below a minimum subsistence income along with the proportion of food expenditures
in total household expenditures is the measures of economic accessibility of a healthy diet, which are
commonly used by the Food and Agriculture Organization of the United Nations (FAO) [92]. They
were included in the array to reflect the ability of households to generate sufficient income, which,
along with their own production, can be used to meet food needs. The selection was also based
on the idea that within a monetary dimension, access to food required a steady income to ensure
a consistent, year-round supply of high-quality goods in the stores and a ready supply of healthy
wildlife to be harvested [93]. Indigenous people do not rely much on marketed food; their food
expenditures are low. But they still have to deal with the high cost of many commodities, such as oil,
fuel, and transportation, essential for hunting, fishing, or reindeer herding activities [33]. Since the
primary means for obtaining and producing food in indigenous communities are provided by hunting,
herding, fishing, and gathering activities, a presence of a hunter, a herder, or a fisherman in a family is
used as one of the economic regressors.

For all Yn and Xn, the data were obtained from the Federal Service of State Statistics of the Russian
Federation [41], as well as from the authors’ calculations.

2.2. Stage 2

A critical issue in building multiple regression models is how to eliminate independent variables
with strong correlations between each other, whether positive or negative. Identification of collinear
variables involves several approaches, one of the most widely used being the variance inflationary
factor (VIF) (Equation (1)). It has been successfully applied for measuring and reduction collinearity,
for instance, by Zainodin et al. [94] in an ordinary least squares regression analysis, Bowerman and
O’Connell [95] in expressing independent variables in regression models as the functions of the
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remaining regressors, and Dan and Vallant [96] in the analysis of variances between independent
variables in complex survey data.

VIF =
1

1−R2
n

(1)

where VIF = variance inflationary factor; R2
n = coefficient of multiple determination for a regression

model.
According to Snee [57], Kutner et al. [58], Montgomery et al. [59], and Levine et al. [61], collinearity

between the variables is considered high when VIF exceeds 5. The approach used at Stage 2 was that if
VIF for a particular set of Xn regressors was less than 5, these regressors were included in the model. In
case it was not, the Xn variable was eliminated from a subset. The computation was made across eight
subsets of Xn variables, one per territory included in the study (see Stage 4 for the list of territories).

2.3. Stage 3

Having eliminated the variables with high VIF, we then attempted to determine whether the
resulting subsets all yield appropriate models with low redundancy. Most commonly, such a task
is solved by employing stepwise regression, which allows revealing the optimal regression model
without examining all subsets [97–100]. For many decades, this approach to regression model building
has been extensively used in statistics and econometrics as an appropriate trade-off between time
expenditures and model performance [101–103]. Nowadays, a stepwise regression model building
commonly employs the best subsets approach (BSA) that allows evaluating all possible regression
models for a given set of regressors in a timely-effective and accurate manner [104–106].

Generally, the BSA-based checking of regression models involves a parameter of adjusted R2 [107],
which adjusts the R2 of each subset to account for the number of regressors and the sample size [61]. In
this study, the employment of adjusted R2 instead of R2 was preferable due to the need to compare
Stage 2 subsets with different numbers of Xn. Among the competing subsets, the study proceeded
with the one with the largest adjusted R2. In addition to adjusted R2, when the goal is to find
the most appropriate model involving multitude subsets of regressors, a criterion of Mallows’ Cp

statistic (Equation (2)) is generally applied [60,61]. Examples include checking matchings between
the subsets [108], model averaging [109–111], measuring the deviations from perfect rankings [112],
and model selection [113].

Cp =

(
1−R2

k

)
(n− T)

1−R2
T

− (n− 2(k + 1)) (2)

where Cp = Mallow’s Cp statistic; n = number of observations; k = number of regressors; T = total
number of variables in the full model, including the intercept; R2

k = coefficient of multiple determination
for a model with k regressors; R2

T = coefficient of multiple determination for a model with all T variables.
In this study, Cp was applied as a tool to measure the differences between the models constructed

at Stage 2 and optimal (or true) models that best explain the correlations. The idea was that the closer
Cp to the number of variables included in a subset, the more accurate would be the model (only random
differences from the optimal model might occur). Thus, Stage 3 resulted in identifying the subsets
whose Cp were close to or below (k + 1). In total, eight subsets of independent Xn variables were built
for eight territories.

