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Abstract: Based on the collected weather data from the agricultural Internet of Things (IoT) system,
changes in the weather can be obtained in advance, which is an effective way to plan and control
sustainable agricultural production. However, it is not easy to accurately predict the future trend
because the data always contain complex nonlinear relationship with multiple components. To
increase the prediction performance of the weather data in the precision agriculture IoT system, this
study used a deep learning predictor with sequential two-level decomposition structure, in which the
weather data were decomposed into four components serially, then the gated recurrent unit (GRU)
networks were trained as the sub-predictors for each component. Finally, the results from GRUs were
combined to obtain the medium- and long-term prediction result. The experiments were verified for
the proposed model based on weather data from the IoT system in Ningxia, China, for wolfberry
planting, in which the prediction results showed that the proposed predictor can obtain the accurate
prediction of temperature and humidity and meet the needs of precision agricultural production.

Keywords: deep learning predictor; GRU; precision agriculture; IoT; sequential two-level
decomposition structure; medium- and long-term prediction

1. Introduction

The process of adopting innovation, especially with regard to precision farming (PF), is inherently
complex and social and influenced by producers, change agents, social norms, and organizational
pressure. Vecchio, Y et al. [1] conducted an empirical analysis on the preliminary results of Italian
farmers and found that increasing awareness of using precision farming (PF) tools is very meaningful,
and future research should focus on innovations and solutions that offer environmental sustainability.
In this process, the application of the Internet of Things system is a very important aspect. It will
reduce the amount of information required by farmers as decision makers and thus improve the
overall agricultural level. In addition, severe weather has a great impact on agricultural development.
Planning in advance can effectively reduce losses by forecasting the weather in the medium- and
long-term. At the same time, it also has guiding significance for farm management and agricultural
insurance [2,3].

Internet of Things (IoT) technology enables sensors to collect data and has provided important
technologies for a variety of intelligent systems. The precision agriculture system is one of the most
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important IoT systems in recent years, by which higher productivity, sustainable profitability, and
higher quality products can be achieved based on information technology [4–6].

Precision agriculture has great potential and can make a significant contribution to food production,
safety, and security [7]. An important research direction of the IoT system for precision agriculture is to
provide a specific environment for productivity in response to changes in weather, such as temperature
and humidity, etc., to optimize resource use including energy, space, and labor and to further achieve
more efficient production.

The accurate medium- and long-term prediction of future weather condition can help farmers,
distributors, and policymakers to make decisions for sustainable agricultural production, which
promotes the activities that increase the benefit of utilization and development of food resources for
individual, social, and economic purposes. The analysis and modeling methods of future weather
can assist in the projection of possible future agricultural management, thus helping and guiding the
management of production towards sustainable agriculture development.

The prediction based on the weather data is a difficult problem because the collected data from
sensors always contain complex nonlinear relationships with multiple components. On the other
hand, thanks to the high sampling frequency, large-scale data have been collected and stored in the IoT
system, which makes it possible to analyze sensory data, discover new information, and predict future
insights [8,9].

Some methods have been proposed to solve the prediction problem for the collected time sequential
data based on the sensors of the IoT system. For example, the traditional autoregressive integrated
moving average (ARIMA) [10], artificial neural networks (ANN) [11–14], support vector machines
(SVMs) [15], and echo state network (ESN) with particle swarm optimization [16] have been applied
to the modeling and predicting of the future of time sequential data. However, for the practical IoT
system, these models cannot obtain accurate predictions due to the complexity of the collected data
and weak modeling ability for nonlinearity.

Recently, deep learning networks have shown great advantages for extracting the features of
complex nonlinear data. Particularly, the convolutional neural network (CNN) [17] and the recurrent
neural network (RNN) and its improved models [18–20], such as long short-term memory (LSTM)
network, gated recurrent unit (GRU) network, and bidirectional long short-term memory (Bi-LSTM)
network have been used for extracting the features of time sequential data.

