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Abstract: Soil phosphorus (P) is a vital but limited element which is usually leached from the soil via
the drainage process. Soil phosphorus as a soluble substance can be delivered through agricultural
fields by runoff or soil loss. It is one of the most essential nutrients that affect the sustainability of
crops as well as the energy transfer for living organisms. Therefore, an accurate simulation of soil
phosphorus, which is considered as a point source pollutant in elevated contents, must be performed.
Considering a crucial issue for a sustainable soil and water management, an effective soil phosphorus
assessment in the current research was conducted with the aim of examining the capability of five
different wavelet-based data-driven models: gene expression programming (GEP), neural networks
(NN), random forest (RF), multivariate adaptive regression spline (MARS), and support vector
machine (SVM) in modeling soil phosphorus (P). In order to achieve this goal, several parameters,
including soil pH, organic carbon (OC), clay content, and soil P data, were collected from different
regions of the Neyshabur plain, Khorasan-e-Razavi Province (Northeast Iran). First, a discrete wavelet
transform (DWT) was applied to the pH, OC, and clay as the inputs and their subcomponents were
utilized in the applied data-driven techniques. Statistical Gamma test was also used for identifying
which effective soil parameter is able to influence soil P. The applied methods were assessed through
10-fold cross-validation scenarios. Our results demonstrated that the wavelet–GEP (WGEP) model
outperformed the other models with respect to various validations, such as correlation coefficient (R),
scatter index (SI), and Nash–Sutcliffe coefficient (NS) criteria. The GEP model improved the accuracy
of the MARS, RF, SVM, and NN models with respect to SI-NS (By comparing the SI values of the
GEP model with other models namely MARS, RF, SVM, and NN, the outputs of GEP showed more
accuracy by 35%, 30%, 40%, 50%, respectively. Similarly, the results of the GEP outperformed the
other models by 3.1%, 2.3%, 4.3%, and 7.6%, comparing their NS values.) by 35%-3.1%, 30%-2.3%,
40%-4.3%, and 50%-7.6%, respectively.

Keywords: soil phosphorus; soil quality indicator; wavelet transform; artificial intelligence; controlled
drainage; soil sustainability
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1. Introduction

Controlling point source pollutants is a crucial issue in soil and water resource management
plans [1,2]. To achieve this goal, related to the sustainability of natural ecosystems and human activities,
managing runoff and soil losses from agricultural lands is crucial [3,4]. Agricultural drainage systems
usually remove the excess of overland flow from the land through surface/subsurface networks to
maintain the soil moisture levels at the standard points for crop production [5,6]. Nevertheless, water
flowing through these systems can deliver soluble elements, which can be stored by the soil and
modify soil quality [7,8]. During the drainage process, those soluble elements are leached from the
soil and can pollute the drainage effluent [9], which may lead to increasing the risk of environmental
problems. Thus, nature-based solutions should be necessary to conserve the stability between the
disposed of/retained excess water, in such a way that neither waterlogging nor environmental side
effects can take place [10].

Although soil phosphorus (P) is an essential nutrient for sustained crop production, it is also
considered as a pollutant resource of water. In other words, it affects the growth of the crops as well as
terrestrial systems in addition to the microorganisms living condition in the soil [11]. Interestingly
enough, the drained water from agricultural lands can generally contain significant amounts of
this element, which has a high spatial and temporal variation. The reduction of water quality due
to eutrophication is another environmentally-damaging result of this delivery from lands to water
resources or artificial drainage systems [12,13]. Generally, a considerable amount of soil P can be
found in most of the calcareous soils of arid/semiarid regions of Iran, which represents a result of the
reactions of absorption and illuviation of carbonate minerals [14,15]. Based on its diverse detrimental
effects, stringent management of phosphorus in surface/subsurface water bodies is obviously essential
to improve water quality.

To better manage soil phosphorus, gaining precise knowledge of available soil P content and
planning an efficient fertilization process are strongly needed [16,17]. There are also other dynamics to
be considered, namely, transport and source factors, which should be considered to conserve water
quality. In several soils, applying excess P fertilizer above crop needs is desirable, which is thought to
be able to enhance the optimal crop yield [18]. However, soils which contain a significant amount of
amorphous clay and highly calcareous ones should be considered as exceptions, because increasing the
P levels could be problematic. There are also different parameters, including soil pH and texture, organic
matter, as well as the presence of iron and aluminium oxides which modify the extraction of P by the
plants [19,20]. Therefore, accurate knowledge of the dynamics of the studied soils, as well as the complex
system of soil P for the plants, are key in agricultural lands and human soil health [21,22]. Some soil
parameters can usually be estimated by modeling approaches using easily measured soil parameters,
such as soil separates. In this context, regression-based models can be applied to demonstrate the
correlation between easily pedological measured parameters (as input variables) and target-dependent
variables, which are referred to as pedotransfer functions (PTFs). Nonetheless, artificial intelligence
(AI) techniques (e.g., gene expression programming (GEP), neural networks (NN), random forest (RF),
multivariate adaptive regression spline (MARS), and support vector machine (SVM)) for mapping the
interrelations among soil parameters used to be more applicable. The use of the wavelet transform
approach might be applied in this context for improving the models’ overall performance accuracy. It is
interesting to note that the use of AI techniques in this regard is very limited, at least, in semiarid areas
and larger scales (e.g., [23,24]) despite their wider applications in various soil and water analysis issues,
such as modeling soil cation exchange capacity [8,25], modeling soil bulk density [26], predicting
groundwater level fluctuations [27], estimating reference evapotranspiration [28], simulating watershed
sediment amount [29], and estimating terrestrial parameters such as solar radiation [30], as well as
groundwater pollution studies [31].

In revent decades, wavelet transform (WT) has become a reliable technique in analyzing
periodicities and variations in time series analysis [32–35]. Wavelet analysis is expected to be a
promising tool because of its multiresolution in frequency and time domains in modeling hydrological
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issues, which improves the accuracy of forecasting models by providing subseries of time series.
They are based on gaining more detailed information about the behavior of the physical process to
be estimated/simulated (e.g., [36–38]). In other words, WT constructs both low- and high-frequency
components at various levels of resolution in time series, which would improve the accuracy of
predictive models. It has been demonstrated as a powerful technique in some spatial simulation
issues, as well [39,40]. The conjunction of these types of analysis with AI models has been applied for
estimation issues in water resources and hydrological research [41–44]. It is evident from these studies
that WT fairly advances the accuracy of AI methods in estimation.

Nevertheless, there is a lack of information about the development of the models based on limited
measured soil variables for estimating soil P and applications in semiarid catchments. Therefore,
the current study aimed to evaluate the GEP, MARS, RF, SVM, and NN methodologies for estimating
soil P content using soil easily measured variables. Based on the best of the authors’ knowledge,
except using NN in the previously mentioned studies, the current research is the first application of
these AI techniques, as well as their coupling with wavelet transform for modeling soil P. Using single
data-partitioning methods for feeding the applied models with the input-target matrices is common
around soil parameter modeling. Despite the simplifications involved in such data-partitioning modes,
the developed models might be overfitted using only a part of data for their training, which might
be linked to the attributes selected for the training stage. However, the current research intends to
show the application of the most powerful k-fold testing cross-validation mode, where all the available
input-target pairs are involved in developing and testing the applied models.

