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Abstract: This study aims to investigate the impact of meteorological parameters such as wind
direction, wind speed, rainfall, and mean cloud cover on sea-level rise projections for different time
horizons—2019, 2023, 2028, 2048, and 2068—at three stations located in Kudat, Sandakan, and Kota
Kinabalu, which are districts in the state of Sabah, Malaysia. Herein, two different scenarios, scenario1
(SC1) and scenario2 (SC2), were investigated, with each scenario comprising a different combination of
input parameters. This study proposes two artificial intelligence techniques: a multilayer perceptron
neural network (MLP-ANN) and an adaptive neuro-fuzzy inference system (ANFIS). Furthermore,
three evaluation indexes were adopted to assess the performance of the proposed models. These
indexes are the correlation coefficient, root mean square error, and scatter index. The trial and error
method were used to tune the hyperparameters: the number of neurons in the hidden layer, training
algorithms, transfer and activation functions, and number and shape of the membership function for
the proposed models. Results show that for the above mentioned three stations, the ANFIS model
outperformed MLP-ANN by 0.740%, 6.23%, and 9.39%, respectively. To assess the uncertainties of the
best model, ANFIS, the percentage of observed data bracketed by 95 percent predicted uncertainties
(95PPUs) and the band width of 95 percent confidence intervals (d-factors) are selected. The obtained
values bracketed by 95PPUs are show about 75.2%, 77.4%, 76.8% and the d-factor has a value of 0.27,
0.21 and 0.23 at Kudat, Sandakan and Kota Kinabalu stations, respectively. A comparison between
the two scenarios shows that SC1 achieved a high level of accuracy on Kudat and Sandakan data,
whereas SC2 outperformed SC1 on Kota Kinabalu data.
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1. Introduction

Sea levels are currently rising rapidly [1]. Sea-level rise (SLR) has been extensively discussed in
the last two decades, wherein many researchers have reported that sea levels have considerably risen
in the past 100 years and are rising even faster now than in the previous two millennia. Therefore, the
potential impact of accelerating SLR in the 21st century has become one of the main environmental
issues [2,3]. The mean sea level (MSL) in Malaysia has been rising at an unpredictable rate from
1.4 to 4.1 mm/yr [4]. Traditional methods have been used before by previous researcher to predict
sea level such as semi-empirical formulations and numerical models. However, some researchers
observed certain drawbacks associated with using excessive data, which are tedious to handle and not
effective for solving the problem, especially in terms of time consumption. In addition, the traditional
method of the underlying systems regularly tends to become quite intractable and very difficult.
If there were not enough observed data, no analysis can be achieved using these techniques. The
numerical approach shows large computational costs. On the other hand, the numerical approach is
deterministic, i.e., hydrodynamic equations are numerically solved in order to estimate sea levels [5].
For tide analysis, the least squares method has been applied, but there are some limitations. The
problem is that the tidal characteristics are determined through minimizing the differences between a
measured tidal signal and a basic sinusoidal function, which should describe unknown constituents.
This method is site specific. Furthermore, if there is not sufficient observed data, no analysis can be
performed using this technique. Commonly, harmonic analysis is used as a technique to predict sea
levels, which allows forecasting tidal variations due to a locally modified response to astronomical
forcing. Even though harmonic analysis is a powerful prediction tool, in fact, sea level variations often
differ significantly from predictions. The main reason for this is that harmonic prediction does not
include variations due to meteorological forcing [6–8]. Therefore, based on the statement above, two
artificial intelligence techniques are proposed: a multilayer perceptron neural network (MLP-ANN)
and an adaptive neuro-fuzzy inference system (ANFIS).

Three study areas located in Sabah were chosen: Kudat, Sandakan, and Kota Kinabalu. A serious
SLR study is required in the coastal district, particularly in low-lying areas such as Sandakan on the
eastern coast of Sabah. Kudat is a small town, but it is important for tourism. It is famous for its
beaches, which are among the cleanest beaches in Sabah. However, Kota Kinabalu is the main focus
in the coastal area due to its geographical location. The climate in Kota Kinabalu is classified as an
equatorial climate, with high humidity, a considerable amount of sunshine, abundant rainfall, and
temperatures that are relatively high and extremely invariable throughout the year. Kota Kinabalu
is considered as a primary tourist destination and a major industrial and commercial center of East
Malaysia [9].

1.1. Background

Thermal expansion and melting glaciers are the main causes of global SLR events. Recently, the
focus is not only on the warming of oceans but also on how the melting of ice in Greenland plays a
major role in sea-level changes globally [4]. Many factors can produce changes in the local sea level,
e.g., a combination of complex processes involving meteorological parameters including atmospheric
pressure, air temperature, water temperature, ocean currents, and winds [9–11].

Long-shore wind is among the most important parameters affecting sea levels on the eastern
margins of the ocean [12]. The magnitude of this on SLR can vary based on location, with some places
experiencing a twofold increase in SLR compared to other places. It is expected that the sea level in
the Southern Ocean will be considerably affected by future changes in the wind. In contrast, most
methods used for sea level forecasting do not consider the impacts of the speed and direction of the
winds in transferring energy to the sea surface [13].