2.4. Stage 4

At Stage 4, multiple regression analysis was performed for all combinations of the selected
non-collinear Xn aggregated in fourteen multitudes separately for each Yn. The aim was to reveal the
variables with the highest positive, positive, negative, and the most negative effects on respected Yn in
the Russian Arctic, in general, as well as separately in eight territories included in the Arctic zone of
Russia (Figure 3):



Sustainability 2020, 12, 2151 9 of 25

1. Territory 1: Murmansk region;
2. Territory 2: Arkhangelsk region (Arkhangelsk, Mezensk municipal area, Novaya Zemlya,

Novodvinsk, Onezh municipal area, Primorsk municipal area, Severodvinsk);
3. Territory 3: Nenets Autonomous District;
4. Territory 4: Komi Republic (Vorkuta municipal area);
5. Territory 5: Yamal-Nenets Autonomous District;
6. Territory 6: Krasnoyarsk Krai (Norilsk, Taimyr Dolgan-Nenets municipal area, Turukhansk

district);
7. Territory 7: Republic of Sakha (Yakutia) (Allaikhovsky district, Anabar national (Dolgan-Evenk)

district, Bulunsky district, Nizhnekolymsky district, Ust-Yansky district);
8. Territory 8: Chukotka Autonomous District.
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2.5. Stage 5

To reflect the division of regressors into three dimensions and make cross-country comparisons
possible, the diversity of effects on public health was addressed by categorizing the territories based
on the respective parameters:

1. Type 1: territories adjacent to industrial agglomerations, where a level of air and water pollution
was higher compared to the mean of the sample.

2. Type 2: territories adjacent to urban agglomerations, where a share of market food in consumption
was higher compared to the mean of the sample.

3. Type 3: rural inland territories, where the traditional diets of indigenous people were based
on meat.

4. Type 4: rural coastline territories, where the traditional diets of indigenous people were based on
fish and marine mammals.

It was supposed that, in different types of territories, the incidence rates of Yn diseases and related
health problems were affected by different Xn variables, particularly:
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Hypothesis 1 (H1): In Type 1 territories, the strongest influence over Yn is exerted by environmental
variables X1–6.

Hypothesis 2 (H2): In Type 2 territories, the strongest influence over Yn is exerted by nutritional variables X7–12.

Hypothesis 3 (H3): In Type 3 and Type 4 territories, the strongest influence over Yn is exerted by economic
variables X13–16 and traditional food proportion in a diet X12.

2.6. Stage 6

To test the hypotheses, positive and negative impacts of Xn variables on the reduction of incidence
rates of Yn were revealed separately for the four types of circumpolar territories. Positive effects
were differentiated as high positive (HP), positive (P), and moderately positive (MP); the negative
ones—extremely negative (EN), negative (N), and moderately negative (MN). To decide on the degree
of positive or negative effect, maximum and minimum extremes (Xmax and Xmin, respectively) were
excluded from the calculation, and then a mean value Xmed was determined for each of the multitudes
(Equation (3)):

Xmed =

∑
Xn −Xmax −Xmin

n− 2
(3)

A degree of the effect of Xn on Yn was recognized, when a value of Xn fell into one of the intervals
(Table 4).

Table 4. Xn intervals and effects on Yn.

Intervals Effects on Yn

(Xmax + Xmed)/2 ≥ Xmed ≥ (Xmin + Xmed)/2 Positive (P)
Negative (N)

Xmax ≥ Xn > (Xmax + Xmed)/2 High positive (HP)
Extremely negative (EN)

(Xmin + Xmed)/2 > Xn ≥ Xmin
Moderately positive (MP)

Moderately negative (MN)

Note: Xn – regressors, Yn – regressands. Source: authors’ development.

3. Results

The results are presented across five sub-sections in accordance with stages 2–6 of the study flow
algorithm (Figure 2). We first checked the array of Xn variables established at stage 1 for collinearity
(Section 3.1.), then selected the best subsets from derived multitudes (Section 3.2.). After that, we
performed multiple regression analysis in selected subsets and generalized the effects of Xn on Yn for
the entire Arctic Zone of Russia (Section 3.3.). Based on the identified correlations, we then categorized
the territories into types (Section 3.4.), revealed positive and negative determinants of incidence rates
across them, and tested out hypotheses (Section 3.5.).

3.1. Checking Xn for Collinearity

Collinearity checks were performed in 128 multitudes of X1–16 variables in eight territories
included in the study. Regression models were computed with all independent variables to find VIFs.
Application of VIF > 5 criteria resulted in the elimination of high-collinear Xn variables from the
models in respective territories (Table 5)—some of the water-use and environmental variables in the
western and central territories of the Russian Arctic and economic variables in the Far East.
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Table 5. Coefficient of multiple determination (R2) and variance inflationary factor (VIF) values of
X1–16 variables to be selected for the model.

