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Abstract: This paper investigates the impacts of heavy vehicles (HV) on speed variation and assesses
the rear-end crash risk for four vehicle-following patterns in a heterogeneous traffic flow condition
using three surrogate safety measures: speed variation, time-to-collision (TTC), and deceleration
rate to avoid a crash (DRAC). A video-based data collection approach was employed to collect the
speed of each individual vehicle and vehicle-following headway; a total of 3859 vehicle-following
pairs were identified. Binary logistic regression modeling was employed to assess the impacts of HV
percentage on crash risk. TTCs and DRACs were calculated based on the collected traffic flow data.
Analytical models were developed to estimate the minimum safe vehicle-following headways for the
four vehicle-following patterns. Field data revealed that the variation of speed first increased with HV
percentage and reached the maximum when HV percentage was at around 0.35; then, it displayed a
decreasing trend with HV percentage. Binary logistic regression modeling results suggest that a high
risk of rear-end collision is expected when HV percentage is between 0.19 and 0.5; while, when HV
percentage is either below 0.19 or exceed 0.5, a low risk of rear-end collision is anticipated. Analytical
modeling results show that the passenger car (PC)-HV vehicle-following pattern requires the largest
minimum safe space headway, followed by HV-HV, PC-PC, and HV-PC vehicle-following patterns.
Findings from this research present insights to transportation engineers regarding the development
of crash mitigation strategies and have the potential to advance the design of real-time in-vehicle
forward collision warnings to minimize the risk of rear-end crash.

Keywords: heterogeneity traffic; vehicle-following pattern; speed variation; crash risk assessment;
minimum safe headway

1. Introduction

In China and many other developing countries, it has been a common phenomenon that passenger
car (PC) driving is mixed with heavy vehicles (HVs), i.e., trucks and buses, on both freeways
and arterials [1–3], which is defined as heterogeneous traffic flow. This is mainly because public
transport, such as inner-city buses and intercity coaches, can carry more passengers in comparison
with PCs and thus has the potential to relieve traffic congestion problems [4–6]. Moreover, trucks are
the primary land freight transport mode in the logistic chain and transfer freight to and from
seaports, airfields, rail terminals, etc. [7,8]. This kind of heterogeneous traffic flow characteristic,
however, has been regarded as one of the primary reasons for traffic collision [9–14]. When traffic
volume is low, PC drivers usually drive at a relatively higher speed than HV drivers and tend to
overtake a leading HV. In comparison, under high traffic volume conditions, because there are no
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sufficient overtaking opportunities, under the majority of situations a driver has to follow the leading
vehicle [15,16]. Nevertheless, in reality, it was found that the variety in vehicle-following patterns
(i.e., a PC following another passenger vehicle, PC-PC; a PC following a HV, PC-HV; a HV following
a PC, HV-PC; and a HV following another HV, HV-HV) resulted in potential variations in speed
and headway in traffic flow [17–21]. In addition, during the vehicle-following process, the following
vehicle driver has to adjust his or her driving behavior, such as following headways, acceleration and
deceleration maneuvers, and lane-changing decisions based on the status of the leading vehicle [22–25].
Considering the aggressive driving behaviors in China, such as the short vehicle-following headway
and the frequent acceleration and deceleration maneuvers, the turbulences in traffic flow could be
further deteriorated [14,26].

Due to the heterogeneities in both vehicle dynamics and drivers’ driving experience and behavior,
the various vehicle-following patterns tend to result in variations in speed and/or time headway,
which increase the potential of rear-end collisions [27]. In a real-world setting, the sightline of PC
drivers is relatively low (approximately 1.1 m above the road surface) and typically parallel to the road.
In comparison, the sightline of HV drivers is significantly higher than PC drivers (approximately 2.5 m
above the road surface) and, usually, HV drivers tend to look down at the road due to the relative
high sightline [28,29]. The difference in driving postures would affect the view of drivers and their
estimations of the space headway to the leading vehicle. Generally speaking, HV drivers tend to
overestimate space headways, which increases the risk of rear-end collisions [30].

With this concern, it is necessary to take into account the impacts of vehicle characteristics and
driving behavior on traffic operations when assessing the risk of crashes on freeways. In this regard,
this research aims to investigate the risks of rear-end crashes for different vehicle-following patterns
based on microscopic real-world traffic flow data; accordingly, it could provide recommendations
to drivers regarding the potential crash risk and minimum safe vehicle-following headways, so that
they can timely adjust their driving behavior to reduce the possibility of being involved in a rear-end
crash. The remainder of this paper is organized as follows: Section 2 presents a review of the
start-of-the-art regarding crash risk assessment. Section 3 describes the acquisition and reduction of
vehicle-type-specific traffic flow data. Section 4 details the methodologies employed for assessing
the crash risk under different vehicle-following patterns. Section 5 documents the minimum safe
vehicle-following distances for each vehicle-following pattern. Finally, the conclusions of this study
and discussions on future research requirements are summarized in Section 6.