Winds in coastal areas are affected by an extensive range of factors operating at different space and
time scales. The main local effect caused by the presence of land in the coastal zone is the orographic
effect. Orographic effects are the deflection, channeling, or blocking of air flow by landforms such
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as mountains, cliffs, and high islands [14]. Wind forcing is one of the complex outcomes of many
environmental factors that contribute to the variation in sea levels [15]. The rapidly changes in the
direction and velocity of wind and associated in sea level changes could be the severe challenge to
navigation, especially on the fairways of small fishery harbors located in river mouths, which is the
center of activity of the two external forces. [16].

1.2. Problem Statement

Approximately 12% of the entire landmass of Malaysia is a low plain of muddy sediment, home to
approximately 2.5 million people, and it is vulnerable to flooding [9]. Inundation, flooding, and erosion
are the biggest impacts of SLR, particularly along the coastal area of Sandakan town [3].

Other impacts of SLR, such as changes in surface water quality, groundwater characteristics,
and decline in the soil, have been reported by many researchers [17]. In addition, flooding due to
these changes increases damage to life, property, and coastal habitats [18]. However, loss of tourism,
recreation, and transportation functions have also been reported [19,20]. Thus, the range of potential
physical, economic, and social impacts in Malaysia will aggravate due to SLR.

A thorough understanding of future changes in sea levels, especially near the shore, is vital
for protecting coastal and low-lying regions. Predicting the changes in sea levels will have great
benefits in planning and constructing coastal as well as developing and implementing ocean-based
alternative energy technologies [21,22]. The majority of the existing research is focused on predicting
sea-level models via conventional methods such as semi-empirical formulations and numerical models.
However, some researchers observed certain drawbacks associated with using excessive data, which are
tedious to handle and not effective for solving the SLR problem, especially in terms of time consumption.
Furthermore, harmonic analysis is a technique for predicting sea levels that allows forecasting tidal
dissimilarities. Despite this analysis being a powerful prediction tool, tidal dissimilarities often
significantly differ from predictions; this is attributed to the limitations of the harmonic analysis
involving meteorological parameters [6,7].

2. Literature Review

With rapid advancements in the field of computational technology in the last decade, the
application of artificial intelligence (AI) to problems in environmental, ocean, and coastal areas has
become popular with the acknowledgment of its potential in various studies. Thus, it has emerged as a
powerful alternative tool in prediction modeling [23]. Some established AI techniques are artificial
neural networks (ANNs), fuzzy logic, and hybrid systems, which is adaptive neuro-fuzzy inference
system (ANFIS) [24]. ANN and ANFIS appear to be the most prevalent AI techniques due to their
accuracy in fitting a relatively small set of data and their modest development [13]. Studies on AI
techniques for SLR prediction can be found in the literature. For example, [25] applied feed-forward
neural networks with three layers and the back-propagation technique to predict sea-level anomalies
using the recorded local wind shear velocity data on an hourly basis at four stations near the USA
coastline. Similarly, [21] applied ANN to predict sea-level variations at Hillary’s Boat Harbor, Western
Australia. Furthermore, [26] applied ANN, ANFIS, and the cuckoo optimization algorithm to forecast
fluctuations in the water level at Chahnimeh reservoirs in southeast Iran using three important variables:
evaporation, wind speed, and daily temperature. The result obtained shows that the ANFIS model
performed better than the other models because it was more accurate and offers greater assurance.

Additionally, [27] employed the ANFIS model to predict Water Level Change (WLC) models of a
month of hourly WLC for Yarmouth, Sain-John, and Charlottetown stations in Canadian waters, and
then compared it with the results obtained using the wavelet neural network (WNN) model. The
results obtained showed that the ANFIS model is superior. However, [8] employed a neuro-fuzzy
inference system to predict water levels and reported that the accuracy of the model performance for
an increment change in water level. High levels of accuracy and reliability can be achieved by applying
ANFIS in predicting reservoir water levels three hours ahead [28]. Based on the results reported in [29],
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clearly, the ANFIS models can provide a much better performance than the Fourier series-based and
autoregressive exogenous (ARX) based models in predicting monthly changes on the shoreline in
northeastern Taiwan. Additionally, the nonlinearity between the input and output of the sea levels can
be effectively captured using ANNs, which shows that the proposed techniques are appropriate for
both short and long-term predictions of sea levels in Bulgaria [30].

Four meteorological parameters were used in both AI models—wind direction (WD), wind speed
(WS), rainfall, and mean cloud cover (MCC)—which were obtained from the Malaysia Meteorological
Department (METMalaysia). The monthly MSLs used herein were obtained from the Permanent
Service for Mean Sea Level agency. This study has three main objectives. The first objective is to
investigate the impact of WD, WS, rainfall, and MCC on SLR at three different stations. The second
objective is to develop models to predict the SLR in 2019, 2023, 2028, 2048, and 2068 ahead of time. The
results are presented in terms of lower limit (LL), upper limit (UL), MSL, and average change in sea
level. The third objective is to compare two different algorithms, MLP-NN and ANFIS, according to
two different scenarios—geological location and meteorological variables.