For example, the developed Bi-LSTM [21] increases the performance of LSTM by inputting one
step of the time sequential data into the network in both forward and reverse directions. Although
the number of parameters increases and more generations of training are required, the information
considered by Bi-LSTM becomes more comprehensive. Tang Y et al. [22] also proposed a method
named GRU to improve LSTM by reducing a gating unit, and experiments have shown that the GRU
has better performance than LSTM even with more concise structure [23]. Jin X et al. [24] combined the
traditional method ARIMA model with GRU and verified it with Beijing pm2.5 data, which gave a
more accurate long-term prediction.

However, the performance of these networks still needs to be developed to obtain more accurate
prediction for the weather data in order to meet the requirement of precision agriculture. Researchers
agree that one of the reasons for the degradation of prediction performance is that the collected weather
data from the IoT system always contain multiple components.

As an example, the temperature data in general contain four kinds of components:

(1) Trend component: This refers to the main trend direction of temperature data. This part often
includes the trend of linear growth and decline. The trend component reflects the changes of
temperature over a long period of time.

(2) Period components per day: The temperature data have obvious period characteristics in 1 day;
that is, the value during the day is higher and that at night is lower.

(3) Period components per year: The temperature data have another period in 1 year, in which the
temperature cycle changes in spring, summer, autumn, and winter.
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(4) Residual component: This refers to the remaining part of the original data minus the trend and
period components and usually consists of complex nonlinear element and noise.

Figure 1a is an example of hourly temperature data (in the first sub-figure) from January 2016 to
December 2017 in Ningxia, China. The abscissa axis in Figure 1 represents observation points when
the sampling interval is set to 1 h. The trend component shown in the second sub-figure (Figure 1b) in
this period is between about 10 degrees and 17.5 degrees.
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The third sub-figure, Figure 1c, shows the period component per day. We can see that the
temperature variation of the daytime temperature has obvious periodicity with 24 h. To show the
period each day clearly, we show data for 10 days, about 240 h. The figure shows that from the early
hours of the morning, the temperature rises, and after noon, the temperature begins to drop.

On the other hand, the bottom sub-figure Figure 1d shows the period per year, where the obvious
changes in the four seasons can also be found. The average temperature in winter is lower than the
average temperature in summer. Therefore, during the year, the temperature changes have two periods:
the four seasons rotation and the day to night changes. Similarly, other weather data, such as relative
humidity, have the same pattern of change.

Because a network still cannot effectively extract the complex nonlinearity of such multi-component
data, researchers have proved that decomposition is an effective method to develop predictions; that
is, the data are decomposed into multiple components to reduce their complexity, and then multiple
sub-models are used to improve the prediction performance. For example, García et al. [25] applied a
decomposition procedure to decompose data sequentially into smaller seasonal component patterns.
A trend was compared to recorded changes in land use at varying distances from a city to determine
their possible influence on pollen-count variations, and the decomposition proved highly effective for
extracting trend components from time sequential data. Jesús et al. [26] divided pollen concentration
data sequentially into seasonal and residual parts by the decomposition method, used partial least
squares regression to fit the residuals, and established an airborne pollen time sequential model
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to predict the daily pollen concentration. Ming et al. [27] extracted accurate seasonal signals and
used maximum likelihood estimation to estimate the trend of the seasonally adjusted time sequential
data, which improved the prediction accuracy of the data. Qin L et al. [28] combined seasonal-trend
decomposition procedures based on LOESS (STL) with an echo state network (ESN) for passenger flow
prediction, in which two passenger flow forecasting applications based on air data and railway data,
respectively, were conducted to verify the effectiveness and scalability of the proposed approaches.

We continued in this decomposition manner, and our innovative contributions are as follows:

(1) Based on the characteristics of weather data, we decomposed the data with sequential two-level
structure to find out its periodicity of per day and per year. Comparing with [26–28], the proposed
two-level decomposition structure can more effectively extract the periodic features of weather
data, simplify the complexity of decomposition components, and improve the performance of the
final prediction results;

(2) We present a general prediction framework for the IoT system that obtains accurate prediction
of weather information, in which sub-predictors are designed based on four GRUs for the
decomposed trend, periods, and residual components. Using the pick-up-data method, the input
and output dimension was reduced to obtain long-term prediction for the following 30 days, and
by expanding the prediction of the next day, the sub-prediction results were combined to obtain
the accurate hourly prediction of temperature and humidity for the next day.