2. Literature Review

To date, there have been a number of studies that employed real-world traffic flow data for crash
risk assessment. Oh et al. [31] identified rear-end collision risks based on traffic flow data collected
by inductive loop detectors. Traffic performance data of individual vehicles were extracted from
loop detectors, which were employed to identify collision potentials. Similarly, Abdel-Aty et al. [32]
identified crash-prone conditions on freeways using loop detector data. Logistic regression models
were developed for assessing the risk of crashes under two different speed conditions. It was
concluded that the crashes that occur under moderate- to high-speed condition differ distinctly from
low-speed condition in both severity and traffic flow conditions. Shew et al. [33] also employed
loop detector data to estimate real-time crash risks on freeways. The classification tree and neural
network-based crash risk assessment models were developed, and they are expected to provide local
authorities with a reasonable estimate of crash risk. Yu and Abdel-Aty [34] utilized the support vector
machine (SVM) model to evaluate real-time crash risk. Results indicated that SVM models have
great application potential in real-time crash risk evaluation because they require a smaller sample
size than the traditional logistic regression models to generate a comparable result. Lao et al. [35]
developed a generalized nonlinear model (GNM) for estimating highway rear-end crash risk. Rear-end
accident data collected from 10 highway routes in the state of Washington were employed to calibrate
the model. Results suggested that truck percentage and grade increased crash risks initially but
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decreased the risks after reaching certain thresholds. Kwak and Kho [36] developed real-time crash
risk prediction models for different expressway segment types (mainline and ramp) and traffic flow
states (uncongested and congested). Modeling results showed that both roadway type and traffic flow
characteristics influenced the predicted crash risks. Yu et al. [37] developed disaggregate crash risk
analysis models with loop detector traffic data and historical crash data to reveal the mechanisms
of crashes. Through a Bayesian semi-parametric model, it was found that crashes occurring during
weekday peak hours were impacted by upstream traffic; variations of volume and the speed drops
would increase crash occurrence likelihood. Mullakkal-Babu et al. [38] presented a qualitative and
quantitative comparison of five safety indicators (i.e., inverse time to collision, post-encroachment
time, potential indicator of collision with urgent deceleration, warning index, and safety field force) to
evaluate their usefulness in quantifying crash risks. Results indicated that all five safety indicators
were capable of delineating risk continuously in a one-dimensional interaction such as car-following.
Xu et al. [1] investigated the impacts of traffic flow conditions on the casualty of different collision
types based on high-resolution traffic data. Based on logistic regression modeling, it was found that,
for sideswipe crashes, the crash risk was influenced by the speed difference between adjacent lanes,
volume on the right lane, and standard deviation of volume on inner lanes. For rear-end crashes,
the congested traffic conditions at the diverge area, and a large difference in speed on the right lane
between the upstream and downstream stations in adverse weather, contributed to crash casualty.

For heterogeneous traffic flow conditions, several studies have been conducted to investigate
the heterogeneity in vehicle-following behavior, as well as its impact on crash risk. Ossen and
Hoogendoorn [19] identified the different vehicle-following behaviors of passenger vehicle and truck
drivers. Results suggested that the desired headways of passenger car drivers were lower when
following a truck than when following a passenger car. In comparison, truck drivers adopted a more
conservative vehicle-following behavior than passenger vehicle drivers did, and their speed variations
were lower than those of passenger vehicle drivers. Ye and Zhang [29] investigated four vehicle
type-specific time headways based on different combinations of leading vehicles and following vehicles
at different traffic flow levels. Statistical results revealed that, under all traffic flow conditions, the
truck-truck headway was the largest and the car-car headway was the smallest. The truck-car headway
was larger than the car-truck headway, which is mainly because truck drivers are usually sitting higher
than car drivers, which enables them to look beyond the car they are following, and thus keep a
smaller separation. Furthermore, it was found that traffic flow level affected vehicle type-specific
headway characteristics. Weng et al. [20] evaluated rear-end crash risk in work zones for four different
vehicle-following patterns. Results show that the car-truck following pattern had the largest rear-end
crash risk, followed by truck-truck, truck-car, and car-car patterns. Recently, Hyun et al. [39] employed
the headways obtained from inductive loop detectors to investigate the impacts of trucks on crash
risk. A Gaussian Mixture (GM) model was developed to identify trucks and analyze the interactions
between trucks and non-trucks. Modeling results revealed that interactions between the leading and
following vehicles were significantly associated with crash risk; rear-end crashes were more likely to
occur when a truck was following a non-truck. Therefore, traditional safety measures that estimate
the average traffic condition such as total volume or average headway of the traffic stream might not
exactly capture the actual crash risk. Zhao and Lee [40] analyzed the rear-end collision risk of cars
and heavy vehicles on freeways using crash potential index (CPI) as the surrogate measure of safety
(SMoS). It was found that rear-end collision risk was lower for heavy vehicles than for cars in the crash
case due to their shorter reaction time and lower speed when space headway was shorter. With this
consideration, the authors emphasized the importance of reflecting the differences in driver behavior
and vehicle performance characteristics between cars and heavy vehicles when estimating crash risk.
Dimitriou et al. [21] investigated car-following characteristics and vehicle-by-vehicle interactions
to assess rear-end crash potential on urban roads. The stopping distance between two consecutive
vehicles was employed as a SMoS. It was found that speeds were lower and headways were higher
when trucks lead; moreover, rear-end crash potential was presented when traffic flow and speed
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standard deviation was higher. Similarly, Choudhary et al. [41] explored the relationships of speed
variations between different vehicle types with crashes through a Multivariate Poisson lognormal
regression model. Modeling results revealed that crash rates increased with the raise of speed variations,
especially at higher traffic volumes. In addition, modeling results suggested that specific combinations
of traffic characteristics increase the likelihood of crashes. Mahmud et al. [3] investigated the factors
affecting crash frequency on a two-lane two-way highway in a heterogeneous traffic environment using
micro-level traffic flow data; accordingly, he identified the safety risk locations of a particular road
section. It was concluded that speeding was the primary influential factor in crashes. Zhang et al. [2]
pointed out that a driver’s car-following behavior depends on perceived risk levels, acceleration and
deceleration habits, and driver reaction characteristics. Based on this, the authors investigated the
impact of heterogeneity of driving behavior on rear-end crash risk through simulation experiments.
Simulation results implied that driving behavior characteristics and the proportion of different driving
styles (i.e., stable and unstable driving styles) were the most critical factors that affect shock waves in
traffic flow, and subsequently rear-end crash risk. When stable and unstable driving styles coexist,
their proportions had important influences on rear-end crash risk.