3. Study Area

Sabah is located in Malaysia on the northern portion of Borneo Island. Sabah shares land borders
with the Malaysian state of Sarawak to the southwest and Indonesia”s Kalimantan region to the south.
The total land area of Sabah is ~73,904 km2 (28,534 mi2); it is bordered by the South China Sea in the
west, Sulu Sea in the northeast, and Celebes Sea in the southeast. Sabah is the second largest state
in Malaysia and is known as the “Land below the Wind” because of its position below the typhoon
belt. Kudat is located in the northernmost part of Sabah. On the west and east, it is bordered by the
South China Sea and the Sulu Sea, respectively. Sandakan is located on the eastern coast of Sabah,
10 m above sea level and bordered by the open Sulu Sea, whereas Kota Kinabalu (KK) is the capital of
Malaysia’s Sabah state and is located in the northern part of Borneo Island. Figure 1 shows the stations
considered in this study.
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4. Methods

4.1. Multilayer Perceptron Neural Network (MLP-ANN)

MLP-ANN is the most used network type among ANN models. The term MLP-ANN is a structure
that consists of an input layer, one or more hidden layers and an output layer. Each of the layers
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consists of an inter-connected assembly of simple processing elements called neurons. These processing
elements are structured in a layered fashion. Each neuron in a layer is linked to the neuron in the
subsequent layer and so on. The interconnections between layers are called weights [31]. Figure 2
shows the architecture of MLP-ANN. The input parameters are moved forward to the network towards
nodes in the hidden layer and multiplied with weights of connecting nodes in order to calculate the
values of hidden nodes using the transfer function [32] The neurons of the output layer perform a
weighted sum using the hidden layer outputs and the weights that connect the hidden layer to the
output layer. The number of neurons in each layer may vary depending on the problem. The weighted
sum of the input components is calculated as follow:

Netj =
n∑

i=1

Wij + θ j (1)

where Wij is the weight between the jth neuron and the ith neuron in the proceeding layer and θj is the
bias term of the jth neuron. The output of the jth neuron out j is calculated with a sigmoid function:

θ j = f (Net j)
1

1 + e−Net j (2)
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Figure 2. Architecture of a multilayer perceptron neural network (MLP-ANN).

4.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS applies the hybrid-learning algorithm, which consists of the combination of gradient
descent and least squares methods to update the model parameters. Each epoch of this hybrid learning
procedure is composed of a forward pass and a backward pass. In the forward pass of the hybrid
learning procedure, the node output goes forward until layer 4. Figure 3 shows the architecture of
ANFIS model. More details on the layers can be found in [33]. Next, the consequent parameters are
identified by the least squares method. ANFIS uses the Takagi–Sugeno method of inference, and a
typical fuzzy rule—for simplicity, there are two inputs parameters (x and y) from each scenario and
one output f. The rule were used in an “if-then” rules of Takagi–Sugeno model, as follows:

If x is A and y is B, then z is f(x,y)

where A and B are the fuzzy sets in the antecedents and z = f(x, y) is a crisp function in the consequent.
Usually f(x, y) is a polynomial for the input variables x and y. But it can also be any other function that can
approximately describe the output of the system within the fuzzy region as specified by the antecedent.
When f(x,y) is a constant, a zero order Sugeno fuzzy model is formed which may be considered.
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4.3. Development of the MLP-ANN and ANFIS Models

An important step in the model development process is data splitting, which can be used to
divide the available data into training and testing datasets in order to ensure the models have good
generalization ability. Due to the small available dataset, 80% of the total data were chosen as training
data and the remaining 20% were used as testing data. According to Khatibi (2004), the modeling
procedure of time series comprises three major phases [8].

Phase 1: Data review, the selection of suitable software, and splitting data into training (80%) and
testing sets (20%).
Phase 2: Applying the time series analysis and running the proposed model.
Phase 3: Post-processing by performing a sensitivity analysis.

Figure 4 illustrates the flow diagram of the prediction methodology of MLP-ANN and ANFIS.
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The proposed model as shown in Figure 4 has been developed in two different stages. The first
stage is only to develop the MSL prediction model based on the collected data during the period
2007– 2016. In order to complete this stage, the collected data should be split into two parts, the training
stage and testing stage—80% and 20%, respectively. During training, the model is calibrated using the
actual data to predict the MSL after achieving the performance goal. Consequently, the model will
be switched to the testing stage, using 20% of the data (unseen in the training stage) to examine the
calibrated model during training using several performance indices. Once the model has successfully
achieved the acceptable level of accuracy, the second stage of the whole proposed model can be started
to predict MSL-based future information using the pre-developed model and compute the SLR.

4.4. Selecting Appropriate Inputs

Selecting appropriate inputs depends on the understanding of the problem. Therefore,
the meteorological input parameters must be nominated with care to effectively obtain the proposed
model structures. Statistical correlation analysis is a common analytical technique for defining the
proper input. Variables of data analysis that were used to select meteorological input parameters were
analyzed based on the minimum and maximum value of each meteorological input, total sum, average,
standard deviation (SD), and coefficient of variation (CV), which are listed in Table 1 [34].

Table 1. Analysis of meteorological parameter inputs in Kudat, Kota Kinabalu, and Sandakan.