Variables
Values per Territories 1–8

1 2 3 4 5 6 7 8

R2 VIF R2 VIF R2 VIF R2 VIF R2 VIF R2 VIF R2 VIF R2 VIF

X1 0.658 2.924 0.505 2.020 0.883 8.547 * 0.722 3.597 0.664 2.976 0.684 3.165 0.583 2.398 0.565 2.299
X2 0.703 3.367 0.782 4.587 0.908 10.870 * 0.784 4.630 0.866 7.463 * 0.821 5.587 * 0.502 2.008 0.632 2.717
X3 0.794 4.854 0.669 3.021 0.734 3.759 0.693 3.257 0.729 3.690 0.533 2.141 0.668 3.012 0.602 2.513
X4 0.892 9.259 * 0.809 5.236 * 0.729 3.690 0.856 6.944 * 0.768 4.310 0.738 3.817 0.771 4.367 0.718 3.546
X5 0.707 3.413 0.741 3.861 0.710 3.448 0.923 12.987 * 0.901 10.101 * 0.453 1.828 0.359 1.560 0.391 1.642
X6 0.826 5.747 * 0.840 6.250 * 0.780 4.545 0.765 4.255 0.814 5.376 * 0.557 2.257 0.538 2.165 0.597 2.481
X7 0.238 1.312 0.304 1.437 0.338 1.511 0.404 1.678 0.327 1.486 0.289 1.406 0.244 1.323 0.248 1.330
X8 0.572 2.336 0.620 2.632 0.547 2.208 0.528 2.119 0.488 1.953 0.390 1.639 0.372 1.592 0.447 1.808
X9 0.729 3.690 0.783 4.608 0.702 3.356 0.675 3.077 0.662 2.959 0.582 2.392 0.497 1.988 0.523 2.096
X10 0.448 1.812 0.426 1.742 0.413 1.704 0.449 1.815 0.493 1.972 0.299 1.427 0.265 1.361 0.298 1.425
X11 0.582 2.392 0.605 2.532 0.526 2.110 0.572 2.336 0.504 2.016 0.451 1.821 0.493 1.972 0.513 2.053
X12 0.730 3.704 0.752 4.032 0.699 3.322 0.730 3.704 0.726 3.650 0.504 2.016 0.478 1.916 0.571 2.331
X13 0.401 1.669 0.369 1.585 0.454 1.832 0.467 1.876 0.552 2.232 0.373 1.595 0.401 1.669 0.389 1.637
X14 0.385 1.626 0.358 1.558 0.405 1.681 0.501 2.004 0.487 1.949 0.596 2.475 0.660 2.941 0.725 3.636
X15 0.772 4.386 0.730 3.704 0.683 3.155 0.656 2.907 0.702 3.356 0.882 8.475 * 0.854 6.849 * 0.836 6.098 *
X16 0.745 3.922 0.777 4.484 0.761 4.184 0.700 3.333 0.711 3.460 0.847 6.536 * 0.871 7.752 * 0.883 8.547 *

Note: * collinearity detected. Source: authors’ development

3.2. Selection of the Best Subsets

Best-subsets stepwise regression with the remaining Xn allowed to identify several more variables
with high collinearity: X13 in territories 1 and 2, X5 in territory 2, X3 in territory 3, X4 in territory 5,
and X4 in territory 6. Based on the parameters of adjusted R2 and Mallows’ Cp statistic, the best subsets
of variables (one per territory) were chosen out of competing multitudes (Table 6).

Table 6. Subsets of Xn variables selected for the inclusion in the model per territories.

Territories Adjusted
R2

Mallows‘ Cp
Statistic

Number of
Variables (k+1)

Variables

Included in the Best
Subsets

Eliminated from the
Model

1 0.738 9.185 14 X1–3, X5, X7–12, X14–16 X4, X6, X13
2 0.641 10.117 13 X1–3, X7–11, X12–16 X4–6, X13
3 0.790 5.499 14 X4–16 X1–3
4 0.704 11.343 15 X1–3, X6–16 X4, X5
5 0.529 8.170 13 X1, X3, X7–16 X2, X4–6
6 0.674 12.274 13 X1, X3, X5–14 X2, X4, X15, X16
7 0.742 10.398 15 X1–14 X15, X16
8 0.787 13.926 15 X1–14 X15, X16

Source: authors’ development.

3.3. Multiple regression

Multiple regression analysis was performed in 112 multitudes (fourteen Yn regressands and eight
territories) with respective adjusted arrays of independent variables. High R2 in individual multitudes
and average R2 demonstrated that all variations were well explained (Table 7).
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Table 7. R2 coefficients across the territories and regressands.

Regressands Territories Average/Yn
1 2 3 4 5 6 7 8

Y1 0.9362 0.9719 0.9394 0.9773 0.9274 0.9628 0.9548 0.9555 0.9532
Y2 0.9459 0.9558 0.9428 0.9854 0.9556 0.9733 0.9729 0.9780 0.9637
Y3 0.9638 0.9250 0.9551 0.9660 0.9781 0.9709 0.9882 0.9702 0.9647
Y4 0.9721 0.9289 0.9483 0.9748 0.9770 0.9612 0.9446 0.9773 0.9605
Y5 0.9690 0.9499 0.9444 0.9619 0.9733 0.9883 0.9895 0.9805 0.9696
Y6 0.8882 0.9726 0.9702 0.9834 0.9712 0.9714 0.9697 0.9699 0.9621
Y7 0.9314 0.9515 0.9619 0.9286 0.9843 0.9770 0.9726 0.9763 0.9605
Y8 0.9792 0.9772 0.9825 0.9779 0.9708 0.9823 0.9711 0.9218 0.9704
Y9 0.8513 0.9610 0.9803 0.9118 0.9755 0.9465 0.9835 0.9505 0.9451
Y10 0.9619 0.8981 0.9814 0.9623 0.9357 0.9496 0.9804 0.9715 0.9551
Y11 0.8474 0.9057 0.9810 0.8517 0.9689 0.9449 0.9566 0.9311 0.9234
Y12 0.9317 0.9511 0.9882 0.9362 0.9544 0.9755 0.9709 0.9017 0.9512
Y13 0.9440 0.8842 0.9507 0.9814 0.9725 0.9883 0.9745 0.9447 0.9550
Y14 0.8863 0.9702 0.9415 0.9793 0.8813 0.8028 0.9330 0.8966 0.9114

Average/territory 0.9292 0.9431 0.9620 0.9556 0.9590 0.9568 0.9687 0.9518 0.9533

Source: authors’ development.