In summary, previous research generally revealed that driving behavior heterogeneity has a
considerable impact on rear-end crash risk. Therefore, exploring the effect of each vehicle-following
behavior on rear-end crash probability could improve our understanding of crash risk and would
support the development of more efficient safety countermeasures to minimize rear-end crash risks.

3. Data Acquisition

3.1. Data Collection and Reduction

Real-world microscopic traffic flow data, including traffic volume, traffic composition (i.e., percent of
HVs), speed and variations of speed, and time and space headways were collected at a representative
freeway (i.e., freeway S-28) in Yangzhou City, China, using video cameras. Figure 1 illustrates the
location and method for data collection. The data collection was conducted on weekdays under normal
weather condition. To cover a variety of traffic flow conditions, traffic performance data under both
peak and non-peak periods were collected.

Figure 1. Illustration of data collection location and method.
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To extract traffic flow data on each lane, this research first defined the left-most lane as the passing
lane (Lane 1), the middle lane as the driving lane (Lane 2), and the right-most lane as the merging lane
(Lane 3). Then, this research used codes 1 and 2 to represent passenger vehicles and heavy vehicles,
respectively. Based on the vehicle classification standard in China [42], this research defined passenger
vehicles as vehicles with a length of less than 6 m. Vehicles that have a length of 6 m or longer were
defined as heavy vehicles.

The spot speed of each vehicle was extracted based on the time (in the number of frames) passing
a designated distance, which was determined as 30 m, as shown in Figure 1. In addition, time and
speed headways and speed variations of each paired sample were extracted from the video clips.
The procedure for data extraction is illustrated in Figure 2. This video-based speed data processing
approach can provide a higher speed-data measurement accuracy and has the flexibility to retrieve
detailed vehicle-following trajectories of each paired sample [43]. Details of the microscopic traffic
flow data extraction procedure are described as follows:

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 19 

 

merging lane (Lane 3). Then, this research used codes 1 and 2 to represent passenger vehicles and 
heavy vehicles, respectively. Based on the vehicle classification standard in China [42], this research 
defined passenger vehicles as vehicles with a length of less than 6 m. Vehicles that have a length of 6 
m or longer were defined as heavy vehicles. 

The spot speed of each vehicle was extracted based on the time (in the number of frames) passing 
a designated distance, which was determined as 30 m, as shown in Figure 1. In addition, time and 
speed headways and speed variations of each paired sample were extracted from the video clips. The 
procedure for data extraction is illustrated in Figure 2. This video-based speed data processing 
approach can provide a higher speed-data measurement accuracy and has the flexibility to retrieve 
detailed vehicle-following trajectories of each paired sample [43]. Details of the microscopic traffic 
flow data extraction procedure are described as follows: 

 
Figure 2. Illustration of the proposed video-based traffic data extraction approach. 

Spot speed of each vehicle: 𝑣 (𝑡)  =  𝑆𝑏 , − 𝑏 , × 𝑘 (1) 

where: 𝑣 (𝑡) is the spot speed (m/s) of vehicle 𝑖 at time point 𝑡;  𝑆 is the distance between observation points 1 and 2, which was defaulted as 30 m;  𝑏 ,  and 𝑏 ,  are the frame number at observation points 1 and 2, respectively;  𝑘 is the number of frames per second, which was 25 frames per second (i.e., 0.04 s per frame). 

Time headway of each paired sample: 𝑡  =  𝑏 , − 𝑏 , × 𝑘 (2) 

where:  𝑡  is the time headway (s) of each paired sample;  𝑏 , and 𝑏 , are the frame number of the tail of vehicles 𝑖 and 𝑖 − 1 passing observation point 1, 
respectively;  𝑘 =  0.04. 

Space headway (m) of each paired sample: ℎ  =  𝑣 (𝑡) × 𝑘 (3) 

Vehicle length (m): 

Figure 2. Illustration of the proposed video-based traffic data extraction approach.

Spot speed of each vehicle:

vi(t) =
S

bi,2 − bi,1
× k (1)

where:

vi(t) is the spot speed (m/s) of vehicle i at time point t;
S is the distance between observation points 1 and 2, which was defaulted as 30 m;
bi,1 and bi,2 are the frame number at observation points 1 and 2, respectively;
k is the number of frames per second, which was 25 frames per second (i.e., 0.04 s per frame).

Time headway of each paired sample:

ti = bi,1 − bi−1,1 × k (2)

where:

ti is the time headway (s) of each paired sample;
bi,1 and bi−1,1 are the frame number of the tail of vehicles i and i − 1 passing observation point
1, respectively;
k = 0.04.

Space headway (m) of each paired sample:

hi = vi(t) × k (3)
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Vehicle length (m):
Li =

(
b′i,1 − bi,1

)
× k× vi(t) (4)

where:

Li is the length of each vehicle;
b′i,1 and bi,1 are the frame number of the tail and bumper of vehicles i passing observation point

1, respectively.

Space interval (m) between paired vehicles, which is the distance between the tail of the leading
vehicle and bumper of the following vehicle:

Hi = hi − Li (5)

Speed difference (m/s) of each paired sample:

δv = vi − vi−1 (6)

where:

δv is the speed difference of vehicles i (following vehicle) and i− 1 (leading vehicle);
vi and vi−1 are the speeds of vehicles i and i− 1, respectively.

An example of the extracted individual vehicle speed information is illustrated in Table 1.

Table 1. Examples of the Data Extraction Procedure and Extracted Traffic Data.