Location Statistical
Mean Sea

Level (MSL)
(mm)

Wind
Direction
(WD) (◦)

Wind
Speed

(WS) (m/s)

Rainfall
(mm)

Mean Cloud
Cover (MCC)

(octas)

MONTHLY
INTERVAL

Kudat 6◦ 55′ N,
16◦ 50′ E

Min 6867 10.00 9.10 4.40 6.48
Max 7239 360 23.10 942.40 7.37

Average 7042.88 189.92 14.43 218.00 7.01
SD 76.21 91.03 2.89 189.84 0.15
CV 1.08 47.93 20.08 87.08 2.17

Sandakan 5◦ 54′ N,
118◦ 04′ E

Min 6.48 10 8.4 100.4 6.1
Max 7278 370 23.4 1054.6 7.9

Average 7097.83 176.41 13.86 290.11 6.96
SD 70.60 111.03 3.08 183.01 0.25
CV 0.99 62.93 22.24 63.08 3.63

Kota
Kinabalu

5◦ 55′ 57” N,
116◦ 02′ 51” E

Min 6933 10 8.8 103.8 6.75
Max 7306 360 24.5 593.2 7.28

Average 7099.64 190.33 14.51 267.95 7.07
SD 75.49 73.67 3.00 109.40 0.10
CV 1.06 38.70 20.70 40.83 1.45

4.5. Preprocessing Technique

First, data transformation is applied for data preprocessing. In this study, data normalization was
applied as a data transformation technique. It is very important to perform this process because it can
help to avoid overflows resulting from a large or very small weight during training. The dataset is
normalized by scaling its values such that the dataset falls within a small, specified range from 0 to 1
according to Equation 3, wherein x denotes an input or output value, min (x) denotes the minimum
value of x, and max (x) denotes the maximum value of x.

f (v) =
x−min(x)

max(x) −min(x)
(3)

4.6. Model Illustration

The total dataset used herein, which includes historical MSL, WD, WS, rainfall and MCC data,
spans a ten-year duration, from 1 January 2007 to 31 December 2016, i.e., 120 months in total, with
monthly intervals. Monthly data of the first 8 years from 2007 to 2014 (96 sets or 80% of the whole
dataset) are used for training and monthly data of the last 2 years from 2015 to 2016 (24 sets or 20%
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of the whole data) are used for testing. Two different scenarios with different combinations of input
parameters were implemented for the models. Both scenarios can be expressed in general form as

(a) Scenario 1 = MSL predicted = Wind direction (observation)) + wind speed (observation)
(b) Scenario 2 = MSL predicted = Rainfall (observation) + mean cloud cover (observation)

4.7. Performance Criteria

Three evaluation indices were employed to assess the performance of the proposed models. These
indicators are the correlation coefficient (R), root mean square error (RMSE) mm, and scatter index
(SI). xi represents the value of the observed MSL at time step i; yi denotes the value of the predicted
MSL at the same time; x denotes the mean value of the observed MSL; y denotes the mean value of the
predicted MSL; and n denotes the number of time steps.

R =

∑n
i=1(xi − x).(yi − y)√∑n

i=1(xi − x)2.
∑n

i=1(yi − y)2
(4)

RMSE(mm) =

√∑n
i=1[xi − yi]

2

n
(5)

SI =
RMSE

x
(6)

4.8. Uncertainty Analysis

Uncertainty is a result-dependent factor that demonstrates the range of values a modeling result
can attain. It also represents the possibility that the measured value may fall into the specified range.
Here, this study applies the method recommended by Abbaspour [35]. The percentage of measured
data bracketed by 95 percent of predicted uncertainties (95PPU) is considered. This factor is computed
by 2.5% (XL) and 97.5% (XU) percentiles.

Bracketed by 95PPU =
1
K

Count (k|XL ≤ K ≤ XU) X 100 (7)

where k is the number of observed data for the testing stages. According to Equation (7), the value
of “Bracketed by 95PPU” is maximum (or 100%) when all observed data for the testing stages are
sandwiched between XL and XU. In total, 80%–100% of measured data should be in the 95PPU level,
provided that they are of good quality. In some regions, where data are not of good quality, having
50% of data in the 95PPU level would suffice [35]. Furthermore, to evaluate the average width of
confidence interval band, a d-factor parameter has been proposed as Equation (8).

d− f actor =
dx
σx

(8)

where σX is the standard deviation of the observed data X and dx is the average distance between the
upper and lower bands determined in Equation (9).

dx = 1
k

k∑
i=1

( XU −XL ) (9)
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5. Result and Discussion

5.1. Hyperparameter Optimization of MLP-ANN and ANFIS

Figure 5 represents the various numbers of neurons used to determine the optimal number of
neurons using a trial and error approach. In this study, the Kudat training dataset was selected to
show the steps for evaluating the developed model. Several types for training were performed with a
variation of N = 1–15 neurons. The minimum value of RMSE yielded the best result in choosing the
number of neurons.
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Figure 5. Number of neurons during training.