2. Materials and Methods

2.1. Study Region

The studied area of the Neyshabur plain (Northeast of Iran) is located between latitude 35◦40′

N to 36◦40′ N and longitude 58◦12′ E to 59◦31′ E, with an average altitude of 1256 m a.s.l., which
approximately covers 90 km2 [45] (Figure 1). This flat plain is characterized by gentle hillslopes ranging
from 5 to 20 degrees (78%), and the rest of the land is covered by moderate inclination [46]. Based on an
earlier study [47], most of the soils in this plain can be classified as Aridisols and Entisols orders [48],
and irrigated farming is the main land use of this area. The general physiographic trend of the plain
extends in an NW–SE direction. Land units and land use maps are included in Figure 2 according
to [49].
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2.2. Soil Sampling Procedures and Soil Analysis

ArcGIS 10.2 (ESRI, USA) software was used to apply a fishnet sampling design method as a
reliable strategy with 300 grids (Figure 1). Additionally, the influence of the spatial variation of
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soil parameters affecting P values in the Neyshabur plain was considered with a grid interval of
500 × 500 m. A portable Global Positioning System (GPS) to precisely locate the sampling locations
was used. A total of 12 locations of about 300 grids correspond to urbanized areas (mostly limited by
the fences) and were therefore not sampled. Thus, a total of 288 samples ranging from 0 to 30 cm of soil
depth were gathered and selected. Then, the disturbed samples were collected, air-dried, crushed, and
also sieved, utilizing a 2 mm sieve size. After separating and discarding, the large plant substances
and pebbles were transported for laboratory analyses. Soil P was determined using the method
developed by Olsen [50] and the amount of soil organic carbon (OC) content estimated using the
Walkley–Black approach in addtion to dichromate extraction and titrimetric quantization [51]. Particle
size distribution (Sand: 0.05–−2 mm, silt: 0.002–0.05 mm, and clay: < 0.002 mm) was determined
using the Bouyoucos hydrometer method [52]. Schoeneberger´s methodology [53] was followed to
classify soil texture. Soil pH was also measured by a digital pH-meter in saturated paste extract [54].
Calcium carbonate equivalent (CCE) was also gained using the back-titration technique [55]. The
statistical-based characteristics of the utilized soil data are shown in Table 1.

Table 1. Main statistical descriptors of the used soil data set.

Clay (%) Silt (%) Sand (%) OC (%) pH (−) P (ppm)

Maximum 37 58.4 70.0 2.22 8.3 70.4
Minimum 10 16.4 19.0 0.17 7.5 2.4

Mean 22.6 36.3 41.1 0.73 7.9 18.7
Standard deviation 5.9 6.1 9.3 0.33 0.2 16.2

Coefficient of
variation 0.3 0.2 0.2 0.45 0.02 0.9

Skewness −0.193 0.086 0.403 1.788 −0.054 1.363
Kurtosis −0.722 0.330 0.094 4.244 −0.523 0.987

* OC: organic carbon; P: soil phosphorus values.

The maximum values of the standard deviation (SD) and coefficient of variation (CV) are devoted
to the soil P. This can be justified due to the parent material, terrain attributes and agricultural
practices [24,56].

Kurtosis and skewness coefficients obtained the highest values for soil OC. They revealed the
degree of the deviation of OC from the Gaussian distribution, which might be justified due to the
application of fertilizers as discussed by Fard et al. [57]. There are also some differences observed
in soil properties, which might be effective parameters impacting on soil P content. In other words,
its sorption and desorption may be altered under a certain set of environmental conditions [24,58].

2.3. Soil Models

2.3.1. Discrete Wavelet Transform (DWT)

Wavelet analysis, which is actually driven by the compact support of its basic function, has been
developed based on the Fourier analysis. Despite the incapability of Fourier transform in providing a
valid time–frequency analysis, wavelet transform analysis appear to be an effective tool in this area [59].
Therefore, WT is generally similar to the windowed Fourier transform, while their merit functions are
completely different. Fourier transform decomposes the signal into sines and cosines (localization
in Fourier space), but the WT utilizes localized functions in bothreal and Fourier spaces. Having
waveforms of effectively limited duration and zero mean is one of these wavelets’ specifications. It also
provides a time-scale localization of processes, which improves the accuracy of forecasting models
by providing time subseries. Translating the signals from the time domain to the time/frequency
domain can be done with the discrete wavelet transform (DWT). During this process, the original signal
decomposes into different frequency components, which can be converted into father and mother
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wavelets [60]. Wavelet function called the mother wavelet might be considered as
∫ +∞

−∞
ψ(t)dt = 0.

ψa,b(t), which might be acquired by compressing and expanding ψ(t) based on Equation (1):

ψa,b(t) = |a|
−1/2ψ

(
t− b

a

)
b ε R, a ε R, a , 0 (1)

ψa,b(t) is a successive wavelet, a represents a factor that shows the frequency, and b is also considered
as a time factor. The range of real numbers is also presented by R. If ψa,b(t) assured Equation (1), for the
series f (t) єL2(R) or finite energy signal, the successive wavelet transform of f (t) might be considered as
follows in Equation (2):

Wψ f (a, b) = |a|−
1
2

∫
R

f (t)ψ
(

t− b
a

)
dt (2)

The complex conjugate functions ψ(t) are shown as ψ(t). WT filters a wave for f (t) with various
filters, in which the successive wavelet is frequently discrete in real applications. Aiming to obtain a
successive wavelet, which is not frequently continuous when a = a j

0, b = kb0a j
0 a0 > 1, and b єR, k, j

might be considered as integers, the DWT of f (t) might be written as Equation (3):

Wψ f ( j, k) = a0
−

j
2

∫
R

f (t)ψ
(
a− j

0 t− kb0
)
dt (3)

The best selection for the a0 and b0 would be 2 and 1 in 1-time steps. The power of this
logarithmic-based scaling is recognized as the most effective case for practical issues, which is known
as dyadic grid arrangement [61]. Equation (3) becomes a binary wavelet transform when a0 = 2, b0 = 1
(Equation (4)):

Wψ f ( j, k) = 2−
j
2

∫
R

f (t)ψ
(
2− jt− k

)
dt (4)

The properties of the original data sets in terms of frequency and time domain concepts (a or j and
b or k, respectively) can simultaneously be described by Wψ f (a, b) or Wψ f ( j, k). Interestingly, low
levels of frequency in WT in addition to high time-domain resolution would result in a reduction of
a or j and vice versa [36]. The DWT can be considered as Equation (5) using integer time steps for a
discrete-time series f (t).

Wψ f ( j, k) = 2−
j
2

N−1∑
t=0

f (t)ψ
(
2− jt− k

)
(5)

where Wψ f ( j, k) equals a wavelet coefficient for the DW of scale a = 2j, b = 2jk. There are also various
filters, namely, high and low passes operated by DWT. These filters are responsible for passing the
original time series in order to separate them at a variety of levels. The DCs described as detail
coefficients and approximation based subcomponents series (A) were calculated through Equation (5),
where the DCs show the low-scaled high-frequency elements of a signal, and A is the components in
the opposite way [61].