Vehicle # Time
Frame #

Vehicle
Type Lane #

Vehicle
Length (m)

Distance
(m)

Spot Speed
(km/h)Head at

Location 1
Rear at

Location 1
Rear at

Location 2

1 7:07:48 n/a 11,838 11,862 11 1 5 30 112.5
2 7:07:59 12,100 12,125 12,157 21 2 23 30 84.4
3 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: # refers to number.

3.2. Descriptive Statistics

Based on the aforementioned video-based data extraction procedure, full data extraction was
performed. Descriptive statistics of traffic flow and travel speed are listed in Tables 2 and 3, respectively.
In summary, a total of 10,502 vehicles were observed, where passenger vehicles and heavy vehicles
constitutes 85.1% and 14.9% of the traffic flow, respectively. In terms of lane traffic distribution,
field data show that most heavy vehicle drivers (i.e., approximately 66.4%) drove on the driving lane,
while approximately 55.4% of passenger vehicle drivers drove on the passing lane. As expected,
travel speeds on the passing lane are higher than the speeds on the driving lane, and average speeds of
passenger vehicles are higher than heavy vehicles on both passing and driving lanes.

Table 2. Traffic Flow Data Extracted from the Video Clips.

Lane
Passenger Vehicle (PV) Heavy Vehicle (HV)

Total
Traffic Volume Percentage (%) Traffic Volume Percentage (%)

Passing Lane 4948 91.9 438 8.1 5386
Driving Lane 2748 72.5 1040 27.5 3788
Merging Lane 1239 93.3 89 6.7 1328

Total 8935 85.1 1567 14.9 10,502
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Table 3. Travel Speeds Extracted from the Video Clips.

Lane
Vehicle

Type
Sample

Size

Speed (km/h) Low
Speeds

High
SpeedsMean S.D. 15% 85%

Passing
Lane

PV 4948 96.3 10.73 87.1 108.0 12.6% 15.0%
HV 438 90.7 10.06 79.4 100.0 13.0% 26.5%

Driving
Lane

PV 2748 82.5 18.35 61.4 203.9 12.2% 10.2%
HV 1040 79.1 11.59 67.5 90.0 15.6% 19.8%

Merging
Lane

PV 1239 61.7 9.02 52.9 69.2 11.8% 20.9%
HV 89 55.8 8.97 47.0 64.3 14.6% 15.7%

With the extracted traffic and speed data, this paper employed a following speed based method
to identify vehicle-following pairs. According to the General Motors (GM) car-following model [44],
the acceleration rate of the following vehicle is positively related to its speed, indicating that a higher
following speed requires the following vehicle driver to react in a more swift and aggressive manner,
which increases the risk of collision. In accordance with previous studies on determining car-following
status [45–47], this paper assumed that a vehicle is under vehicle-following status if its time headway
to the leading vehicle is less than 6 sec or if the space headway is less than 100 m. By applying
these criteria, a total of 4120 vehicle-following pairs were identified. In addition, considering that
the post speed limit on the study road segment is 120 km/h, this paper assumed that a vehicle that
has a speed between 60 km/h to 120 km/h was under vehicle-following status. Eventually, 3859 valid
vehicle-following pairs were selected for crash risk analysis. Descriptive analysis of vehicle-following
speed and space headway for the identified vehicle-following pairs are presented in Table 4.

Table 4. Vehicle-Following Speed and Space Headway.

Lane
Vehicle-Following Speed (km/h) Vehicle-Following Space Headway (m)

Passenger Vehicle Heavy Vehicle Passenger Vehicle Heavy Vehicle

Sample Size 3412 447 3412 447
Min 60 60 0.29 1.27
Max 117.4 117.4 100 99.7

Average 89.6 83.1 49.7 55.9
Standard Error 13.74 11.75 25.83 25.96

In reality, for each vehicle-following pair, the vehicle-following speed and/or space headway
varies according to the speed of the leading vehicle as well as the prevailing road traffic condition.
Therefore, to more accurately capture the following vehicles’ speed and space headway under various
travel speed scenarios, this paper further divided travel speed (v) into three ranges: 60 ≤ v ≤ 80 km/h,
80 < v ≤ 100 km/h, and 100 < v ≤ 120 km/h. Vehicle-following speed and space headway under each
speed range are summarized in Table 5. In general, it was found that, under a higher travel speed
condition, following vehicle drivers tend to drive at a higher vehicle-following speed and a larger
space headway.
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Table 5. Vehicle-Following Speed and Space Headway under Various Travel Speed Conditions.

Criteria Statistics
Speed Range

60–80 km/h 80–100 km/h 100–120 km/h

Vehicle-Following Speed (km/h)

Sample Size 1030 2212 617
Min 60 81.8 103.9
Max 79.4 100 117.4

Average 69.8 92.6 106.9
Standard Error 6.06 5.61 3.98

Vehicle-Following Space Headway (m)

Min 0.29 1.21 3.08
Max 100 100 100

Average 48.4 50.1 54.7
Standard Error 27.1 25.4 25.1

4. Crash Risk Assessment

4.1. Impact of HV on Speed Variation

Due to the differences in vehicle dynamics and driver behavior, the presence of HVs tends to affect
PC drivers’ sight distance and brings in potential panics to PC drivers. This, to some extent, increases
the frequency of PC drivers’ lane changing, overtaking, and sharp accelerating and decelerating
maneuvers, which further increases the variation of speed. Based on the descriptive statistical analysis,
the majority of HVs are running on the driving lane; therefore, this paper first selected traffic flow data
on the driving lane to analyze the impact of HV percentage on speed variation. A total of 120 groups
of 5-min aggregated traffic volume, HV percentage of each 5-min interval, and 5-min average speed
and speed variation were extracted from the 10-hr video clips for data analysis. Eventually, these data
were used for assessing the crash risk under various HV percentages.