The rest of the paper is organized as follows. Section 2 discusses the research objective and
introduces the data for experiments. The predictor is proposed in Section 3, especially the two-level
decomposition and the prediction model structure. Section 3 gives the experiment results of the
temperature and humidity data from the wolfberry plantation in Ningxia, China, and the results
highlight applicability value of the proposed model. Finally, Section 4 summarizes and concludes
the paper.

2. Research Objectives and Data Description

The IoT system was used for a wolfberry plantation in Ningxia province, China. Ningxia is
one of the largest wolfberry planting areas in China. The area is a major crop for local farmers. At
present, the planting area of Ningxia is 1 million mu, accounting for 33% of the total area of the whole
country. The survival and growth of wolfberry plants are closely related to environmental factors such
as temperature, humidity, etc. To understand and predict these weather factors is extremely important
for the role and impact of precision cultivation of wolfberry.

According to future weather information, the planters can adjust the planting and picking plan,
make full use of the advantages of local natural resources, and maintain the sustainable development
of the planting industry.

Figure 2 shows the IoT system for precision agriculture. The IOT system is mainly composed of
five parts: sensors, a display board, a computer, a controller, and an irrigation actuator. Because the
planting is outdoor, we constructed an IoT system with a battery-powered wireless temperature and
humidity sensor to collect the temperature and humidity data, being the data transmitted to the data
center (a computer) for storage. Furthermore, a large quantity of stored data was used to train the
deep learning model to give an accurate prediction of future temperature and humidity. The display
board was mainly used to display the current weather conditions. The controller was used to control
the irrigation actuator.
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Based on the actual application needs, the requirements for the prediction results include the
following two-terms prediction:

(1) Medium-term prediction: Providing accurate predictions of temperature and humidity for the
next 24 h;

(2) Long-term prediction: Providing average daily temperature and humidity for the next 30 days.

The former is used to guide the next day’s irrigation plan to ensure the effective use of water
resources. Based on the accurate predictions of temperature and humidity in the next 24 h, the real-time
irrigation time and irrigation volume are dynamically determined, and finally the automatic irrigation
can be realized by using the irrigation control.

The latter is used to plan fertilization, harvesting, and picking, etc. Based on the accurate
predictions of weather changes, these plans can improve agricultural sustainability.

To verify the prediction model, the temperature and humidity data were used with a total of
28,320 records from January 2016 to December 2017.

3. Distributed Decomposition Model

3.1. Model Framework

The model has three parts, i.e., decomposition, prediction, and combination. The prediction
framework is shown in Figure 3. We used a two-level decomposition in which the original data were
decomposed into four components. Then, each component was treated separately to obtain different
GRU sub-predictors in the network training stage. In the prediction stage, different GRUs were used to
predict the different components, respectively. Lastly, all the predictions were combined to get the final
predicted results in the output node.



Sustainability 2020, 12, 1433 6 of 19

Sustainability 2020, 12, 1433 6 of 18 

 

 

Figure 3. Flowchart of prediction framework. 

3.2. Sequential Two-Level Decomposition 

A sequential two-level decomposition was used to decompose the raw time series data. The first-

level decomposition period was 24 hours and the trend, period per day, and residual were obtained. 

Because the residual obtained by the first-level decomposition still had periodicity, we used the 

second-level decomposition to decompose the residual into three further components.  

Figure 4 shows the details of the decomposition node in Figure 3. By the first-level 

decomposition, the weather data, such as the temperature and humidity, were decomposed to the 

trend 
tTD , the period per day 

tPD  and the residual 
tRD , and then the residual 

tRD  was 

decomposed again, obtaining the trend 
tTY , the period per year 

tPY  and the residual 
tRY .  

 

Figure 4. The structure of sequential two-level decomposition. 

3.2.1. First-Level Decomposition 

Figure 3. Flowchart of prediction framework.

3.2. Sequential Two-Level Decomposition

A sequential two-level decomposition was used to decompose the raw time series data. The
first-level decomposition period was 24 h and the trend, period per day, and residual were obtained.
Because the residual obtained by the first-level decomposition still had periodicity, we used the
second-level decomposition to decompose the residual into three further components.