Hybrid modeling of approaches based on wavelet–artificial intelligence could provide more
precise outputs of variations, periodicities, and trends in time series, which would make the models
more viable. The coupled wavelet–AI models were obtained by combining the DWT and AI models.
As an example, WGEP is a GEP-based model that utilizes the subseries components extracted by
applying discrete wavelet transform on original patterns, so its inputs consist of the decomposition of
the original patterns (Ds) obtained by the Mallat DWT algorithm [61]. Figures 3–5 show the decomposed
wavelet subcomponents of the applied input parameters. It should be noted that the sum of each
detail and approximation subcomponent gives the original input data. The attribute of each of these
subcomponents is not the same, which provides useful information on various resolution levels [62].
Thus, adding this detailed information to the inputs improves the prediction accuracy of the AI models.
However, it should be noted that D1 indicates the details of subcomponents with the highest frequency.
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Generally, this component usually involves noisy data, while D3 shows the details of subcomponents
with the lowest frequency. A represents the approximation of the original signal, ignoring the detail
components. In fact, all these subcomponents have different information, but sometimes, removing
the highest frequency component with noisy data may improve the models’ accuracy.
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As an example, Figure 6 reveals the flowchart and structure of the WGEP model. The selection of
effective details and A subcomponents was made based on the correlation analysis, which is explained
in the Modeling Protocol subsection.
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2.3.2. Gene Expression Programming (GEP)

GEP is a genetic-based algorithm which employs elements such as chromosomes and expression
trees as programs. Every chromosome is composed of genes, any of which encode a smaller
subexpression tree. In this model, the architecture coordination of the linear chromosomes authorizes
it to operate notable genetic operators such as mutation, transposition, and recombination without any
limitation. Selecting the sets of data to fit accordingly in order to introduce the relationship between
variables is notable at this step. Meanwhile, GEP shows several advantages which make it a stronger
approach compared to other learning algorithms. Based on the nature of GEP, the creation of diversity
is quite simple [63]. In other words, the obvious robustness of GEP is in simplifying the production
of genetic variation, as well as its unique nature that provides the evolution of complex programs
consisting of numerous subprograms [64]. Furthermore, this procedure makes it capable of expressing
several relationships between input and output variables. This unique feature makes GEP stronger
than other methods [65,66].

The following plan for GEP-based simulation of soil P (target variable) using the mentioned input
variables was followed in this study [67]. The first step was to select a fitness function, although
various absolute- and relative-error-based fitness functions might be used for modeling soil P. Then,
the root relative squared error (RRSE) was applied as advised by the literature (e.g., [25]). Second, it is
essential to choose the predictor parameters and sets of function. Then, the utilized input variables
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were obtained using the Gamma test, as mentioned before. Various GEP function sets were evaluated
(not presented here) to select the proper set. It was found that the following function set gave the
optimum results.

Moreover, it is necessary to select a chromosomal architecture where a specific head size (= 8) and
the number of genes (= 3) are utilized as advised by previous authors (e.g., [26]). Finally, we selected
genetic operators. GeneXpro default operators were also chosen following previous research [65].

2.3.3. Multivariate Adaptive Regression Spline (MARS)

MARS is a nonparametric regression approach that might be regarded as an accompaniment of
linear models which automatically simulates the nonlinearities and interactions between parameters.
This innovative method excels at searching and finding optimal nonparametric regression models
and also controls the data easily [68]. This algorithm has some striking advantages, such as flexibility,
rapidness, and accuracy, which make it usable for predicting continuous and binary outputs using
a combination of linear and nonlinear methods. Identifying the underlying functional relationships
between input and output variables without any assumptions is another capability of MARS [69].
Basis functions are generated by the MARS model at the next step, called “searching”. The algorithm
includes a forward and backward stepwise plan. The intemperate forward stepwise chosen plan would
make a complex and overtrained model after a number of splits, which would add up the functions as
well as find the probabilistic nodes in order [70], which will have a lower performance accuracy. Thus,
this step involves the removal of minimum real terms, which eliminates the nonobligatory variables
among the previously chosen set. The resulting splines provide more accuracy as well as the flexibility
to the MARS technique, which assumes a threshold and deviations of linear functions [71].

2.3.4. Random Forest (RF)

The RF algorithm was first presented by Breiman [72], who gathered a collection of trees for
spatial and time-series simulations. This method as a group learning algorithm directs high-dimension
regression and classification issues and has been widely applied for forecasting issues [69]. One of the
advantageous of this approach is its capability to calculate interactions among different factors. This is
a tree-based group method where all trees are dependent on multitude variables, and a forest is grown
from several regression trees put together and forming a group [72]. There are two key parameters:
the number of variables and that of trees [73]. Dealing with random binary trees enables the RF to
make the final decision, which is achieved across averaging the output, after fitting single trees into
the ensemble (bagging procedure). The bias of the bagged trees is the same as that of the single trees,
while the variance is reduced by a reduction in the correlation between trees [74].

Here, after examining various numbers of trees, the tree number 150 was selected, which produced
the lowest error magnitudes, while 10 cycles were found as the best for calculating the mean error,
iteratively. Regarding the training error process, the percentage decrease was found to be 5% by trial
and error; based on that, the minimum child node size to stop and the maximum number of levels
were selected as 5 and 10, respectively.

2.3.5. Support Vector Machine (SVM)

SVM is one of the best machine-learning-based approaches that has been broadly implemented
in different scientific fields recently. This technique was first developed by Vapnik [75] and has
been framed on the concept of decisions in linear data categorization. This theory minimizes the
upper bound generalization error instead of the local training error, providing this algorithm with
a greater ability to generalize, which is the key aim in statistical learning for solving complicated
problems [57,76]. In the current research, the regression–SVM type 1 was employed, as it has shown
higher performance accuracy in previous research [77]. Through a trial and error procedure, SVM
constant values were chosen as 10 (capacity) and 0.15 (epsilon). Different linear, sigmoid, polynomial,
and radial basis functions were evaluated as SVM kernel functions; among them, the radial basis
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function kernel (Gamma = 0.25) gave the best results. Finally, the highest number of iterations was
found to be 1000 (iteratively), and the applied models were stopped at an error value of 0.005.

2.3.6. Artificial Neural Networks (NN)

NN is a computing method whose basic concept is formed by the behavior of biological neural
networks. The nodes are the main processor in this approach, similar to neurons, which also have
weighted connections in this biological base system [78]. An advantage of this method is the ability to
exploit relationships utilizing dependent and independent factors that enable it to model nonlinear
behaviors. This specification of this model makes it more efficient for noisy data systems. Briefly,
this computer-based model has been proposed in several layers that are responsible for recognizing
complex patterns. In this study, a multilayer perception feed-forward network was applied to the data
sets in addition to the different transfer functions in hidden and output layers. In selecting the perfect
function process, 100 networks were examined during each training stage, where the conjugate gradient
training algorithm with 180 cycles presented the maximum accuracy. Furthermore, Tanh and Identity
activation were the functions with which the best function for the layers was associated. Through an
iterative process, the number of hidden layer nodes was found to be 12 in this research. SVM, NN, RF,
and MARS analysis was carried out using STATISTICA software (StatSoft, Hamburg, Germany).

2.4. Modeling Protocol

In this research, identifying the influential independent variable on soil P for selecting the most
important input parameters was utilized using the statistical Gamma test. Constructing models based
on this calibration test can be considered inflexible, though it may be advantageous in some situations
where model selection is integrated together with the variable selection approach [26]. The obtained
outputs using this test revealed that the best input composition would be a combination of pH, OC,
and clay content, which are used to register the maximum influence on soil P with the minimum
Gamma statistic (0.0193). Extracting the wavelet decompositions of the selected input variables was the
next step, and computing the correlations of these subcomponents with the target parameter (Soil P)
was considered as the following stage. All the results of this process are summarized in Table 2. Finally,
the criteria for choosing the effective subcomponents as predictor variables for the wavelet–AI models
were the ones with correlation values >0.09. Even though the linear correlations seem to be lower for
each component, all these may be useful for the learning process of the implemented nonlinear models.

Table 2. The correlation coefficient between the subcomponents of input parameters and soil P values.