Generalization of Xn values for eight territories allowed to reveal the health-related effects of
independent variables in the entire Arctic Zone of Russia (Table 8). X6, the percentage of households
with available sources of running water, posed the most diverse effects on selected health parameters,
from the highest positive to the most negative. Air and water pollution massively had a net detrimental
effect on the incidence rates of the diseases under study (excluding X4 eliminated from the subsets
in most of the western territories of the Arctic Zone and X2 not considered in territories 3, 5, and 6).
Economic parameters (excluding high-collinear X15 and X16 in the eastern areas of the Arctic Zone)
made a positive impact on the reduction of the incidence rates. The effects of nutritional variables
varied across Yn, the most positive being consumption of fish and marine mammals in case of the
diseases of the circulatory and nervous systems.

Table 8. The effects of independent variables on Yn: generalization for the Russian Arctic *.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14

X1 N N N N N N N N N N N P N P
X2 N P N P N N P N P N P P P P
X3 P N N N N N P N P P P P N P
X4 P N P N N N P N N P P P N N
X5 N HP N N P P EN P N P P N N P
X6 HP EN P EN HP EN HP EN EN EN HP N EN HP
X7 P N EN P N N N N P P N N HP N
X8 N P P N N P N P N P N P P P
X9 P P N N N N P P N HP N N P N
X10 P N N P N P N N P N N N N N
X11 N P HP P N N N HP P P P P N EN
X12 P N P P P N N N P N N P N N
X13 EN P P HP N N P N N N EN EN N N
X14 P N N P P P P P HP P P P N N
X15 P N N P EN P P N P P P HP P N
X16 P P N N N HP P N P P P P P N

Note: * for particular Xn, the generalizations cover only those territories in which the respective Xn is included in
the per-territorial models; HP—the highest positive impact of Xn on the reduction of Yn; P—positive impact of Xn
on the reduction of Yn; N—negative impact of Xn on the reduction of Yn; EN—extremely negative impact of Xn on
the reduction of Yn. Source: authors’ development.
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3.4. Categorization of the Territories

Categorization based on the level of pollutant emissions, the proportion of market food in the
diets, and the per capita consumption of meat and fish allowed to classify four types of territories
(Table 9).

Table 9. Types of the territories.

Type Territory Parameter Value, 1997–2017 Average

Arctic Zone Territory

Type 1 Territory 5 X1 = 627.32 X1 = 813.77
Territory 6 X1 = 2672.13

Type 2
Territory 1

X12 = 51.64
X12 = 73.15

Territory 2 X12 = 80.02
Territory 4 X12 = 59.60

Type 3 Territory 7 X7 = 63.46 X7 = 89.76

Type 4 Territory 8 X11 = 17.99 X11 = 34.44
Territory 3 X11 = 23.58

Source: authors’ development.

Type 1 territories were those most intensively explored by Russian hydrocarbon and mineral
companies. The group included the territories of Yamal-Nenets Autonomous District and three areas
of Krasnoyarsk Krai-Norilsk and Taimyr Dolgan-Nenets municipal areas and Turukhansk district,
where the highest level of air pollutant emissions was registered. The percentage of households with
access to quality-assured sources of water was low. In territory 6, the volume of wastewater discharge
into the surface and underground water sources was the highest in the Russian Arctic.

Type 2 included the territories of Murmansk and Archangelsk oblasts adjacent to the biggest cities
and seaports in the Russian North, Murmansk, and Archangelsk, respectively. In Type 2 territories,
people had predominantly westernized type of nutrition with a low proportion of traditional foods
in their diets. Due to the low standards of living in Type 2 territories (in 2017, the proportion of
the population living below a minimum subsistence income was 18.0%, 15.0%, and 13.5% in Komi
Republic, Arkhangelsk, and Murmansk regions, respectively), there was registered underconsumption
of meat and dairy products and vegetables.

Inland territories of Russian Arctic relatively remote from either urban or industrial agglomerations
were recognized as Type 3 (Republic of Sakha) and Type 4 (Chukotka and Nenets autonomous districts).
In Type 3 and 4 territories, diets of people were more traditional compared to the western parts of the
Russian North, with a predominance of reindeer meat, fish, and marine mammals. The Yakuts are
historically semi-nomadic hunters engaged in animal husbandry, focusing on reindeer herding [114],
while people in Type 4 territories depended on fishing. In Chukotka, per capita consumption of meat
was the lowest in the Russian Arctic—44 kg/year in 2017.