Figure 4 shows the details of the decomposition node in Figure 3. By the first-level decomposition,
the weather data, such as the temperature and humidity, were decomposed to the trend TDt, the period
per day PDt and the residual RDt, and then the residual RDt was decomposed again, obtaining the
trend TYt, the period per year PYt and the residual RYt.
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3.2.1. First-Level Decomposition

Assume that the time-sequential data Dt has N data, which means t = 1, 2, . . . , N. The relation
with Yt and its three independent components, i.e., trend, period per day, and residual, is shown in
Equation (1).

Dt = TDt + PDt + RDt t = 1, 2, . . . , N (1)

where TDt, PDt, and RDt are trend component, period per day component, and residual component,
respectively. The decomposition process is as follows:

(1) Set the period for the first-level decomposition as 1 day, i.e., 24 h. For the data used in this study,

that means 24 samples. Calculate the number of periods by Num =
[

N
24

]
, where [a] is described to

round up a.
(2) Extract the trend TDt by the mean regression method to reflect the overall trend of the time

series data.
(3) Extract the period component of the data by the following two steps: Calculate XDt = Dt − TDt

to get the initial period component firstly. Select the data points from 1st to Num× 24th in XDt,
add the data at the same time point, and then divide by Num to obtain one period curve, and
then copy it Num times and consider the different of the Num× 24 and N to obtain the period
component PDt with N points.

(4) Extract the residual component RDt by RDt = Dt − TDt − PDt.

3.2.2. Second-Level Decomposition

We used a similar method for the second-level decomposition with the data as decomposed RDt.
Lastly, we obtained the mean value for each day. The relation with RDt and its three independent
components, i.e., trend, period per year, and residual is the following.

RDt = TYt + PYt + RYt t = 1, 2, . . . , N (2)

where TYt, PYt, and RYt are the trend component, period component per year, and residual component,
respectively. The decomposition process is as follows:

(1) Set the period for the second-level decomposition as 1 year, i.e., 24× 365 = 8760 h. Then calculate

the number of period components by Num =
[

N
8760

]
, where [a] is described to round up a.

(2) Extract the trend TYt by the mean regression method to reflect the overall trend of the time
series data.

(3) Extract the period component of the data by the following two steps: Calculate XYt = RDt − TYt

to get the initial period component firstly. Select the data points from 1st to Num× 8760th in XYt,
add the data at the same time point, and then divide by Num to obtain one period curve and
then copy it Num times to obtain the component XPYt. Calculate the mean of each 24 h’ XPYt to
substitute the former point data, and obtain the period component PYt with N points.

(4) Extract the residual component RYt by RYt = RDt − TYt − PYt.

3.3. Deep Learning Predictor

Two trends, i.e., TDt and TYt were added as the trend component Tt. Considering this together
with the other three components, i.e., the period per day PDt the period per year PYt and the residual
RYt, four components were used to train four GRU networks as the sub-predictors. Using the known
input and output data, four GUR networks were trained by using supervised learning.
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3.3.1. Sub-predictor GRU

The GRU network consists of multiple GRU cells. We set the number of layers as 2. Shown as
Figure 5, St, t = 1, 2, . . . , n is the input of the GRU network, and St+n, t = 1, 2, . . . , n is the output.
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The GRU uses the update gate to control the degree to which the state information of the previous
moment is brought into the current state. The update gate and the reset gate were used to model
the relation of input and output data. The forward propagation formulas in each GRU cell are as
follows [29]:

zt = σ(atUz + ht−1Wz + bz)

rt = σ(atUr + ht−1Wr + br)

h̃t = tanh(atUh + (ht−1 ◦ rt)Wh + bh)

ht = (1− zt) ◦ h̃t + zt ◦ ht−1

(3)

where at ∈ Rd is the input vector of each GRU cell; zt, rt, h̃t, and ht stand for the update gate, reset gate,
candidate state of the current hidden node, and the active state of the current hidden node output at
time t, respectively; U and W are weight matrices to be learned during model training; b represents
bias vectors; ◦ is an element-wise multiplication; and σ and tanh are activation functions.