Input Subcomponents

A D1 D2 D3

pH 0.090 −0.092 −0.182 −0.099
OC 0.137 0.215 0.178 0.128

Clay −0.204 −0.082 −0.054 −0.107

A: approximation subcomponents; D1, D2, and D3: three details for each input.

A k-fold procedure was applied to the user data with the aim of dividing them into training as
well as testing blocks. In this method, all the available data are split up to k number of blocks. We used
10-fold independent blocks in our research. The considered models were trained with a portion of data
each time and tested using the rest of them. In this process, a total of 50 train–test phases (5 models ×
10 k-folds = 50) were applied to each single and wavelet-based AI model. Using this effective approach
provided reliable results of simulated values, which prevented model overfitting during the simulation
as well as allowed all the data to participate in two stages.

For inclusive justification of the models’ performance, there is a necessity of applying indices
with the aim of assessing the validation of constructed models. Here, three statistical indicators (from
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Equation (6) to Equation (8)), namely, correlation coefficient (R), scatter index (SI), and Nash–Sutcliffe
coefficient (NS), were utilized. Additionally, a t-test analysis was performed to prove the results.

R =

∑n
i=1 (Pio − Po)(Pim − Pm)√∑n

i=1 (Pio − Po)
2 ∑n

i=1 (Pim − Pm)
2

(6)

SI =
RMSE

P
=

√
1
n
∑n

i=1 (Pio − Pim)
2

Po
(7)

NS = 1−

∑n
i=1 (Pim − Pio)

2∑n
i=1 (Pio − Po)

2 (8)

In Equation (6), Pio denotes the measured soil P value at the i-th observation, Pim represents the
corresponding simulated P magnitude, and Po indicates the mean observed P magnitude. n stands for
the number of patterns. Overall, R cannot be utilized as a fitness measurement alone. Thus, using
other indices such as SI and NS can be considered essential for validation models. The best fit for R, SI,
and NS can be summarized in values equaling to 1, 0, and 1, respectively. In calculating these concepts,
a full series of applied patterns were used, including both pooling the simulations of each data set and
dividing for each test phase (1/10 of the patterns matrix).

3. Results and Discussion

The coupled wavelet–AI models, including WGEP, WMARS, WRF, WSVM, and WNN, were
obtained through combining the DWT and AI models. In order to determine the decomposition level,
we used the log(N) formula, where N is an indicator of the data number. In other words, 288 data were
used in our study, which resulted in three decomposition levels (log(288) = 3) in DWT applications.
Moreover, one approximation, namely, A, and three details (D1, D2, and D3) for each input were
obtained as subcomponents, each of which were utilized as input in the wavelet-based AI models.
Table 3 presents the statistical indices of the employed single as well as wavelet-based AI models. It
should be noted that the values are not significant with respect to the t-test results; however, the main
aim here was to compare different wavelet-based models. The highest significance level with the
lowest t-statistic indicated the most robust model.

Table 3. Error statistics of the applied models.

GEP MARS RF SVM NN WGEP WMARS WRF WSVM WNN

SI 0.564 0.612 0.600 0.689 0.704 0.127 0.194 0.181 0.213 0.256
R 0.678 0.562 0.587 0.432 0.412 0.990 0.975 0.978 0.970 0.960

NS 0.600 0.562 0.578 0.502 0.498 0.978 0.949 0.956 0.938 0.911

t-test results

WGEP WMARS WRF WSVM WNN
t-Statistic −0.281 0.258 −0.260 0.614 0.628

Resultant significance
level 0.901 0.880 0.889 0.821 0.791

The single models could not simulate the soil P content with reasonable accuracy, which might
be linked to the complicated chemistry property of P in soils. This situation could be due to the
reaction of inorganic P with other elements such as calcium, iron, and aluminium, which can convert
them to phosphates [15]. In our study area, also, organic P can be found with different shapes, and it
can be resistant to microbial degradation in soil and highly correlated with the variations of OC (as
can be seen in Table 1) and soil texture. Specifically, limes might bring a discrepancy to the amount
of P, which can make extrapolations difficult [24]. On the other hand, clay contents and Fe and Al
oxides could improve P sorption [79–81], while soil OC presents an adverse effect [82]. Nevertheless,
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Demaria et al. [83] stated that soil pH and metal ions show a significant influence on soil P contents, so
the variations in soil P contents might be due to the variations in soil properties, as soil OC and clay
distribution were considerably different in our studied area.

Based on Table 3, the lowest SI (0.127) and the highest R (0.990) and NS (0.978) values belong to
the WGEP model, which surpasses other models, including WRF, WMARS, WSVM, and WNN (ranked
successively). By contrast, WNN represents the worst results, with the highest SI (0.256) and the lowest
R (0.960) and NS (0.911) indicators. Meanwhile, the discrepancies among the models’ performance
are not considerable (0.067, 0.054, 0.086, and 0.129 between the WGEP and WRF, WMARS, WSVM,
and WNN, respectively) with the exception of WNN. Furthermore, the accuracy increments of the
WMARS, WRF, WSVM, and WNN models with respect to R-NS measures, respectively, are 1.5%–3.1%,
1.2%–2.3%, 2.1%–4.3%, and 3.1%–7.4% using the WGEP model. Moreover, a t-test approach as a
statistical hypothesis was also set at a significant level of 95% with the aim of comparing the degree
of the difference between the measured and simulated soil P values, that the results are presented in
Table 3. During the t-test statistics analyses, the WGEP model revealed the highest performance among
the other applied wavelet-based AI models.

Our findings demonstrated that the GEP technique has applied all the introduced input
variables (selected primarily using the Gamma test, as well as the correlations between the wavelet
decompositions and the target variable). Thus, the outcomes of the Gamma test are confirmed by the
GEP. Shiri et al. [26] argued that the differences between the input selection of the GEP and Gamma
test might be linked to their functional structure, where a major assumption with the Gamma test is
that the existing interrelation of the studied problem consisted of a smooth function and a random
variable, while GEP develops the structure and constants of the formulas simultaneously. The extent
to which site-specific constants are embedded in the formulation—and whether those constants are
similar to or different than those at another statio—would dictate the transferability of the function
between stations. Therefore, in the current case, giving similar results of the input selection might be
linked to the nature of the studied problem as well as using the wavelet transform for transferring the
original data into their subcomponents. The maximum weight given by the GEP to the introduced
input variables belongs to the subcomponents of the soil OC as well as soil clay content. The MARS
model, however, gives the highest weight to the D12 (pH) and D21 (OC), while the highest weights
correspond to the D22 (OC), D21 (OC), D12 (pH), and A31 (clay) with the RF model. Nonetheless,
analyzing the obtained equation reveals that soil clay and OC content have a direct, positive effect on
soil P amount, while pH shows an adverse relation, which confirms the results of previous studies
(e.g., [18,84]).

The split-up of SI and NS values of the utilized techniques per test stage can be found in Figure 7,
where it can be seen that the lowest SI and the highest NS values in 6 test stages (1st, 2nd, 4th, 6th, 8th,
and 10th) out of 10 are allocated to the WGEP, while it has similar accuracy with WRF model in the 3rd
and 5th test stages. Figure 7 shows considerable differences among the models’ performance accuracy
in different test stages as well.
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The reported difference between the maximum and minimum SI values among the test stages of
WGEP and WSVM is 0.104 and 0.247, respectively. The same trend is also observed for the WGEP
model for the NS indicator (the lowest NS fluctuations); however, the WMARS presents the highest
fluctuations for NS. Taking into consideration that the current research applied the k-fold testing
approach in the way of holding back the data to feed the train–test partitions, such variations would
dictate the requirement of using this method to evaluate the methodologies. Since there is a need
for a strong validation for all available data as well as other data with the same statistical ranges,
the obtained results would not satisfy these criteria. On the other hand, the patterns used in this
research have been chosen from various spatial points where the necessity of using k-fold testing
becomes more indispensable. The application of k-fold testing is more significant in checking the
models’ generalizability via external applications, for instance, in the considered models trained with
data from different places and tested using data from another place, as the test patterns include data
from different points [66].