Despite the relatively similar reliance of diets on traditional food in Type 3 and Type 4 territories,
the average incidence rates of diseases under study varied widely (Table 10). This finding supported
the assumption that in different types of circumpolar territories, public health parameters are affected
by different combinations of factors, nutritional ones being but a few of them.
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Table 10. Incidence rates of Yn diseases and related health problems across the territories of the Russian
Arctic, average in 1997–2017, cases per 1000 people.

Diseases and Health
Disorders

Territories
Russian Arctic

Type 1 Type 2 Type 3 Type 4

Y1 44.55 48.75 34.45 53.43 45.30
Y2 12.41 11.07 9.14 11.31 10.98
Y3 4.45 4.48 5.71 7.94 5.65
Y4 11.79 12.40 14.87 19.53 14.65
Y5 27.33 19.80 32.21 27.67 26.75
Y6 49.15 35.66 43.67 61.50 47.50
Y7 29.22 28.53 21.84 37.35 29.24
Y8 24.29 19.58 24.67 28.77 24.33
Y9 354.90 412.05 416.65 540.55 431.04
Y10 44.33 37.10 66.30 80.30 57.01
Y11 50.66 56.57 54.09 62.80 56.03
Y12 41.47 40.78 31.68 58.42 43.09
Y13 59.46 55.23 47.10 82.16 60.99
Y14 2.11 2.50 2.07 4.18 2.72

Source: authors’ development.

3.5. Revealing the Correlations

To reveal the determinants of varying incidence rates across the four types of territories, the
impacts of Xn factors were graded on a scale from high positive to extremely negative. Based on the
previous results of collinearity checks and categorization of the territories, the following independent
variables were eliminated from the models: in Type 1 territories—X2 and X4; in Type 2 territories—X4

(X6 and X13 were considered in territory 4 only, X5—in territory 1); in Type 3 territories—X15 and X16.
The highest positive impact on public health was exerted by the quality of nutrition (consumption
of fish and marine mammals and vegetables) in Type 1 and Type 3 territories, economic variables of
income, poverty, and food expenditures in Type 2 and Type 3 territories, and quality of running water
supply and wastewater treatment in Type 3 and Type 4 territories (Table 11).

Table 11. Positive effects of Xn variables on the reduction of Yn.

Type 1 Territories Type 2 Territories Type 3 Territories Type 4 Territories

HP P MP HP P MP HP P MP HP P MP

Y1 X9 X11, X12 X16
X7, X10,

X14
X9, X15 X6, X12 X10

X4, X2, X3,
X9

X5 X6, X8 X12, X4

Y2 X11, X8
X13, X10,

X14
X1 X13 X16, X8 X2, X9, X14 X13, X14 X8 X1, X9 X5

X8, X9,
X13

X14, X4

Y3 X11 X8 X7
X9, X12,
X11, X3

X14, X2 X6, X11 X8
X1, X3, X10,

X14
X11, X5 X4, X7 X14, X8

Y4 X11, X8 X12 X14, X1 X7, X8 X9, X15 X14, X2, X3 X14 X6, X11 X1, X8
X11, X10,

X5

X4, X9,
X12

X14, X8

Y5 X6 X12 X1, X5 X14 X8, X9 X3 X6 X12, X14 X5, X2 X5, X11 X10, X13
X8, X7,

X12

Y6 X11, X9 X12, X8
X1, X3,

X10
X16 X8, X10 X12 X6, X11 X10, X14

X5, X1, X2,
X7

X6 X7 X14, X12

Y7 X7 X9, X10 X14, X3 X16 X8 X14 X6, X12 X11 X2, X4, X10 X6, X10 X4, X8 X13

Y8 X11 X8, X9 X12 X15 X9
X10, X8,

X14
X11, X14 X6 X2, X1, X7 X6, X11 X10, X5 X14, X8

Y9 X9, X13 X10, X11
X14, X3,

X8
X13, X15 X7, X14 X1, X3, X8 X12 X5, X10 X4, X2, X3 X5 X11, X7 X8

Y10 X11, X13 X9, X10 X1, X3 X13, X15 X10, X16 X3, X8, X9 X6
X11, X12,

X14
X1, X2 X9, X6 X10, X11

X4, X12,
X14

Y11 X11, X9 X7, X12 X3 X16, X15
X8, X11,
X13, X14

X3 X6, X14
X10, X11,

X12

X4, X1, X2,
X7

X6 X8
X4, X14,

X11

Y12 X11 X10, X13 X8 X13 X8
X1, X3, X12,

X14, X16
X6, X11 X10, X14

X5, X2, X7,
X8

X6, X11
X7, X15,

X4
X12, X14

Y13 X11, X7
X10, X13,

X14
X3, X9 X15, X12 X7, X9 X2, X14 X14 X6, X11

X2, X1, X7,
X8

X6, X5
X8, X15,

X11
X14, X4

Y14 X7 X10 X15 X14, X12 X1, X8, X3 X14 X6
X1, X2, X7,

X8
X4, X5 X9, X10 X13, X8

Note: HP—high positive, P—positive, MP—moderately positive. Source: authors’ development.
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The most negative impact on public health was exerted by low percentage of households with the
running water supply in Type 1, 2, and 4 territories, wastewater discharge into surface and underground
water reservoirs in Type 4 territories, consumption of meat products in Type 1 and 2 territories and
bread in Type 2 territories, and low economic standards of living in Type 3 and 4 territories (Table 12).