If a small number of neurons is used, the neural network would perform poorly in capturing the
nonlinearity in the data. Based on Figure 5, the performance of RMSE decreased from 0.0095 to 0.0096
mm, while increasing the number of neurons to more than five. Thus, four neurons were selected as
the best number in SC1, because that has the minimum RMSE of 0.00954 mm. In contrast, the trend of
SC2 shows that increasing the number of neurons to more than nine does not significantly decrease the
RMSE. Therefore, eight neurons with an RMSE of 0.00778 mm were nominated as the best number of
neurons and RMSE combination needed for optimal performance.

In developing the ANFIS model, two hyperparameters should be optimized first: the member
function (MF) numbers and their shapes. These two hyperparameters are mutually related and
determine the level of detail, called the granularity, of the model. A membership function defines the
degree of TRUE or FALSE, crisp values, in a range from 0 to 1. Each membership function contains
a curve which represents each point in a specified input partition. Table 2 shows the four types
of MFs—triangular, trapezoidal, Gaussian, and generalized bell (G bell) that have been trained to
determine the best type of MF based on the measured performance of minimum RMSE in SC1 and SC2.
The number of considered MFs was either two or three. There is no standard method for determining
the number of MFs; hence, the optimal number needs to be found in an iterative manner. However,
a large number of MFs should be avoided to save time and computational requirements [36]. Based on
Table 1, the best prediction model was obtained using G bell, wherein RMSE values were 0.007502 and
0.007788 mm for SC1 and SC2, respectively. The worst performance was obtained when the Gaussian
model was used. Therefore, it can be concluded that the G bell shape with three MFs can be used for
predicting SLR.
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Table 2. Types of member functions (MFs).

MF Shape MF No. Root Mean Square Error (RMSE) (mm)

Scenario1 (SC1) Scenario2 (SC2)

Triangular 2 2 0.008964 0.010092
3 3 0.008084 0.009761

Trapezoidal 2 2 0.008024 0.009999
3 3 0.007988 0.009763

Gaussian
2 2 0.008132 0.009782
3 3 0.008061 0.009816

G bell
2 2 0.007892 0.008175
3 3 0.007502 0.007788

5.2. Preliminary Investigation on the MLP-ANN Model

Table 3 presents the MLP-ANN results of monthly SLR prediction. Several training algorithms were
examined during the training and testing stage in order to evaluate and compare their performances.
The algorithms used functions such as Broyden–Fletcher–Goldfarb–Shanno (BFGS), gradient descent
(GD), and conjugate gradient Fletcher (CGF) functions. All models were trained for 200 epochs.
Column 2 in Table 3 presents the transfer function used in the hidden layer, and column 3 presents
the activation function used in the output layer. Following several trials, BFGS performed better than
the other models on data from the three stations in both scenarios. By comparing the scenarios, it is
clear that SC1 (2-4-1; 2-13-1) performs better, in terms of R and RMSE than SC2 on data obtained at
Kudat (R = 0.7904, RMSE = 0.0066 mm) and Sandakan (R = 0.6773, RMSE = 0.0084 mm) in the test
period. However, SC2 (2-13-1) at Kota Kinabalu performed well in terms of R (=0.7497) and RMSE
(=0.0080 mm) than SC1 in the test period.

Table 3. Testing of various MLP-ANNs.

Scenario TFHL AFOL
Algo Training Testing

R RMSE
(mm) SI R RMSE

(mm) SI

Kudat

SC1
(2-4-1)

Exp
Exp BFGS 0.6218 0.0084 0.0087 0.7904 0.0066 0.0068

GD 0.6735 0.0078 0.0080 0.7166 0.0067 0.0069
CGF 0.6673 0.0080 0.0080 0.7821 0.0066 0.0068

SC2
(2-8-1) tanh

Log BFGS 0.3373 0.0096 0.0099 0.6314 0.0047 0.0048
GD 0.2757 0.0103 0.0106 0.5623 0.0103 0.0107
CGF 0.4298 0.0093 0.0095 0.6222 0.0106 0.0109

Sandakan

SC1
(2-13-1)

Log
Ident BFGS 0.5751 0.0079 0.0081 0.6773 0.0084 0.0086

GD 0.5005 0.0103 0.0106 0.6250 0.0088 0.0091
CGF 0.6356 0.0074 0.0076 0.6530 0.0083 0.0086

SC2
(2-14-1) tanh

Exp BFGS 0.4370 0.0083 0.0085 0.5539 0.0102 0.0105
GD 0.1973 0.0090 0.0093 0.2786 0.0114 0.0118
CGF 0.2649 0.0089 0.0091 0.3848 0.0111 0.0114

KK

SC1
(2-11-1) tanh

Log BFGS 0.3874 0.0095 0.0098 0.4380 0.0100 0.0104
GD 0.3858 0.0096 0.0099 0.4145 0.0098 0.0101
CGF 0.3856 0.0095 0.0098 0.4336 0.0100 0.0103

SC2
(2-13-1)

Log
Ident BFGS 0.6933 0.0074 0.0076 0.7497 0.0080 0.0082

GD 0.6276 0.0102 0.0105 0.6945 0.0098 0.0101
CGF 0.6394 0.0078 0.0080 0.7283 0.0080 0.0082

TFHL = transfer function for hidden layer; AFOL = activation function for output layer; Log = logistic; Ident =
identity; tanh = hyperbolic tangent; Exp = exponential; BFGS = Broyden–Fletcher–Goldfarb–Shanno; GD = gradient
descent; CGF = conjugate gradient Fletcher.
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5.3. Preliminary Investigation on ANFIS Model