The measured versus simulated magnitudes of soil P (utilizing the applied methods) have been
plotted in Figure 8.
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It is apparent from the scatterplots that the WGEP model has less scattered estimates than the
other applied methods, and its estimates fall into the 0.95 prediction interval except for 1 or 2 values.
The WRF model has the second-best accurate estimates, while NN obtains the worst accuracy and
most scattered soil P estimations. The WGEP model adequately estimates high soil P values, while the
other models generally tend to overestimate them. All these graphs confirm the statistics evaluated in
Table 3.
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Overall, the wavelet-based GEP model excelled among all the applied models, as it could provide
the most precise results in modeling soil P values in the present study. It also showed that each of the
DWs obtained using DWT played a distinct role in the original data and exhibited different effects on
the original output (here soil P data). This study justified previous applications [85–87] and indicated
that discrete wavelet transform can be considered as a useful technique in data preprocessing as well.

Finally, it should be noted that land use may affect the relationships among soil variables,
as discussed by other authors (e.g., [88–91]). Nonetheless, topography affects soil properties as well due
to the local redistribution of water, solar radiation, and parent material through erosion and deposition
processes [92–94]. While the developed models might not be directly transferable to other regions
(since the influential parameters on soil P may differ in distinct locations), the proposed approaches
can be useful for a suitable assessment of soil P magnitudes in different regions. Therefore, the current
study presents a practitioner with a fully described blueprint for applying these techniques.

4. Conclusions and Challenges

The current research demonstrated the necessity of applying the k-fold cross-validation to assess
the five variant wavelet-based AI models, namely, WGEP, WMARS, WRF, WSVM, and WNN, which
were applied in modeling soil P. To achieve this goal, soil pH, OC, and clay content were used as
inputs. These soil properties were the most adequate considering our study area conditions. Although
applications based on a single data set assignment are commonly used, k-fold testing is advisable to
perform a thorough evaluation of the modeling procedure referring to a data set as stated by Marti et
al. [95]. Gamma test was also utilized for selecting the optimal inputs to the applied models and with
the aim of preventing the AI-based models from overfitting in addition to ten k-fold cross-validations.
Applying DWT with three decomposition levels to the input data was another part of the process where
each subcomponent was used as input. Finally, our findings can be summarized in the following five
main points: (i) The wavelet transform technique can be considered as an effective tool in preprocessing
input data of AI methods in modeling soil P; (ii) among the applied AI models, WGEP provided the
best estimations, followed by the WRF, while the WNN showed the worst results; (iii) models’ results
were also compared according to the t-test, and WGEP obtained the most robust results among them
in prediction of soil P; (iv) the SI-NS accuracy increments of the WMARS, WRF, WSVM, and WNN
models were also found to be 35%–3.1%, 30%–2.3%, 40%–4.3%, and 50%–7.4% using the WGEP model,
respectively; and, (v) k-fold application can be considered as an essential method in modeling soil P, as it
demonstrated a high spatial variation, defaulting and preventing the applied models from overtraining.

Applying the hybrid wavelet–data-driven models on the water and soil-related analyses, including
groundwater quality modeling, soil moisture simulation, etc., could be an interesting topic for future
investigations. Furthermore, coupling different wavelet transforms ranging from discrete (DWT) to
continuous (CWT) with other data-driven models for the same issues would be another suggestion for
further research in this field.

Author Contributions: Conceptualization, J.S., A.K., and O.K.; Methodology and validation, J.S., A.K., O.K.,
S.M.K., and S.K.; Formal analysis, J.S., A.K., O.K., S.M.K., S.K., and A.H.N.; Writing, J.S., A.K., O.K., S.M.K., S.K.,
A.H.N., and J.R.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This study was partially supported by the Department of Soil Science, University of
Tehran, Iran.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Keesstra, S.; Geissen, V.; Mosse, K.; Piiranen, S.; Scudiero, E.; Leistra, M.; van Schaik, L. Soil as a filter for
groundwater quality. Curr. Opin. Environ. Sustain. Terr. Syst. 2012, 4, 507–516. [CrossRef]

http://dx.doi.org/10.1016/j.cosust.2012.10.007


Sustainability 2020, 12, 2150 19 of 23

2. Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.;
Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A
meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019,
236, 124364. [CrossRef]

3. Ribolzi, O.; Valles, V.; Gomez, L.; Voltz, M. Speciation and origin of particulate copper in runoff water from a
Mediterranean vineyard catchment. Environ. Pollut. 2002, 117, 261–271. [CrossRef]

4. Serpa, D.; Nunes, J.P.; Keizer, J.J.; Abrantes, N. Impacts of climate and land use changes on the water
quality of a small Mediterranean catchment with intensive viticulture. Environ. Pollut. Barking Essex. 2017.
[CrossRef] [PubMed]

5. García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under
different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ.
2017, 236, 256–267. [CrossRef]

6. Atucha, A.; Merwin, I.A.; Brown, M.G.; Gardiazabal, F.; Mena, F.; Adriazola, C.; Lehmann, J. Soil erosion,
runoff and nutrient losses in an avocado (Perseaamericana Mill) hillside orchard under different groundcover
management systems. Plant Soil 2013, 368, 393–406. [CrossRef]

7. Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J. Assessment and monitoring of
soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 2016, 28, 128–141.
[CrossRef]

8. Sulieman, M.; Saeed, I.; Hassaballa, A.; Rodrigo-Comino, J. Modeling cation exchange capacity in multi
geochronological-derived alluvium soils: An approach based on soil depth intervals. CATENA 2018, 167,
327–339. [CrossRef]

9. Ritzema, H.P.; Braun, H.M.H. Environmental aspects of drainage. In Drainage Principles and Applications;
Ritzema, H.P., Ed.; International Institute for Land Reclamation and Improvement (ILRI): Wageningen,
The Netherlands, 1994; Volume 16, pp. 1041–1065.

10. Keesstra, S.; Nunes, J.P.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of
nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018,
610–611, 997–1009. [CrossRef]

11. D’Angelo, E.; Crutchfield, J.; Vandiviere, M. Rapid, sensitive microscale determination of phosphate in water
and soil. J. Environ. Qual. 2001, 30, 2206–2209. [CrossRef]

12. Madramootoo, C.A.; Johnston, W.R.; Willardson, L.S. Management of Agricultural Drainage Water Quality;
Water Reports 13; International Commission on Irrigation and Drainage (ICID): New Delhi, India; Food and
Agriculture Organization of the United Nations (FAO): Rome, Italy, 1997.