In this research, we designed four GRUs as sub-predictors to predict four components, namely
trend component Tt, the period per day PDt, the period per year PYt and the residual RYt. For
long-term prediction, St takes the component of the period per year PYt and we set n as 30. For
medium-term prediction, St takes the other three components and we set n as 24. This means we
used the data from the historical 24 h to predict the data of the future 24 h. The method proposed in
this paper can be combined with other system identification methods [30–32] to study the modeling
and prediction of other dynamic time series and random systems [33,34] and can be applied to other
fields [35–37] and other signal modeling and control systems [6,38–40].

3.3.2. Long-term Prediction

As we mention in Section 2, long-term prediction provides the average daily temperature and
humidity for the next 30 days. The period per year component of temperature and humidity of 30
days was used as the input and output data for training the GRU. The trend and residual components
were used as compensation for the prediction.

We know from Section 3.2.2 that the period component per year PYt is obtained by hourly data.
Figure 6 gives an example of the period per year PYt of 1 to 25, December 2017, with 648 hourly data.
As a consequence, 30 days have 720 points. It is difficult to converge and train a network with 720
dimensions of input and output. Therefore, we picked up the average value of each day on the period
component per year PYt to construct the picked-up period per year PPYt.
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Figure 6. An example of the period per year PYt and picked-up period per year PPYt.

By the picked-up period per year PPYt, the input and output data were reduced to 30. We
organized the dataset for training by pushing back one step. The pushing process is shown in Figure 7,
in which the data with the blue bars are input data, and the orange are output. Figure 7a shows the
input data from 1st to 30th point and output data from the 31st to 60th point of PPYt and Figure 7b is
the input data from the 2nd to 31st, and output data from the 32nd to 61st point of PPYt. Table 1 gives
the 600 sets of input and output data used for training the sub-predictor GRU. The advantage of this
overlapping input and output is that whenever new data are acquired, we can scroll forward based on
the new data.
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Figure 7. The input and output data for training the GRU by pushing back one step.

Table 1. The input and output for training the GRU for long-term prediction.

Input Data Output Data

1 PPY1, PPY2, . . . . . . , PPY30 PPY31, PPY32, . . . . . . , PPY60

2 PPY2, PPY3, . . . . . . , PPY31 PPY32, PPY33, . . . . . . , PPY61

3 PPY3, PPY4, . . . . . . , PPY32 PPY33, PPY34, . . . . . . , PPY62

...
...

...

600 PPY601, PPY602, . . . . . . , PPY630 PPY631, PPY632, . . . . . . , PPY660

Once the parameters of sub-predictor GRU were obtained, by the test input data, the period per
year could be predicted. By adding the mean of trend and residual component, we could obtain the
long-term prediction with the average daily temperature and humidity of the next 30 days.

3.3.3. Medium-term Prediction

Medium-term prediction provides the accurate predictions of temperature and humidity for the
next 24 h. The trend component Tt, the period per day PDt and the residual RYt were used to train the
other three GRUs to as the sub-predictors. The input and output data were set as 24 points.

The dataset for training was organized by pushing back 24 steps. Tables 2–4 give the 600 sets of
input and output data used for training.

Table 2. The input and output for training the GRU with trend component Tt for medium-term prediction.

Input Data Output Data

1 T1, T2, . . . . . . , T24 T25, T26, . . . . . . , T48

2 T25, T26, . . . . . . , T48 T49, T50, . . . . . . , T72

3 T49, T50, . . . . . . , T72 T73, T74, . . . . . . , T96

...
...

...

600 T14377, T14378, . . . . . . , T14400 T14401, T14402, . . . . . . , T14424

Table 3. The input and output for training the GRU with period per day component PDt for
medium-term prediction.

Input Data Output Data

1 PD1, PD2, . . . . . . , PD24 PD25, PD26, . . . . . . , PD48

2 PD25, PD26, . . . . . . , PD48 PD49, PD50, . . . . . . , PD72

3 PD49, PD50, . . . . . . , PD72 PD73, PD74, . . . . . . , PD96

...
...