Table 4 presents the ANFIS performance of SLR prediction using the optimal MF for the testing
period. Based on Table 4, the result improved by increasing the number of MFs from two to three,
yielding the highest R and lowest RMSE values; hence, ANFIS can provide an accurate model for
predicting SLR. Comparing SC1 and SC2 reveals that SC1 [3 3] performs better in terms of R and RMSE
than SC2 [3 3] on data obtained at Kudat (R = 0.7963, RMSE = 0.0060mm) and Sandakan (R = 0.7223,
RMSE = 0.0078 mm) in the test period. However, SC2 [3 3] at Kota Kinabalu performed better than SC1
in terms of R (=0.8274) and RMSE (=0.0060 mm) in the test period.

Table 4. Training and testing of various ANFISs.

Scenario
MF Training Testing

Type No R RMSE
(mm) SI R RMSE

(mm) SI

Kudat

SC 1
G bell 2 2 0.7248 0.0078 0.0081 0.6645 0.0059 0.0061

3 3 0.8267 0.0075 0.0077 0.7963 0.0060 0.0062

SC 2
G bell 2 2 0.7031 0.0081 0.0083 0.7456 0.0089 0.0091

3 3 0.7078 0.0077 0.0079 0.7534 0.0087 0.0090

Sandakan

SC 1
G bell 2 2 0.5000 0.0078 0.0080 0.4254 0.0086 0.0088

3 3 0.7725 0.0070 0.0072 0.7223 0.0078 0.0080

SC 2
G bell 2 2 0.5888 0.0074 0.0076 0.5672 0.0081 0.0083

3 3 0.6615 0.0067 0.0069 0.6940 0.0074 0.0076

KK

SC 1
G bell 2 2 0.5434 0.0086 0.0089 0.4164 0.0095 0.0098

3 3 0.6347 0.0078 0.0080 0.7686 0.0068 0.0070

SC 2
G bell 2 2 0.7172 0.0072 0.0074 0.7223 0.0065 0.0067

3 3 0.7375 0.0069 0.0071 0.8274 0.0060 0.0062

A comparison between the developed MLP-ANN and the ANFIS obtained from the best scenario
is shown in Figures 6–8. Figure 6 shows the scatter diagram of training and testing at Kudat; Figure 7
presents the Sandakan scatter diagram of training and testing; and Figure 8 shows the training and
testing at Kota Kinabalu station.
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Figure 6. Plots for SC1 at Kudat: (a) MLP-ANN and (b) ANFIS.
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Figure 7. Plots for SC1 at Sandakan: (a) MLP-ANN and (b) ANFIS.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 18 
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Figure 8. Plots for SC2 at Kota Kinabalu: (a) MLP-ANN and (b) ANFIS.

The scatter plots of the training and testing MSL at Kudat station in Figure 6 show that the
MLP-ANN and ANFIS models can effectively predict SLR. However, the MLP-ANN model outperforms
the ANFIS model (approximately 0.740% improvement) in SC1. Furthermore, the ANFIS plot passed
through the origin.

Figure 7 shows a comparison between the training and testing for SC1 in Sandakan. It can be seen
that the ANFIS performed better than MLP-ANN (approximately 6.23% improvement). We observed
that the ANFIS model can depict the behavior of the MSL pattern more accurately than MLP-ANN in
both the training and testing stage. Most predicted values are close to the observed MSL.

Scatter plots of the training and testing at Kota Kinabalu station in Figure 8 show that the MLP-ANN
and ANFIS models can be used to predict SLR. ANFIS outperformed MLP-ANN (approximately 9.39%
improvement) in SC2. In addition, the ANFIS plot of the predicted values is sufficiently close to satisfy
the verification criteria. Thus, the ANFIS model outperformed the MLP-ANN model, performed better
in both the training and testing stage and has a better scattered and linear fitting of predicted MSL
with observed MSL than the MLP-ANN model.

5.4. Uncertainty Analysis of the ANFIS Model

Uncertainty analysis of the best ANFIS model was calculated by using two criteria, namely 95PPU
and d-factor, such that the increase in observed data in 95PPU level and the decrease in average value
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of upper and lower bands (smaller than the standard deviation of the measured data) in uncertainty
eventuate in a more favorable uncertainty for testing datasets are given in Table 5. The values bracketed
by 95PPU indicate approximately 75.2%, 77.4% and 76.8%, 91.6% of data for the best scenario for Kudat,
Sandakan and Kota Kinabalu stations, respectively. Furthermore, the d-factor has a value of 0.27, 0.21
and 0.23 for Kudat, Sandakan and Kota Kinabalu stations, respectively. Based on the obtained values
in both stations for 95PPU and d-factor indices, it can be concluded that all the observed data fall into
the 95PPU band range (over 50% of observed data).

Table 5. Analysis of the ANFIS model.