13. Bergström, L.; Kirchmann, H.; Djodjic, F.; Kyllmar, K.; Ulén, B.; Liu, J.; Andersson, H.; Aronsson, H.;
Börjesson, G.; Kynkänniemi, P.; et al. Turnover and losses of phosphorus in Swedish agricultural soils:
Long-Term changes, leaching trends and mitigation measures. J. Environ. Qual. 2015, 44, 512–523. [CrossRef]

14. Musavi, R.; Sepehr, E. Phosphorus efficiency of some barley genotypes in the presence of
phosphate-solubilizing microorganisms. EJGCTS 2013, 4, 27–40. (In Persian)

15. Hosseini, M.; RajabiAgereh, S.; Khaledian, Y.; Jafarzadeh Zoghalchali, H.; Brevik, E.C.; MovahediNaeini, S.A.R.
Comparison of multiple statistical techniques to predict soil phosphorus. Appl. Soil Ecol. 2017, 114, 123–131.
[CrossRef]

16. Sharpley, A. Identifying sites vulnerable to soil phosphorus loss on agricultural runoff. J. Environ. Qual. 1995,
24, 947–951. [CrossRef]

17. Daré, J.K.; Silva, C.F.; Freitas, M.P. Revealing chemophoric sites in organophosphorus insecticides through
the MIA-QSPR modeling of soil sorption data. Ecotoxicol. Environ. Saf. 2017, 144, 560–563. [CrossRef]

18. Cox, F.R. Predicting increases in extractable phosphorus from fertilizing soils of varying clay content. Soil Sci.
Soc. Am. J. 1994, 58, 1249–1253. [CrossRef]

19. Freeman, J.S.; Rowell, D.L. The adsorption and precipitation of phosphate on to calcite. Eur. J. Soil Sci. 1981,
32, 75–84. [CrossRef]

20. Mohebbi Sadegh, M.J. Investigation of relationships between available phosphorus, potassium and some
soil properties in agricultural lands of Varamin—Iran. Int. J. Agric. Biosci. 2014, 3, 7–12.

21. Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y. Toxicity of acid mine pit lake water
remediated with limestone and phosphorus. Ecotoxicol. Environ. Saf. 2009, 72, 2046–2057. [CrossRef]

http://dx.doi.org/10.1016/j.chemosphere.2019.124364
http://dx.doi.org/10.1016/S0269-7491(01)00274-3
http://dx.doi.org/10.1016/j.envpol.2017.02.026
http://www.ncbi.nlm.nih.gov/pubmed/28238575
http://dx.doi.org/10.1016/j.agee.2016.12.013
http://dx.doi.org/10.1007/s11104-012-1520-0
http://dx.doi.org/10.1002/ldr.2541
http://dx.doi.org/10.1016/j.catena.2018.05.001
http://dx.doi.org/10.1016/j.scitotenv.2017.08.077
http://dx.doi.org/10.2134/jeq2001.2206
http://dx.doi.org/10.2134/jeq2014.04.0165
http://dx.doi.org/10.1016/j.apsoil.2017.02.011
http://dx.doi.org/10.2134/jeq1995.00472425002400050024x
http://dx.doi.org/10.1016/j.ecoenv.2017.06.072
http://dx.doi.org/10.2136/sssaj1994.03615995005800040036x
http://dx.doi.org/10.1111/j.1365-2389.1981.tb01687.x
http://dx.doi.org/10.1016/j.ecoenv.2009.08.013


Sustainability 2020, 12, 2150 20 of 23

22. Rocha, G.S.; Lombardi, A.T.; Melão, M.d.G.G. Influence of phosphorus on copper toxicity to Selenastrum
gracile (Reinsch) Korshikov. Ecotoxicol. Environ. Saf. 2016, 128, 30–35. [CrossRef]

23. Nour, M.H.; Smith, D.W.; Gamal El-Din, M.; Prepas, E.E. The application of artificial neural networks to
flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands.
Ecol. Model. 2006, 191, 19–32. [CrossRef]

24. Keshavarzi, A.; Sarmadian, F.; Omran, E.E.; Iqbal, M. A neural network model for estimating soil phosphorus
using terrain analysis. Egypt. J. Remote Sens. Space Sci. 2015, 18, 127–135. [CrossRef]

25. Shiri, J.; Keshavarzi, A.; Kisi, O.; Iturraran-Viveros, U.; Bagherzadeh, A.; Mousavi, R.; Karimi, S. Modeling
soil cation exchange capacity using soil parameters: Assessing the heuristic models. Comput. Electron. Agric.
2017, 135, 242–251. [CrossRef]

26. Shiri, J.; Keshavarzi, A.; Kisi, O.; Karimi, S.; Iturraran-Viveros, U. Modeling soil bulk density through a
complete data scanning procedure: Heuristic alternatives. J. Hydrol. 2017, 549, 592–602. [CrossRef]

27. Shiri, J.; Kisi, O.; Yoon, H.; Lee, K.K.; Nazemi, A.H. Predicting groundwater level fluctuations with
meteorological effect implications: A comparative study among soft computing techniques. Comput. Geosci.
2013, 56, 32–44. [CrossRef]

28. Karimi, S.; Kisi, O.; Kim, S.; Nazemi, A.H.; Shiri, J. Modelling daily reference evapotranspiration in humid
locations of South Korea using local and cross-station data management scenarios. Int. J. Climatol. 2017, 37,
3238–3246. [CrossRef]

29. Kisi, O.; Hossein zadehDalir, A.; Cimen, M.; Shiri, J. Suspended sediment modeling using genetic
programming and soft computing techniques. J. Hydrol. 2012, 450–451, 48–58. [CrossRef]

30. Landeras, G.; Lopez, J.J.; Kisi, O.; Shiri, J. Comparison of gene expression programming with neuro-fuzzy and
neural network computing techniques in estimating daily incoming solar radiation in the Basque Country
(Northern Spain). Energy Convers. Manag. 2012, 62, 1–13. [CrossRef]

31. Kisi, O.; Keshavarzi, A.; Shiri, J.; Zounemat-Kermani, M.; Omran, E.E. Groundwater quality modeling
using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrol. Res. 2017, 48,
1508–1519. [CrossRef]

32. Coulibaly, P.; Burn, H.D. Wavelet analysis of variability in annual Canadian streamflows. Water Resour. Res.
2004, 40, W03105. [CrossRef]

33. Partal, T.; Kucuk, M. Long-Term trend analysis using discrete wavelet components of annual precipitations
measurements in Marmara region (Turkey). Phys. Chem. Earth 2006, 31, 1189–1200. [CrossRef]

34. Shiri, J.; Kisi, O. Estimation of daily suspended sediment load by using wavelet conjunction models.
J. Hydrol. Eng. 2012, 17, 986–1000. [CrossRef]

35. Tamaddun, K.A.; Kalra, A.; Ahmad, S. Wavelet analyses of western US streamflow with ENSO and PDO.
J. Water Clim. Chang. 2017, 8, 26–39. [CrossRef]

36. Wang, W.; Ding, J. Wavelet network model and its application to the prediction of the hydrology. Nat. Sci.
2003, 1, 67–71.

37. Partal, T.; Kisi, O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007,
342, 199–212. [CrossRef]

38. Kisi, O.; Shiri, J. Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations.
Hydrol. Res. 2012, 43, 286–300. [CrossRef]

39. Lee, Y.Y.; Liew, K.M. Detection of damage locations in a beam using the wavelet analysis. Int. J. Struct.
Stab. Dyn. 2001, 1, 455–460. [CrossRef]

40. Lam, H.F.; Lee, Y.Y.; Sun, H.Y.; Cheng, G.F.; Guo, X. Application of the spatial wavelet transform and Bayesian
approach to the crack detection of a partially obstructed beam. Thin Walled Struct. 2005, 43, 1–21. [CrossRef]

41. Zheng, T.; Girgis, A.A.; Makram, E.B. A hybrid wavelet kalman filter method for load forecasting. Electr. Pow.
Syst. Res. 2000, 54, 11–17. [CrossRef]

42. Zhou, H.; Wu, L.; Guo, Y. Mid and longterm hydrologic forecasting for drainage are based on WNN and
FRM. In ISDA: Sixth International Conference on Intelligent Systems Design and Applications; International Swaps
and Derivatives Association (ISDA): New York, NY, USA, 2006; pp. 7–12.