Field data show that the percentage of HVs on the driving lane ranges from 0.08 to 0.58;
the scatterplot for HV percentage and average speed is illustrated in Figure 3.
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Through Pearson correlation analysis, it was concluded that the correlation coefficient is −0.717
(p = 0.000), indicating that average speed decreases with HV percentage. This is particularly significant
when HV percentage is larger than 30%. In addition, this paper employs the standard deviation of
speed as a surrogate measure of speed variation to reveal the impact of HV percentage on speed
variation, as illustrated in Figure 4. In general, it was found that the coefficient of speed variation first
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increases with HV percentage and peaks when HV percentage is at around 0.35. Then, the coefficient
of speed variation decreases with HV percentage.
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To quantitively assess the crash risk under various HV percentages, this paper employs Binary
Logistic Regression Modeling to reveal the impact of HV percentage on speed variation. Two separate
models were developed: Model 1 for HV percentage between 0.08 and 0.35; Model 2 for HV percentage
between 0.35 and 0.58. For each model, this paper identified a crash risk threshold to differentiate low
and high crash risk statuses. The low-crash risk threshold was determined based on the 85th percentile
coefficient of speed variation that has been presented in Figure 4 (i.e., Model 1: Speed Variation
Coefficient < 0.18; Model 2: Speed Variation Coefficient < 0.19). The Binary Logistic regression
modeling was conducted based on the IBM SPSS software package, where low-crash risk status was
encoded as “0” and high-crash risk status was encoded as “1”, as specified in Table 6.

Table 6. Speed Variation Coefficients under Various HV Percentages.

Speed Variation Coefficient for Two Logistic Models
Parameter Encoding Level of Crash Risk *

Model 1 (0.08 < HV < 0.350 Model 2 (0.35 < HV < 0.58)

Cv ≤ 0.18 Cv ≤ 0.19 0 Low
Cv > 0.18 Cv > 0.19 1 High

Note: * Low- and High-levels of crash risk refer to low- and high-speed variation coefficients, respectively.

Binary Logistic regression modeling results are listed in Table 7. Results show that both the
regression coefficient and the constant term are nonzero parameters, and the modeling results are
statistically significant at the 0.05 significance level. Therefore, the probabilities of high-crash risk for
the two models could be depicted as follows:

P(y = 1) =

 e−8.416+35.953x

1+e−8.416+35.953x (0.08 ≤ x ≤ 0.35)
e−20.176x+8.643

1+e−20.176x+8.643 (0.35 ≤ x ≤ 0.58)
(7)

where:
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x refers to HV percentage;
P(y = 1) refers to the probabilities of high-crash risk.

Table 7. Binary Logistic Regression Modeling Results.

Binary Model Regression
Coefficient

Standard
Deviation

Wald
Statistic

Degree of
Freedom Significance *

Model 1
(0.08 < HV < 0.35)

HV% 35.953 8.971 16.060 1 0.000
Constant −8.416 2.105 15.979 1 0.000

Model 2
(0.35 < HV < 0.58)

HV% −20.176 6.455 9.769 1 0.002
Constant 8.643 2.811 9.453 1 0.002

Note: * 0.05 significance level.

Accordingly, the impacts of HV percentage on crash risk are depicted, as illustrated in Figure 5.
Results show that, when HV percentage is between 0.19 and 0.5, the variation of speed on a freeway
tends to be more significant, which is expected to result in a high risk of rear-end collision. In comparison,
when HV percentage is either below 0.19 or exceed 0.5, a low risk of rear-end collision is expected,
which is mainly due to the low variation in speed.
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4.2. Risk Assessment for Different Vehicle-Following Patterns

In real-world conditions, a rear-end collision is a small-probability event, particularly considering
the relatively short field data collection period. Therefore, this paper employs time-to-collision (TTC)
and deceleration rate to avoid a crash (DRAC) as surrogate measures of safety for assessing the rear-end
crash risk of different vehicle-following patterns. TTCs and DRACs are estimated based on the speed
difference and vehicle-following distance of each vehicle-following pair. A lower TTC indicates a
higher risk of rear-end collision, and a larger DRAC is related to a higher rear-end collision risk.
TTC and DRAC are calculated through Equations (8) and (9), respectively.

TTCi =
xi−1(t) − xi(t) − Li−1

vi(t) − vi−1(t)
, ∀vi(t) > vi−1(t) (8)

where:

TTCi refers to the time to collision (sec) between following vehicle (i) and leading vehicle (i− 1);
xi−1(t) refers to the location of the leading vehicle at time t;
xi(t) refers to the location of the following vehicle at time t;
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vi−1(t) refers to the speed of the leading vehicle (m/s) at time t;
vi(t) refers to the speed of the following vehicle (m/s) at time t;
Li−1 is the length (m) of the leading vehicle.

DRACi =
δv
∆t

=
vi(t) − vi−1(t)

∆t
=

[vi(t) − vi−1(t)]
2

xi−1 − xi − Li−1
, ∀vi(t) > vi−1(t) (9)

where:

DRACi refers to the minimum required deceleration rate (m/s2) which a vehicle has to apply to avoid
a crash with the leading vehicle;

δv refers to the speed difference (m/s) between leading vehicle and following vehicle;
∆t refers to TTC.

Based on the extracted speed and vehicle-following distance data for the identified
vehicle-following pairs, TTC and DRAC for each vehicle-following pair were calculated and analyzed.
The average, median, and the 95th percentile of TTC and DRAC for each vehicle-following pattern,
as well as Kolmogorov– Smirnov (K–S) normal distribution test results are presented in Table 8.

Table 8. Time-to-Collision (TTC) and Deceleration Rate to Avoid a Crash (DRAC) of difference
Vehicle-Following Patterns.