...

600 PD14377, PD14378, . . . . . . , PD14400 PD14401, PD14402, . . . . . . , PD14424
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Table 4. The inputand output for trainingthe GRUwith residual componentRYt for medium-term prediction.

Input Data Output Data

1 RY1, RY2, . . . . . . , RY24 RY25, RY26, . . . . . . , RY48

2 RY25, RY26, . . . . . . , RY48 RY49, RY50, . . . . . . , RY72

3 RY49, RY50, . . . . . . , RY72 RY73, RY74, . . . . . . , RY96

...
...

...

600 RY14377, RY14378, . . . . . . , RY14400 RY14401, RY14402, . . . . . . , RY14424

With the training data shown in Tables 2–4, we could obtain three GRUs to predict the trend
component Tt, the period per day PDt and the residual RYt for the next 24 h. Based on the long-term
prediction with average daily temperature for the next 30 days, we expended the next day’s value to
24 h’ average daily temperature (shown in Figure 8 in the top sub-figure with a yellow star). Then,
the predictions were added, including trend component, daily mean value from the period per year,
period per day, and residual for the next 24 h, to obtain the combined prediction.
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4. Experiment Results and Discussion

4.1. Experimental Setup

The data used for training model were the collected hourly temperature and humidity data with
about 35,040 records from January 2016 to December 2017. In the experiments, the ratio of the training
set to the test set was 80:20.

The experiment hardware and software environments were set up to run the proposed prediction
model. The open source deep learning library Keras, based on TensorFlow, was used to build all
learning models. All experiments were performed on a PC with an Intel® CORE™ CPU i5-4200U
1.60 GHz and 4 GB of memory. In order to model the deep neural network effectively, a large number
of hyper parameters need to be set. In experiments, the default parameters in Keras were used for deep
neural network initialization (e.g., weight initialization). We also used tanh as the activation function
and ReLu as the activation function of the GRU model.

Usually, when we use neural networks to build models, the size of the network layer and the
number of neurons is not strictly defined. Instead, the complexity of the model structure is determined
based on the data. We determined the parameters of each layer of the model through multiple
experimental adjustments. Specifically, we used the ReLu function. There were two GRU layers: the
first layer had 30 neurons, and the second layer had 30 for predicting the picked-up period per year,
and other GRUs had 24 neurons for these two layers (the number of neurons in the layers is determined
by the output dimension of the model). In addition, all models underwent supervised training by using
the Adam algorithm, which optimizes a predetermined objective function to obtain model parameters.

4.2. The Prediction Results

Figure 9 shows the long-term prediction of the temperature, in which the blue dotted line is the
temperature data, the orange line is the average daily temperature, and the gray line is the predictions
of the next 30 days. We can notice that at the first several days that the predictions are very close to
the average daily temperature, while at the 10th day, the prediction is lower than the average daily
temperature, and at the 15th and 23rd days, the prediction is higher than the average daily temperature.
We can conclude that the long-term prediction can capture the rough changes of the future, while
because the future weather is greatly affected by uncertain factors, it is impossible to accurately predict
the effects of warm and cold air currents. There are similarities in the prediction of humidity (shown in
Figure 10).
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Figure 9. The temperature result of long-term prediction.



Sustainability 2020, 12, 1433 13 of 19
Sustainability 2020, 12, 1433 13 of 18 

 

 

Figure 10. The humidity result of long-term prediction. 

Because long-term forecasts are made every day, planting plans can change at any time if there 

is a sudden weather condition. The long-term prediction of weather information is used to designate 

rough planting plans for fertilization, harvesting, etc. for the next month, which is very beneficial for 

sustainable high-quality agricultural production.  

 

 

Figure 11. The temperature result of medium-term prediction. 

 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

R
el

at
iv

e 
h
u

m
id

it
y
(%

)

Time(Day)

The result of the long-term prediction

Relative humidity Average daily relative humidity Predictions

0
5

10
15
20
25
30

December 1, 2017

 Temperature Predictions

0
5

10
15
20
25
30

December 2, 2017

 Temperature Predictions

0
5

10
15
20
25
30

December 3, 2017

 Temperature Predictions

0
5

10
15
20
25
30

December 4, 2017

 Temperature Predictions

Figure 10. The humidity result of long-term prediction.