Table 12. Negative effects of Xn variables on the reduction of Yn.

Type 1 Territories Type 2 Territories Type 3 Territories Type 4 Territories

EN N MN EN N MN EN N MN EN N MN

Y1
X7, X10,

X13
X8, X14 X1, X3 X8, X12 X13, X14 X1, X2, X3 X13 X11, X14 X7, X8 X7, X13 X10, X9 X14, X11

Y2 X12, X7 X9 X3
X12,
X10

X15, X11,
X7

X1, X3 X12, X6 X5, X10 X4, X2, X3 X7, X6 X1, X12 X11, X10

Y3 X7, X12
X6, X13,

X14

X3, X10,
X1

X16 X15, X10 X8, X1 X7, X12 X5 X2, X9, X13 X3
X6, X12,

X13
X10, X9

Y4 X6 X7, X10 X13, X9 X16 X12, X11 X5, X1, X10 X12
X5, X7,
X9, X13

X2, X3, X4 X6 X7 X16

Y5 X10
X11, X7,

X13

X8, X3,
X14

X11, X7
X12, X16,

X15
X2, X1 X13

X7, X9,
X10

X4, X1, X3 X9, X6 X3 X14, X4

Y6 X7 X15, X14 X13 X6
X9, X11,
X14, X15

X3, X2, X1,
X7

X13 X9, X12 X4, X3 X5, X13
X8, X9,

X10
X11, X4

Y7 X11, X8 X12, X13 X1, X16 X6
X15, X9,
X10, X12

X2, X1, X3,
X7

X13
X7, X9,

X14
X1, X5, X8 X5

X9, X11,
X7

X14, X12

Y8 X10, X7 X13, X14 X3, X1 X6
X7, X11,

X12

X2, X3, X16,
X1

X12
X9, X10,

X13
X4, X3, X5 X12, X13 X4, X7 X3, X9

Y9 X6 X7, X5 X12, X1 X16
X10, X11,

X12
X2, X5, X9 X13

X6, X8,
X11

X7, X1, X9 X6, X12
X4, X10,

X13
X9, X14

Y10 X12 X14 X8, X7 X6
X7, X14,

X11
X2, X1 X9 X13

X4, X3, X5,
X8

X5, X13 X3, X7 X8, X15

Y11 X10, X8 X13, X14 X1 X7
X9, X12,

X10
X2, X1 X13 X9 X3, X8 X5, X13

X9, X10,
X12

X7

Y12 X7, X6 X12, X14
X3, X1,

X9
X7

X10, X11,
X15

X2, X9 X13, X9 X12 X4, X3 X5, X13 X8, X9 X10

Y13 X15, X6 X8, X12 X5, X1 X6
X8, X10,

X11
X3, X1, X16 X12

X9, X10,
X13

X4, X3, X5 X9, X13 X7 X12, X10

Y14 X8, X11
X12, X14,

X13

X1, X9,
X3

X11, X7 X16, X9 X10, X2 X12
X3, X10,

X11
X4, X5, X13 X6, X11 X7, X15 X12, X14

Note: EN—extremely negative, N—negative, MN—moderately negative. Source: authors’ development

The revealed correlations between Xn variables and Yn health parameters allowed to test
the hypotheses:

Hypothesis 1 (H1): partly confirmed. Out of the environmental variables X1–6, the quality of running water
and wastewater treatment have the most positive effect on the reduction of incidence rates of certain infectious
and parasitic diseases; neoplasms; diseases of the nervous system; diseases of the skin and subcutaneous tissue;
congenital malformations, deformations, and chromosomal abnormalities. Improvement of the access to the
quality-assured sources of water decreases incidence rates of endocrine, nutritional, and metabolic diseases;
diseases of the circulatory, respiratory, and genitourinary systems; diseases of the musculoskeletal system and
connective tissue.