Vehicle-
Following

Pattern

Sample
Size

Surrogate
Measure of

Safety (SMoS)
Average S.D. Median 95th

Percentile
K–S
Test Significance *

PC-PC 1045
TTC 8.11 4.03 7.49 7.94 0.069 0.000

DRAC 3.50 8.58 2.09 2.72 0.347 0.000

PC-HV 134
TTC 6.61 4.03 5.91 6.58 0.091 0.009

DRAC 8.18 17.75 3.63 5.08 0.325 0.000

HV-PC 340
TTC 9.86 4.65 9.22 9.79 0.068 0.001

DRAC 2.56 2.93 1.66 2.16 0.206 0.000

HV-HV 112
TTC 8.56 5.06 7.75 8.44 0.124 0.000

DRAC 4.38 6.97 2.23 3.19 0.289 0.000

Note: * 0.05 significance level. K–S test refers to the Kolmogorov–Smirnov test.

Results show that, on average, TTC of the PC-HV vehicle-following pattern is the smallest among
the four vehicle-following patterns (6.61 s), followed by the PC-PC vehicle-following pattern (8.28
s), the HV-HV vehicle-following pattern (8.80 s), and the HV-PC vehicle-following pattern (9.35 s).
In terms of DRAC, it was found that the PC-HV vehicle-following pattern has the highest DRAC
among the four vehicle-following patterns (8.18 m/s2), followed by the HV-HV vehicle-following
pattern (4.38 m/s2), the PC-PC vehicle-following pattern (3.50 m/s2), and the HV-PC vehicle-following
pattern (2.56 m/s2). Both TTC and DRAC results indicate that the PC-HV vehicle-following pattern
has the highest risk of rear-end collision, and the HV-PC vehicle-following pattern has the lowest
rear-end collision risk. K–S test results indicate that the p-values of TTC and DRAC for all the four
vehicle-following patterns are not significant at 0.05 significance level, indicating that the TTC and
DRAC of the four vehicle-following patterns are not normally distributed.

5. Safe Vehicle-Following Headways

In reality, the majority of rear-end collisions are attributed to insufficient vehicle-following
distance [21,48,49]. Because the braking capability of the two vehicle categories varies, the minimum safe
vehicle-following distances for different vehicle-following patterns vary. With this concern, this section
aims at determining the minimum safe vehicle-following distances for various vehicle-following
patterns based on a micro-level analysis of vehicle braking process.
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When a leading vehicle driver slams the brakes on, the minimum safe distance (D) for the following
vehicle to avoid a rear-end collision is mainly determined by the difference of braking distances of the
leading vehicle (Sl) and the following vehicle (S f ), and the safe stopping distance (l) between the two
vehicles, as depicted in Equation (10).

D = S f − Sl + l (10)

where:

S f refers to the braking distance (m) of the following vehicle starting from the braking process;

Sl refers to the braking distance (m) of the leading vehicle starting from the braking process;
l refers to the safe distance (m) between the leading vehicle and the following vehicle.

Generally speaking, a driver’s braking process consists of four steps: (1) driver perception and
reaction step, (2) vehicle brake response step, (3) driver braking step, and (4) deceleration step. For the
following vehicle, the braking process consists of all these four steps; the time required for performing
the four steps are denoted as t f 1, t f 2, t f 3, and t f 4, respectively. During the driver perception and
reaction and the vehicle brake response steps, the speed of the following vehicle is assumed to remain
a constant speed that equals its vehicle-following speed (v f ); accordingly, the distances traveled during
these two steps are S f 1 and S f 2, as depicted in Equations (11) and (12), respectively.

S f 1 =

∫ t f 1

0
v f 1dt = v f 1 × t f 1 (11)

S f 2 =

∫ t f 2

0
v f 2dt = v f 2 × t f 2 (12)

S f 3 =

∫ t f 3

0

(
v f g −

∫ t

0

a f max × h

t f
dh

)
dt = v f × t f 3 −

1
6

a f × t2
f 3 (13)

S f 4 =
(v f −

∫ v f 3

0
a f max×h

t f 3
dh)

2

2× a f max
=

v f
2

2× a f
+

1
8

a f × t2
f 3 −

1
2

v f × t f 3 (14)

During the driver braking step, the deceleration rate of the following vehicle increases from zero
to the vehicle’s maximum deceleration (a f max). To simplify the modeling, this paper assumes that the
vehicle deceleration rate increases linearly with time; then, distance traveled during this step (S f 3)
could be described by Equation (13). During the deceleration step, the speed of the following vehicle
decreases to zero; distance traveled during this step (S f 4) is estimated by Equation (14). An illustration
of the braking process and distance traveled during each step is presented in Figure 6.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 19 

 

  
(a) (b) 

Figure 6. Graphic illustration of Vehicle Braking Process: (a) Deceleration versus time profile; (b) 
Braking distance versus time profile. 