Because long-term forecasts are made every day, planting plans can change at any time if there is
a sudden weather condition. The long-term prediction of weather information is used to designate
rough planting plans for fertilization, harvesting, etc. for the next month, which is very beneficial for
sustainable high-quality agricultural production.

Figures 11 and 12 show the result of medium-term prediction. As an example, Figures 11 and 12
show 4 days of predictions of the temperature and humidity, on December 1–4, 2017. The blue line is
the temperature data and the orange line is the prediction result. We can find that these two lines are
very close to each other, which indicates the obtained predictions are very accurate. Section 4.3 gives
the numerical evaluation.
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Figure 11. The temperature result of medium-term prediction.
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Figure 12. The humidity result of medium-term prediction.

4.3. Comparing with Other Predictors

In this experiment, the proposed model was compared with eight other models, which are
RNN [41], LSTM [42], BiLSTM [43], GRU [44], and the decomposition methods called seasonal-trend
decomposition procedures based on loess (STL) [19] with RNN, LSTM, BiLSTM, and GRU as the
sub-predictors, respectively. For evaluating the performance of the proposed predictor, root mean
square error (RMSE) (shown in Equation (4)) is used as the evaluation metric to measure the difference
between the prediction by a model and the collected data.

RMSE =

√∑N
i=1 (xpre(i) − xobs(i))

2

N
(4)

where N is the number of prediction dataset; xobs represents the collected data; and xpre is predicted value.
The temperature and humidity data are used to show the prediction result. Table 5 gives a

comparison of the predicted results of the RNN, LSTM, BiLSTM, GRU, STL_RNN (STL-based RNN),
STL_LSTM (STL-based LSTM), STL_BiLSTM, STL_GRU, and two-level decomposition based on GRU
(proposed in Section 3) models in terms of RMSE, and Figure 13 shows the histogram of RMSE. It
is apparent from the comparison of prediction results that the decomposition models significantly
outperform the undecomposed ones, and the proposed model has more accurate prediction than other
models. For example, the prediction RMSE of the proposed model for temperature is approximately
20.34% and 2.04% lower, respectively, than that of the GRU and STL_LSTM models; for humidity, the
RMSEs are about 8.61% and 2.19% lower, respectively. The results show that the developed two-level



Sustainability 2020, 12, 1433 15 of 19

decomposition is effective because the RMSEs can be significantly reduced, and the GRU is the best
choice as the sub-predictor.

Table 5. Comparison of root mean square error (RMSE) of prediction results with different predictors.

Model RMSE of Temperature Predictions RMSE of Relative Humidity Predictions

RNN 2.6682 14.0288
LSTM 2.9781 14.2898

BiLSTM 3.067 14.2683
GRU 3.0043 14.5584

STL_RNN 2.8155 13.8921
STL_LSTM 2.4940 13.6023

STL_BiLSTM 2.6482 14.0215
STL_GRU 2.5581 14.2546

The proposed model 2.4431 13.3041
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5. Conclusions

In the precision agricultural IoT system, accurate prediction of weather data is a key way to
improve the performance of the IoT system. The deep learning approach features self-learning
capabilities and exhibits excellent performance in complex sensor data.

In this study, the two-level sequential decomposition structure was used to decompose the weather
data according to different periods, thus reducing the complex nonlinear relationship of the raw data
from sensors. By designing multiple GRUs as sub-predictors, the prediction results of sub-predictors
were finally combined to obtain long-term and medium-term prediction of weather data. Through the
verification of real data, the proposed model has higher prediction accuracy and can meet the needs of
precision agriculture.

In precision agriculture, the use of the Internet of Things system can effectively reduce the workload
of farmers and increase farmers’ awareness of the use of precision agricultural tools. According to
our paper, long-term weather prediction can provide important guidance information for planning a
reasonable growth cycle of crops. In addition, it can also help farmers manage farms. For example,
there can be a preliminary forecast and estimation of severe weather in agriculture, so as to reduce
risks and increase income.
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