Station Best Scenario Statistic ANFIS

Kudat SC1 95PPU 75.2
d-factor 0.27

Sandakan SC1 95PPU 77.4
d-factor 0.21

Kota Kinabalu SC2 95PPU 76.8
d-factor 0.23

5.5. SLR Prediction in Different Year Horizons

The need for effective SLR prediction is vital, especially for coastal areas and offshore structures.
Herein, the MLP-ANN and ANFIS models were used for SLR prediction at different times, in the years
2019, 2023, 2028, 2048, and 2068, for three stations, using the two proposed scenarios. The predicted
SLR rates obtained using MLP-ANN and the observed SLR rates are shown in Table 6 for both SC1
and SC2. In general, the observed mean rate is lower than the predictions obtained using SC1 and
SC2 for the period ranging from 2019 to 2068. In the observed year, the mean SLR rate at Kudat,
Sandakan, and Kota Kinabalu is 7043, 7098, and 7099 mm/yr, respectively. The mean values of the
SLR rate predictions on the data obtained from Kudat and Sandakan for SC1 are higher than those
obtained for SC2, whereas, the mean value of the SLR rate predictions on data obtained from Kota
Kinabalu for SC2 is higher than that obtained for SC1. In 2019, the highest SLR in SC1 occurred in
Kudat, with a mean rate of 7037 mm/yr and confidence interval of 6924 to 7118 mm/yr, followed by
Sandakan, with a mean rate of 7094 mm/yr and confidence interval of 7028–7153 mm/yr. In 2019, the
highest SLR in Kota Kinabalu for SC2 has a mean rate of 7105 mm/yr and a confidence interval of
7003–7183 mm/yr. The same SLR prediction trend continued in 2023, 2028, 2048, and 2068. The MSL is
predicted to be 7045, 7098, and 7099 mm/yr and 7042, 7097, 7110 mm/yr for SC1 and SC2, respectively,
in 2068 for the three different stations. Based on these trends, it is notable that the MSL rate is rising
over the period considered.

Predicted SLR rates obtained using ANFIS and the observed rates are presented in Table 7 for
both SC1 and SC2. In 2019, the highest value of SLR in SC1 occurred in Kudat rather than in SC2,
with a mean of 7039 mm/yr and a confidence interval of 6941 to 7111 mm/yr. In contrast, SC1 also
produced the highest value of SLR at Sandakan, with a mean of 7097 mm/yr and a confidence interval
of 7045 to 7191 mm/yr, compared to SC2. Therefore, the SLR projection is considerably higher in Kudat
and Sandakan using WD and WS as inputs. However, the SLR rate prediction obtained for Kota
Kinabalu using SC1 as an input parameter is considerably lower than that obtained using SC2 as an
input parameter because including WD and WS as an input does not have much impact on the SLR.
This is evidenced by the mean rate of 7107 mm/yr and confidence interval of 7028 to 7192 mm/yr in
SC2. The SLR prediction trend continued throughout 2023, 2028, 2048, and 2068. In 2068, The MSL
in SC1 is predicted to be 7048, 7099, and 7100 mm/yr and 7044, 7099, 7119 mm/yr in SC2 at different
stations. Based on these trends, it is notable that the increment rate of change of MSL is on the rise.
This increment is considered to contribute to the rise in sea level. The results of [37] report that, by
the year 2050, the sea level will increase ~0.12 m according to linear regression results, whereas a 0.32
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m rise in sea level has been predicted using quadratic regression. However, these models used only
35 years of tide measurements, which might not be sufficient for SLR prediction up to 2050.

Table 6. SLR rate (mm/yr) in different year horizons for SC1 and SC2 using MLP-ANN. (LL: lower
limit; UL: upper limit; AV: average change in sea level).

Year Horizon

Observed Year 2019 2023 2028 2048 2068

SC1 SC2 SC1 SC2 SC1 SC2 SC1 SC2 SC1 SC2

Kudat
LL 6867 6924 6908 6938 6906 6955 6895 6951 6886 6955 6899
UL 7039 7118 7063 7078 7106 7096 7106 7177 7079 7179 7137

Mean 7043 7037 7023 7042 7050 7045 7043 7043 7042 7045 7042
AV 13.6 18.0 4.0 25.3 6.7 17.3 6.0 18.8 11.2 17.5 19.4

Sandakan
LL 6954 7028 7009 7031 6993 6995 7010 7004 6989 7001 6968
UL 7178 7153 7174 7201 7186 7278 7219 7209 7223 7226 7201

Mean 7098 7094 7088 7108 7107 7101 7100 7098 7098 7098 7097
AV 16.9 19.0 13.0 25.5 27.5 15.0 13.0 15.0 18.0 17.0 15.0

Kota Kinabalu
LL 6933 6978 7003 6982 6967 6859 7002 6926 7007 6932 6992
UL 7106 7121 7183 7150 7151 7104 7180 7139 7220 7148 7251

Mean 7099 7098 7105 7107 7108 7103 7101 7100 7100 7099 7100
AV 22.0 17.0 10.0 26.0 16.3 0.12 14.7 8.8 20.2 13.0 24.8

Table 7. SLR rate (mm/yr) for different years for SC1 and SC2 using ANFIS. (LL: lower limit; UL: upper
limit; AV: average change in sea level).