For each vehicle-following pair, driver perception and reaction time and vehicle brake response 
time will not be taken into account for the leading vehicle. Prior to the braking process, the travel 
speed of the leading vehicle is denoted as 𝑣 . Similarly, during the driver braking step, the 
deceleration rate of the leading vehicle increases from zero to the maximum vehicle deceleration 
capability (𝑎 ). Distance traveled during this step (𝑆 ) is described by Equation (15). During the 
deceleration step, the speed of the leading vehicle decreases to zero; distance traveled during this 
step (𝑆 ) could be estimated by Equation (16). 𝑆  =   𝑣 − 𝑎 × ℎ𝑡 𝑑ℎ 𝑑𝑡 =  𝑣 × 𝑡 − 16 𝑎 × 𝑡  (15) 

𝑆  =  (𝑣 − 𝑎 × ℎ𝑡 )2 × 𝑎  =  𝑣2 × 𝑎 + 18 𝑎 × 𝑡 − 12 𝑣 × 𝑡  (16) 

Substituting Equations (11)–(16) to Equation (10), the minimum safety distance could be 
estimated as follows: 𝐷 =  𝑆 + 𝑆 + 𝑆 + 𝑆 − (𝑆 + 𝑆 ) + 𝑙 (17) 𝐷 =  𝑡 + 𝑡 + 12 𝑡 𝑣 + 𝑣2 × 𝑎 − 124 𝑎 × 𝑡− 12 𝑣 × 𝑡 + 𝑣2 × 𝑎 − 124 𝑎 × 𝑡 + 𝑙 (18) 

Because driver braking time (𝑡 ) is usually a small number (i.e., 0.1 s), the impacts of 𝑎 × 𝑡  
and 𝑎 × 𝑡  could be ignored. This paper assumes that 𝑡  =  𝑡  =  𝑡 , and 𝑣  =  𝑣 − 𝛿𝑣; then, 
Equation (18) could be simplified as: 𝐷 =  𝑣 𝑡 + 𝑡 + 12 × 𝑡 𝛿𝑣 + 𝑣2 × 𝑎 − (𝑣 − 𝛿𝑣)2 × 𝑎 + 𝑙 (19) 

Based on the proposed model, minimum safe vehicle-following distance is determined by the 
following factors: vehicle-following speed (𝑣 ), speed difference (𝛿𝑣), following vehicle driver’s 
perception time (𝑡 ), vehicle brake response time (𝑡 ), maximum deceleration rate (𝑎 ), driver 
braking time (𝑡 ), and safe brake distance (𝑙). Specifically, the minimum and maximum vehicle-
following speeds were determined as 60 and 120 km/h, which are consistent with the post speed 
limits of the study site. Based on the descriptive statistics analysis, the absolute speed differences of 
the collected vehicle-following pairs are within 50 km/h. Because this paper only considers the 
condition that the following vehicle has a larger speed than the leading vehicle, the speed difference 
was determined as 0 to 50 km/h. Based on previous research and existing guidelines, the default value 
for the other parameters are determined as follows: Driver perception and reaction time was 
determined as 1.6 s, and driver braking time was determined as 0.1 s. Maximum deceleration rates 

Figure 6. Graphic illustration of Vehicle Braking Process: (a) Deceleration versus time profile; (b) Braking
distance versus time profile.



Sustainability 2020, 12, 9888 13 of 18

For each vehicle-following pair, driver perception and reaction time and vehicle brake response
time will not be taken into account for the leading vehicle. Prior to the braking process, the travel
speed of the leading vehicle is denoted as vl. Similarly, during the driver braking step, the deceleration
rate of the leading vehicle increases from zero to the maximum vehicle deceleration capability (almax).
Distance traveled during this step (Sl3) is described by Equation (15). During the deceleration step,
the speed of the leading vehicle decreases to zero; distance traveled during this step (Sl4) could be
estimated by Equation (16).

Sl3 =

∫ tl3

0

(
vl −

∫ t

0

almax × h
tl3

dh
)
dt = vl × tl3 −

1
6

almax × t2
l3 (15)

Sl4 =
(vl −

∫ vl3
0

al×h
tl3

)
2

2× almax
=

vl
2

2× almax
+

1
8

almax × t2
l3 −

1
2

vl × tl3 (16)

Substituting Equations (11)–(16) to Equation (10), the minimum safety distance could be estimated
as follows:

D =
(
S f 1 + S f 2 + S f 3 + S f 4

)
− (Sl3 + Sl4) + l (17)

D =

(t f 1 + t f 2 +
1
2

t f 3

)
v f +

v2
f

2× a f max
−

1
24

a f max × t2
f 3

−
(

1
2

vl × tl +
vl

2

2× almax
−

1
24

almax × t2
l3

)
+ l (18)

Because driver braking time (t3) is usually a small number (i.e., 0.1 s), the impacts of 1
24 al × t2

l3
and 1

24 a f × t2
f 3 could be ignored. This paper assumes that t f 3 = tl3 = t3, and vl = v f − δv;

then, Equation (18) could be simplified as:

D = v f
(
t f 1 + t f 2

)
+

1
2
× t3δv +

v2
f

2× a f max
−

(
v f − δv

)2

2× almax
+ l (19)

Based on the proposed model, minimum safe vehicle-following distance is determined by the
following factors: vehicle-following speed (v f ), speed difference (δv), following vehicle driver’s
perception time (t1), vehicle brake response time (t2), maximum deceleration rate (amax), driver braking
time (t3), and safe brake distance (l). Specifically, the minimum and maximum vehicle-following
speeds were determined as 60 and 120 km/h, which are consistent with the post speed limits of the
study site. Based on the descriptive statistics analysis, the absolute speed differences of the collected
vehicle-following pairs are within 50 km/h. Because this paper only considers the condition that the
following vehicle has a larger speed than the leading vehicle, the speed difference was determined
as 0 to 50 km/h. Based on previous research and existing guidelines, the default value for the other
parameters are determined as follows: Driver perception and reaction time was determined as 1.6 s,
and driver braking time was determined as 0.1 s. Maximum deceleration rates for passenger cars and
heavy vehicles were determined as 8.5 and 7.2 m/s2, respectively. Safe braking distances for passenger
cars and heavy vehicles were determined as 3 and 5 m, respectively. Brake response times for passenger
cars and heavy vehicles were determined as 0.175 and 0.6 s, respectively.