43. Shiri, J.; Kisi, O. Short-Term and long-term streamflow forecasting using a wavelet and neuro-fuzzy
conjunction model. J. Hydrol. 2010, 394, 486–493. [CrossRef]

44. Feng, Q.; Wen, X.H.; Li, J.G. Wavelet analysis-support vector machine coupled models for monthly rainfall
forecasting in arid regions. Water Resourmanag. 2015, 29, 1049–1065. [CrossRef]

http://dx.doi.org/10.1016/j.ecoenv.2016.02.007
http://dx.doi.org/10.1016/j.ecolmodel.2005.08.010
http://dx.doi.org/10.1016/j.ejrs.2015.06.004
http://dx.doi.org/10.1016/j.compag.2017.02.016
http://dx.doi.org/10.1016/j.jhydrol.2017.04.035
http://dx.doi.org/10.1016/j.cageo.2013.01.007
http://dx.doi.org/10.1002/joc.4911
http://dx.doi.org/10.1016/j.jhydrol.2012.05.031
http://dx.doi.org/10.1016/j.enconman.2012.03.025
http://dx.doi.org/10.2166/nh.2017.206
http://dx.doi.org/10.1029/2003WR002667
http://dx.doi.org/10.1016/j.pce.2006.04.043
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000535
http://dx.doi.org/10.2166/wcc.2016.162
http://dx.doi.org/10.1016/j.jhydrol.2007.05.026
http://dx.doi.org/10.2166/nh.2012.104b
http://dx.doi.org/10.1142/S0219455401000238
http://dx.doi.org/10.1016/j.tws.2004.08.001
http://dx.doi.org/10.1016/S0378-7796(99)00063-2
http://dx.doi.org/10.1016/j.jhydrol.2010.10.008
http://dx.doi.org/10.1007/s11269-014-0860-3


Sustainability 2020, 12, 2150 21 of 23

45. Mansouri Daneshvar, M.R.; Bagherzadeh, A.; Alijani, B. Application of multivariate approach in
agrometeorological suitability zonation at northeast semiarid plains of Iran. Theor. Appl. Climatol. 2013, 114,
139–152. [CrossRef]

46. Bhunia, S.G.; Keshavarzi, A.; Shit, P.K.; Omran, E.; Bagherzadeh, A. Evaluation of groundwater quality
and its suitability for drinking and irrigation using GIS and geo-statistics techniques in semiarid region of
Neyshabur, Iran. Appl. Water Sci. 2018, 8, 168. [CrossRef]

47. Bagherzadeh, A.; Ghadiri, E.; SouhaniDarban, A.R.; Gholizadeh, A. Land suitability modeling by
parametric-based neural networks and fuzzy methods for soybean production in a semi-arid region.
Model. Earth Syst. Environ. 2016, 2, 104. [CrossRef]

48. Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington,
DC, USA, 2014.

49. Bagherzadeh, H.R.; Bagherzadeh, A.; Moeinrad, H. Analysis of parametric approaches in qualitative land
suitability evaluation for irrigated wheat (Triticum aestivum L.) cultivation at Neyshabur plain. Agroecology
2012, 4, 121–130.

50. Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with
Sodium Bicarbonate; U.S. Government Printing Office: Washington, DC, USA, 1954.

51. Nelson, D.W.; Sommers, L.P. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis:
Part 2; Agronomy Handbook 9; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA; Soil
Science Society of America: Madison, WI, USA, 1986; pp. 539–579.

52. Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis: Part 1; Agronomy Handbook 9;
Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison,
WI, USA, 1986; pp. 383–411.

53. Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Broderson, W.D. Field Book for Describing and Sampling Soils;
Version 2.0; NRCS-National Soil Survey Center: Lincoln, NE, USA, 2012.

54. Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 2; Agronomy Handbook 9; Page, A.L.,
Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI,
USA, 1996; pp. 475–490.

55. Nelson, R.E. Carbonate and gypsum. In Methods of Soil Analysis: Part 1; Agronomy Handbook 9; Page, A.L.,
Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI,
USA, 1982; pp. 181–197.

56. Keshavarzi, A.; Omran Omran, E.E.; Bateni Sayed, M.; Pradhan, B.; Vasu, D.; Bagherzadeh, A. Modeling
of available soil phosphorus (ASP) using multi-objective group method of data handling. Model. Earth
Syst. Environ. 2016, 2, 157. [CrossRef]

57. Fard, M.M.; Harchagani, H.B. Comparison of artificial neural network and regression pedotransfer functions
models for prediction of soil cation exchange capacity in Chaharmahal-e-Bakhtiari province. J. Soil
Water Conserv. 2009, 23, 90–99.

58. Stutter, M.I. The composition, leaching, and sorption behavior of some alternative sources of phosphorus for
soils. AMBIO 2015, 44, 207–216. [CrossRef] [PubMed]

59. Sharifi, S.S.; Rezaverdinejada, R.; Nourani, V. Estimation of daily global solar radiation using wavelet
regression, ANN, GEP and empirical models: A comparative study of selected temperature based approaches.
J. Atmos. Sol. Terr. Phys. 2016, 149, 131–145.

60. Kaboudan, M. Extended daily exchange rates forecasts using wavelet temporal resolutions. New Math.
Nat. Comput. 2005, 1, 79–107. [CrossRef]

61. Mallat, S.G. A theory for multi resolution signal decomposition: The wavelet representation. IEEE Trans.
Pattern Anal. 1989, 11, 674–693. [CrossRef]

62. Kim, T.W.; Valdes, J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms
and neural networks. J. Hydrol. Eng. 2003, 6, 319–328. [CrossRef]

63. Shiri, J.; Kisi, O. Application of artificial intelligence to estimate daily pan evaporation using available and
estimated climatic data in the Khozestan Province (South-Western Iran). J. Irrig. Drain. Eng. 2011, 137,
412–425. [CrossRef]

64. Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. Complex Syst.
2001, 13, 87–129.

http://dx.doi.org/10.1007/s00704-012-0827-3
http://dx.doi.org/10.1007/s13201-018-0795-6
http://dx.doi.org/10.1007/s40808-016-0152-4
http://dx.doi.org/10.1007/s40808-016-0216-5
http://dx.doi.org/10.1007/s13280-014-0615-7
http://www.ncbi.nlm.nih.gov/pubmed/25681978
http://dx.doi.org/10.1142/S1793005705000056
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319)
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000315


Sustainability 2020, 12, 2150 22 of 23

65. Landeras, G.; Bekoe, E.; Ampofo, J.; Logah, F.; Diop, M.; Cisse, M.; Shiri, J. New alternatives for reference
evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies.
Theor. Appl. Climatol. 2018, 132, 701–716. [CrossRef]

66. Shiri, J. Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches
for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agric. Water Manag 2017, 188,
101–114. [CrossRef]

67. Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence; Springer:
Berlin/Heidelberg, Germany; New York, NY, USA, 2006; 478p.

68. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1. [CrossRef]
69. Fan, J.; Wu, L.; Zhanga, F.; Caia, H.; Zeng, W.; Wang, X.; Zoua, H. Empirical and machine learning models

for predicting daily global solar radiation from sunshine duration: A review and case study in China.
Renew. Sustain. Energy Rev. 2019, 100, 186–212.