Year Horizon

Observed Year 2019 2023 2028 2048 2068

SC1 SC2 SC1 SC2 SC1 SC2 SC1 SC2 SC1 SC2

Kudat
LL 6867 6941 6888 6902 6898 6902 6897 6924 6892 6942 6893
UL 7039 7111 7074 7171 7093 7161 7138 7178 7114 7165 7140

Mean 7043 7039 7027 7044 7051 7046 7046 7047 7043 7048 7044
AV 13.6 14.0 7.0 28.0 13.8 18.0 7.4 16.0 8.4 18.0 10.0

Sandakan
LL 6954 7045 7030 7033 7032 7031 7002 7028 6982 7029 6991
UL 7178 7191 7156 7223 7212 7283 7174 7229 7210 7234 7213

Mean 7098 7097 7095 7110 7111 7113 7112 7099 7110 7099 7099
AV 16.9 20.0 22.0 17.3 15.8 17.7 15.0 22.0 14.2 13.5 12.3

Kota Kinabalu
LL 6933 6987 7028 6942 6995 6907 7007 6917 7011 6928 6994
UL 7106 7137 7192 7201 7209 7203 7224 7215 7230 7215 7289

Mean 7099 7103 7107 7108 7110 7109 7108 7118 7118 7100 7119
AV 22.0 12.0 8.0 25.0 18.8 21.2 14.1 18.1 18.3 18.3 27.9

For better illustration, Figure 9 shows the differences in trends between the LL, UL, and their
mean from 2019 to 2068 ahead of the ones obtained from the best scenario at each station.
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Figure 9. SLR rate (mm/yr) prediction using MLP-ANN and ANFIS on data obtained from Kudat,
Sandakan, and Kota Kinabalu: (a) lower limit, (b) upper limit, and (c) the mean.

6. Conclusions and Recommendations

This study investigated the impact of meteorological parameters on SLR prediction for Kudat,
Sandakan, and Kota Kinabalu stations in the Sabah state of Malaysia. These meteorological parameters
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are WD, WS, rainfall, and MCC. Two scenarios with different input combinations were proposed.
The capability of AI techniques such as MLP-ANN in performing such predictions were tested and
compared with the results obtained using the ANFIS model. Two different scenarios were considered
(SC1 and SC2) and their results were compared. As a preliminary step, the models were developed
and optimized using the optimal input to obtain the best combination of parameters to be used in
predicting sea levels in 2019, 2023, 2028, 2048, and 2068. In MLP-ANN, several models were developed
with a varying range of neurons (N = 1–15) using a trial and error approach to determine the best
number of neurons for both scenarios. The best number of neurons was found to be equal to 4 and 8 at
Kudat, 13 and 14 at Sandakan, and 11 and 13 at Kota Kinabalu. Three different training algorithms were
tested: BFGS, GD, and CGF. We discovered that BFGS outperformed all other training algorithms for all
stations. Regarding ANFIS, various membership functions were investigated, and we discovered that
the G bell MF is the best model for accurately predicting SLR. A comparison between the developed
MLP-ANN method and the ANFIS method shows that the ANFIS method exhibited higher accurate
performance in the training and testing stage for both scenarios. Additionally, the reliability of the
ANFIS model prediction was calculated by an uncertainty estimation. Based on the values in all
stations for the 95PPU and d-factor indices, it is concluded that the ANFIS model has an acceptably low
degree of uncertainty applied for SC1 and SC2 simulations. Furthermore, the proposed models were
applied to predict SLR for different periods: 2019, 2023, 2028, 2048, and 2068. By comparing the two
scenarios, we observed that the predicted SLR for different time periods was higher for SC1 in Kudat
and Sandakan in terms of LL, UL, mean, and average changes in sea level. One of the factors for this is
that Kudat and Sandakan are located close to an open sea (the Sulu Sea). Winds are known to be among
the most important parameters for forcing sea level variability on the eastern margins of the ocean
and play a role by moving warm water from one place to another. In contrast, we observed that the
predicted SLR was higher for the Kota Kinabalu data in SC2. This is attributed to the location of Kota
Kinabalu, which is classified as an equatorial climate region, with high humidity, a considerable amount
of sunlight, and abundant rainfall, which are relatively high and extremely invariable parameters
throughout the year. This study considered only two input parameters for each scenario is because to
minimize the input combination without losing the accuracy of the model performance.

Both the proposed models are appropriate for predicting SLR in different time horizons without
bias or eliminating the hidden information. The results obtained from this study provide reliable
prediction values with respect to the future increase in sea level in the chosen coastal areas. In addition,
the findings of this study showed that including only two input meteorological parameters for each
scenario can have a profound influence on the predicted sea level. Therefore, this study shows that
the model can be used if there is shortage in data availability, which is very common in Malaysia and
surely will help various authorities in managing possible damage that may occur in coastal areas of
Malaysia. Conducting future research to perform further analysis on the sensitivity between each
input variable with the associated output and identifying the weight matrix could be a potential future
research direction. Future studies may also focus on improving the proposed model by introducing
other complex parameters as the model input, which has not been investigated in this study because of
the limitation of the available data.
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