Hypothesis 2 (H2): not confirmed. The most negative effect on the public health parameters is caused by the
low quality of drinking water and the low percentage of households with running water available in their homes.
Economic factors also negatively affect public health. As the economic accessibility of food decreases, nutritional
habits of consumers change from high-fat animal products to bread, macaroni products, and low-nutritious
starches. Per capita consumption of meat, dairy products, and vegetables is well below both the national average
and Russia’s national standard of healthy nutrition [115]. In some of the territories, higher values of nutrition
variables X7–12 correlate with the emergence of the diseases of the nervous system; diseases of the skin and
subcutaneous tissue; diseases of the musculoskeletal system and connective tissue; congenital malformations,
deformations, and chromosomal abnormalities (all four—increase in X7); certain infectious and parasitic diseases
(increase in X8). The proportion of market food in the diets is the highest among the territories of the Russian
Arctic, but due to low living standards, people cannot afford themselves consuming market foods of high quality.
Available vegetables, dairy products, meat, and fish are frozen and with a high content of food preservatives to
extend the shelf life.
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Hypothesis 3 (H3): confirmed. Low income, poverty burden, and a high proportion of food expenditures in
households’ budgets (economic variables X13–16) along with the prevalence of traditional food in the diet exert
a negative influence on the majority of Yn diseases in Type 3 and Type 4 territories. Low diversified meat-based
and fish-based diets result in the increase in the incidence rates of diseases of the digestive system, diseases of the
skin and subcutaneous tissue, diseases of the musculoskeletal system and connective tissue, and infectious and
parasitic diseases. The growth of real value of cash incomes and reduction of the proportion of population living
below a minimum subsistence income may allow reducing the incidence rates of the diseases of the circulatory
system; congenital malformations, deformations, and chromosomal abnormalities; neoplasms; diseases of the
blood and blood-forming organs; certain disorders involving the immune mechanism; endocrine, nutritional, and
metabolic diseases.

4. Discussion

Across Arctic communities, public health outcomes are affected by different combinations of
environmental, nutritional, and economic factors. Both the modes and degrees of the influence are
determined by a location of a territory, level of industrial development, economic and social situation,
and patterns of life and food consumption.

Environmental factors, primarily, air pollution, are commonly recognized as the sources of the
most serious toxicological impacts on human health, including respiratory and cardiovascular diseases,
neuropsychiatric complications, and cancer [116,117]. In the Russian Arctic, previous studies identified
such emissions as sulfate aerosols from metal smelting [118] and flaring associated with oil and gas
extraction [119] but found no evidence of direct health implications from air pollutant emissions [2,120].
In this study, the negative influence of air pollution on health parameters was revealed across all types
of circumpolar territories. Among the most notable consequences were increased respiratory ailments
– the incidence rates of Y9 were unacceptably high across all four territory types (Table 10). Syurin
and Burakova [121] found that the development of respiratory pathology patterns (primarily, chronic
bronchitis and chronic obstructive pulmonary disease) was closely associated with the locations of
harmful industries in the western part of the Russian Arctic. In those Types 2 and 4 territories, people
experienced increasing susceptibility to air irritant agents (X1 and X2) and the quality of water supply
systems in the cities (X5 and X6). This corresponded with the recommendations to improve access
to clean water to reduce respiratory morbidity made by Kovesi [122,123]. Miller and Gaudette [124]
suggested that a lack of vitamins (particularly, vitamin A) in the diet might be a possible co-factor of
higher lung cancer in northern communities, while Tse et al. [125] reported household crowding and
living conditions to be significantly associated with respiratory infections among indigenous people.
In relation to our findings, it seemed that the adequacy of nutrient intake (X7 and X11) along with the
degree of outdoor physical activities (X13, hunting and fishing) had positive effects on the reduction of
Y9 incidence rate. Other health issues for which a correlation with environmental factors was revealed
included eye irritation, increased cardiovascular morbidity, and carcinogenic effect of pollutants. This
finding supported earlier results of Li and Mallat [126], Vermaelen and Brusselle [127], and Chen and
Kan [8].

Among environmental factors, air pollution was recognized as moderately negative, the most
negative being the quality of water and the volume of wastewater discharge. This corresponded with
Hennessy et al. [17], Thomas et al. [16], and Wenger et al. [128], who all demonstrated a direct correlation
between clean water in sufficient quantities and significant reductions in the occurrence of illness and
hospitalizations due to infectious disease. Our finding also supported Nilsson et al. [129], who reported
that over one-third of the population in the circumpolar territories of Russia used drinking water
from non-centralized sources; Bressler and Hennessy [130], who recognized poor access to safe water
among the causes of gastrointestinal illness and water-washed infections, such as respiratory tract
infections and skin infections; as well as Daley at al. [131], who associated inadequate domestic water
quantities with transmissible diseases and bacterium infections in indigenous communities. According
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to Hennessy and Bressler [132], the burden of inadequate water and sanitation services on public
health is higher among rural and indigenous populations in the Arctic. In contrast with this opinion,
our study demonstrated extremely negative health effects of poor water supply systems and water
pollution not only in the eastern parts of the Russian Arctic but also in urbanized Type 2 territories
and industrialized Type 1 territories. In this part, our results corresponded with the data of Dudarev
et al. [133], who discovered that 51% and 19% of water samples taken from the centralized water
sources in Type 2 territories did not comply with hygienic norms in terms of chemical and biological
contamination, respectively. In the industrialized territories of Type 1, the coverage of households by
public water supply exceeds 80%, but the majority of water supply facilities have not been properly
repaired, cleaned, and disinfected for a long time [133]. Centralized water sources and drinking water
are highly contaminated by chemical and biological agents. In Type 1 and Type 2 territories, water of
low quality is delivered through the outdated supply system to the majority of households, which
results in the growth of incidence rates of endocrine, nutritional, and metabolic diseases; diseases
of the circulatory, digestive, and genitourinary systems; diseases of the musculoskeletal system and
connective tissue.