70. Andres, J.D.; Lorca, P.; de Cos Juez, F.J.; Sánchez-Lasheras, F. Bankruptcy forecasting: A hybrid approach
using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Syst. Appl.
2010, 38, 1866–1875. [CrossRef]

71. Zhang, W.G.; Goh, A.T.C. Multivariate adaptive regression splines for analysis of geotechnical engineering
systems. Comput. Geotech. 2013, 48, 82–95. [CrossRef]

72. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
73. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping

using random forest, boosted regression tree, classification and regression tree, and general linear models
and comparison of their performance at Wadi, Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13.
[CrossRef]

74. Hastie, T.; Tibshirani, R.; Friedman, J. Random forests. In The Elements of Statistical Learning; Springer Series
in Statistics; Springer: New York, NY, USA, 2009; pp. 587–604.

75. Vapnik, V.; Golwich, S.; Smola, A.J. Support vector method for function approximation, regression estimation,
and signal processing. In Advances in Neural Information Processing Systems 9; Mozer, M., Jordan, M., Petsche, T.,
Eds.; MIT Press: Boston, MA, USA, 1997; pp. 281–287.

76. Gunn, S.R. Support Vector Machines for Classification and Regression; Technical Report; University of
Southampton: Southampton, UK, 1998.

77. Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; FakheriFard, A.; Marti, P. Comparison of
heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran.
Comput. Electron. Agric. 2014, 108, 230–241. [CrossRef]

78. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice-Hall: Upper Saddle River, NJ, USA,
1999; 842p.

79. Singh, B.; Gilkes, R.J. Phosphorus sorption in relation to soil properties for the major soil types of south-western
Australia. Aust. J. Soil Res. 1991, 29, 603–618. [CrossRef]

80. Freese, D.; Van der Zee, S.; Van Riemsdijk, W.H. Comparison of different models for phosphate sorption as a
function of the iron and aluminum oxides in soils. Eur. J. Soil Sci. 1992, 43, 729–738. [CrossRef]

81. Frossard, E.; Brossard, M.; Hedley, M.J.; Metherell, A. Reactions controlling the cycling of P in soils. In
Phosphorus Cycling in Terrestrial and Aquatic Ecosystems: A Global Perspective; Tiessen, H., Ed.; SCOPE/John
Wiley: New York, NY, USA, 1995; pp. 107–137.

82. Dubus, I.G.; Becquer, T. Phosphorus sorption and desorption in oxide-rich Ferralsols of New Caledonia.
Aust. J. Soil Res. 2001, 39, 403–414. [CrossRef]

83. Demaria, P.; Sinaj, S.; Flisch, R.; Frossard, E. Soil properties and phosphorus isotopic exchangeability in
cropped temperate soils. Commun. Soil Sci. Plant Anal. 2013, 44, 287–300. [CrossRef]

84. Yousef, B.B.; Akiri, B. Sodium bicarbonate extraction to estimate nitrogen, phosphorus, and potassium
availability in soils. Soil Sci. Soc. Am. J. 1978, 42, 319–323. [CrossRef]

85. Nayak, P.C.; Venkatesh, B.; Krishna, B.; Jain, S.K. Rainfall-Runoff modeling using conceptual, data driven,
and wavelet based computing approach. J. Hydrol. 2013, 493, 57–67. [CrossRef]

86. Liu, Z.Y.; Zhou, P.; Chen, G.; Guo, L.D. Evaluating a coupled discrete wavelet transform and support vector
regression for daily and monthly streamflow forecasting. J. Hydrol. 2014, 519, 2822–2831. [CrossRef]

87. Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Comparative study of different wavelet based neural network
models for rainfall-runoff modeling. J. Hydrol. 2014, 515, 47–58. [CrossRef]

http://dx.doi.org/10.1007/s00704-017-2120-y
http://dx.doi.org/10.1016/j.agwat.2017.04.009
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1016/j.eswa.2010.07.117
http://dx.doi.org/10.1016/j.compgeo.2012.09.016
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s10346-015-0614-1
http://dx.doi.org/10.1016/j.compag.2014.08.007
http://dx.doi.org/10.1071/SR9910603
http://dx.doi.org/10.1111/j.1365-2389.1992.tb00172.x
http://dx.doi.org/10.1071/SR00003
http://dx.doi.org/10.1080/00103624.2013.741896
http://dx.doi.org/10.2136/sssaj1978.03615995004200020024x
http://dx.doi.org/10.1016/j.jhydrol.2013.04.016
http://dx.doi.org/10.1016/j.jhydrol.2014.06.050
http://dx.doi.org/10.1016/j.jhydrol.2014.04.055


Sustainability 2020, 12, 2150 23 of 23

88. Raheem Lahmod, N.; Talib Alkooranee, J.; Gatea Alshammary, A.A.; Rodrigo-Comino, J. Effect of wheat
straw as a cover crop on the chlorophyll, seed, and oilseed yield of Trigonella foeunm graecum L under water
deficiency and weed competition. Plants 2019, 8, 503. [CrossRef] [PubMed]

89. Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential
of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A
biophysical and socioeconomic assessment. Land Degrad. Dev. 2019. [CrossRef]

90. Reijneveld, J.A.; Ehlert, P.A.I.; Termorshuizen, A.J.; Oenema, O. Changes in the soil phosphorus status of
agricultural land in The Netherlands during the 20th century. Soil Use Manag. 2010, 26, 399–411. [CrossRef]

91. Yazdanbakhsh, A.; Alavi, S.N.; Valadabadi, S.A.; Karimi, F.; Karimi, Z. Heavy metals uptake of salty soils by
ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air Soil Water Res.
2020, 13. [CrossRef]

92. Gessler, P.E.; Chadwick, O.A.; Chamran, R.; Althouse, L.; Holmes, K. Modeling soil-landscape and ecosystem
properties using terrain attributes. Soil Sci. Soc. Am. J. 2000, 64, 2046–2056. [CrossRef]

93. Kozar, B.; Lawrence, R.; Long, D.S. Soil phosphorus and potassium mapping using a spatial correlation
model incorporating terrain slope gradient. Precis. Agric. 2002, 3, 407–417. [CrossRef]

94. Anderson, D.W. The effect of parent material and soil development on nutrient cycling in temperate
ecosystems. Biogeochemistry 1988, 5, 71–97. [CrossRef]

95. Marti, P.; Shiri, J.; Duran-Ros, M.; Arbat, G.; Cartagena, F.R.; Puig-Bargues, J. Artificial neural networks vs.
gene expressions programming for estimating outlet dissolved oxygen in micro irrigation sand filters fed
with effluents. Comput. Electron. Agric. 2013, 99, 176–185. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/plants8110503
http://www.ncbi.nlm.nih.gov/pubmed/31739581
http://dx.doi.org/10.1002/ldr.3305
http://dx.doi.org/10.1111/j.1475-2743.2010.00290.x
http://dx.doi.org/10.1177/1178622119898460
http://dx.doi.org/10.2136/sssaj2000.6462046x
http://dx.doi.org/10.1023/A:1021549107075
http://dx.doi.org/10.1007/BF02180318
http://dx.doi.org/10.1016/j.compag.2013.08.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Region 
	Soil Sampling Procedures and Soil Analysis 
	Soil Models 
	Discrete Wavelet Transform (DWT) 
	Gene Expression Programming (GEP) 
	Multivariate Adaptive Regression Spline (MARS) 
	Random Forest (RF) 
	Support Vector Machine (SVM) 
	Artificial Neural Networks (NN) 

	Modeling Protocol 

	Results and Discussion 
	Conclusions and Challenges 
	References