High pollution load increases the level of contamination of wildlife, a premier source of food for
indigenous peoples in the Arctic. According to Vinokurova [134], Greaves [135], and Ignateva [136],
pollution destabilizes the ecological base of the High North and threatens food and nutrition security.
Previously, it was demonstrated that traditional food consumption patterns might benefit various
health parameters in indigenous communities [32,77–83,137]. As distinct from these studies, we
revealed the negative health impacts of traditional food in some indigenous habitats in Type 3 and 4
territories. This corresponded well with earlier findings of Jeppesen et al. [84], Bjerregaard et al. [85],
and Jørgensen et al. [89] that traditional dietary pattern was associated with lower β-cell function and
a higher risk of impaired fasting glucose and type 2 diabetes mellitus. It was found that undiversified
meat and fish-based diets in Type 3 and Type 4 territories, respectively, correlated with higher
incidence rates of endocrine, nutritional, and metabolic diseases and diseases of the circulatory and
genitourinary systems.

In the indigenous communities and rural territories of Type 3 and Type 4, diversification of
the diets may impact public health in a positive way, but the economic accessibility of market food
among rural people is low. Dudarev et al. [36] complained about the prohibitively high cost and
limited availability of market food across the Arctic zone of Russia. Wesche and Chan [80], Ford [138],
and Guyot et al. [139] found that low levels of income and high food costs resulted in changing diets
and neglecting healthy nutrition. Poverty forces people to seek a substitution to the expensive market
food in traditional hunting and fishing, but the contribution of traditional economic activities to the
improvement of public health is minor. There are economic barriers reported by Lambden et al. [32]
and Goldhar et al. [140], such as high costs of hunting and fishing, tightening food sharing networks,
and hunting and fishing regulations.

In industrialized and urbanized territories of the Arctic Zone of Russia, on the contrary, we
registered the increase in the proportion of market food in the diets, which was in line with the emergence
of “nutritional transition” previously conceptualized by Egeland et al. [141] and Kuhnlein et al. [31]
in the case of the Canadian Arctic. Young et al. [142] supposed such transition to contribute to an
increase in diabetes and other diseases among northerners. Receveur et al. [143] and Nakano et al. [144]
recognized an increased consumption of market food as a contributing factor to a higher incidence
of overweight and obesity. Our findings demonstrated that in the territories where the proportion
of market food in the diets was above the Arctic average, the negative impact of the transition was
limited to the increased incidence rates of the diseases of the digestive system, immune diseases,
and neoplasms.
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5. Conclusions

This study attempted to convey the existing complexity of public health impacts in the case of the
Arctic zone of Russia. It was investigated how various factors were interrelated with the incidence
rates of major diseases in different types of circumpolar communities. The establishment of the set
of environmental, nutritional, and economic variables allowed for a particularly useful analysis of
the variations within the groups of health impacts and thus made the levels of exposure to certain
diseases comparable across the territories. The territories were grouped in four types based on the
respective levels of influencing groups of factors: (1) industrial sites, the most negative health impacts
of air and water pollution; (2) urban agglomerations, the most negative health impacts of nutritional
factors; (3) inland and (4) coastline indigenous communities, the most negative health impacts of
economic factors.

The testing of the three hypotheses resulted in the identification of positive and negative effects on
selected health parameters. The relationships between the regressands and corresponding regressors
were discovered individually for eight territories of the Arctic Zone of Russia and generalized for the four
types of the territories, given the alternations between the highest positive and most negative influences
on the dependent variables. In Type 1 and Type 2 territories, poor quality of running water along with
low access to the quality-assured sources of water increased the exposure to infectious and parasitic
diseases, neoplasms, diseases of the circulatory, respiratory, genitourinary, and nervous systems,
and endocrine, nutritional, and metabolic diseases. In Type 3 and Type 4 territories, low diversified
diets based on traditional food correlated with the increase in the incidence rates of nutritional and
metabolic diseases. Underconsumption of milk and vegetables resulted in a lower intake of vitamins
and mineral nutrients, including calcium, phosphorus, magnesium, and zinc. Declining economic
accessibility of adequate diets further exacerbated nutrition-related health problems.

The set of environmental, nutritional, and economic variables applied in this study as regressors
was open-ended and discussible. The six-stage regression analysis that involved collinearity checks
based on the VIF and BSA methods allowed to build regression models in which regressands’ variations
were well explained by independent variables. However, due to the ongoing environmental, climate,
and economic changes in the Arctic, a further focus on finding the most feasible influencing factors of
public health could place the issue in the larger context of social-ecological change that is affecting the
resilience of the Arctic and health and well-being of its inhabitants. In such respect, further studies of
health impacts in the High North should involve comparisons with other Arctic countries except Russia.
Effectively addressing emerging health-related challenges require continued research into health risk
factors and trends in order to facilitate the identification of priority areas for policy interventions.
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