Then, the minimum safety vehicle-following distances (i.e., space headways) under various travel
speeds and speed differences for each vehicle-following pattern could be estimated as follows:

Passenger Car—Passenger Car:

DPC−PC = v(1.6 + 0.175) +
1
2
× 0.1δv +

v2
− (v− δv)2

2× 8.5
+ 3 (20)
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Passenger Car—Heavy Vehicle:

DPC−HV = v(1.6 + 0.6) +
1
2
× 0.1δv +

v2

2× 7.2
−
(v− δv)2

2× 8.5
+ 5 (21)

Heavy Vehicle—Passenger Car:

DHV−PC = v(1.6 + 0.175) +
1
2
× 0.1δv +

v2

2× 8.5
−
(v− δv)2

2× 7.2
+ 3 (22)

Heavy Vehicle—Heavy Vehicle:

DHV−HV = v(1.6 + 0.6) +
1
2
× 0.1δv +

v2
− (v− δv)2

2× 7.2
+ 5 (23)

Accordingly, the minimum space headways for each vehicle-following pattern are calculated and
summarized in Tables 9–12.

Table 9. Minimum Safe Space Headways for PC-PC Vehicle-Following Patten.

Following Speed
(km/h)

Minimum Safe Space Headway (m) under Various Speed Differences (km/h)

0 5 10 15 20 25 30 35 40 45 50

60 32.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
65 35.0 38.0 n/a n/a n/a n/a n/a n/a n/a n/a n/a
70 37.5 40.6 43.6 n/a n/a n/a n/a n/a n/a n/a n/a
75 40.0 43.3 46.5 49.4 n/a n/a n/a n/a n/a n/a n/a
80 42.4 46.0 49.4 52.5 55.4 n/a n/a n/a n/a n/a n/a
85 44.9 48.7 52.3 55.7 58.8 61.7 n/a n/a n/a n/a n/a
90 47.4 51.4 55.2 58.8 62.2 65.3 68.2 n/a n/a n/a n/a
95 49.8 54.1 58.1 62.0 65.6 68.9 72.0 75.0 n/a n/a n/a

100 52.3 56.8 61.1 65.1 68.9 72.5 75.9 79.0 82.0 n/a n/a
105 54.8 59.5 64.0 68.2 72.3 76.1 79.7 83.0 86.2 89.1 n/a
110 57.2 62.2 66.9 71.4 75.7 79.7 83.5 87.1 90.5 93.6 96.5
115 59.7 64.9 69.8 74.5 79.0 83.3 87.4 91.2 94.8 98.1 101.2
120 62.2 67.6 72.7 77.7 82.4 86.9 91.2 95.2 99.0 102.6 106.0

Table 10. Minimum Safe Space Headways for PC-HV Vehicle-Following Patten.

Following Speed
(km/h)

Minimum Safe Space Headway (m) under Various Speed Differences (km/h)

0 5 10 15 20 25 30 35 40 45 50

60 44.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
65 48.2 51.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a
70 51.8 54.9 57.8 n/a n/a n/a n/a n/a n/a n/a n/a
75 55.4 58.8 61.9 64.8 n/a n/a n/a n/a n/a n/a n/a
80 59.1 62.7 66.1 69.2 72.1 n/a n/a n/a n/a n/a n/a
85 62.9 66.7 70.3 73.6 76.8 79.7 n/a n/a n/a n/a n/a
90 66.6 70.7 74.5 78.1 81.4 84.6 87.8 n/a n/a n/a n/a
95 70.4 74.7 78.8 82.6 86.2 89.5 92.7 95.6 n/a n/a n/a

100 74.3 78.8 83.1 87.1 90.9 94.5 97.9 101.0 103.9 n/a n/a
105 78.2 82.9 87.4 91.7 95.7 99.5 103.1 106.5 109.6 112.5 n/a
110 82.1 87.1 91.8 96.3 100.6 104.6 108.4 112.0 115.4 118.5 121.4
115 86.1 91.3 96.2 101.0 105.4 109.7 113.8 117.6 121.2 124.5 127.7
120 90.1 95.5 100.7 105.7 110.4 114.9 119.1 123.2 127.0 130.6 133.9
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Table 11. Minimum Safe Space Headways for HV-PC Vehicle-Following Patten.

Following Speed
(km/h)

Minimum Safe Space Headway (m) under Various Speed Differences (km/h)

0 5 10 15 20 25 30 35 40 45 50

60 29.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
65 31.6 35.0 n/a n/a n/a n/a n/a n/a n/a n/a n/a
70 33.5 37.1 40.6 n/a n/a n/a n/a n/a n/a n/a n/a
75 35.4 39.3 43.0 46.4 n/a n/a n/a n/a n/a n/a n/a
80 37.2 41.4 45.4 49.1 52.5 n/a n/a n/a n/a n/a n/a
85 39.0 43.4 47. 51.6 55.3 58.8 n/a n/a n/a n/a n/a
90 40.7 45.4 50.0 54.2 58.2 61.8 65.35 n/a n/a n/a n/a
95 42.4 47.5 52.2 56.7 60.9 64.9 68.6 72.0 n/a n/a n/a

100 44.1 49.4 54.4 59.2 63.7 67.9 71.9 75.5 79.0 n/a n/a
105 45.7 51.2 56.6 61.6 66.4 70.9 75.1 79.0 82.7 86.1 n/a
110 47.3 53.1 58.7 64.0 69.0 73.8 78.3 82.5 86.4 90.1 93.6
115 48.9 55.0 60.8 66.4 71.6 76.7 81.4 85.9 90.1 94.1 97.8
120 50.4 56.7 62.9 68.6 74.2 79.5 84.5 89.3 93.8 98.0 102.0

Table 12. Minimum Safe Space Headways for HV-HV Vehicle-Following Patten.

Following Speed
(km/h)

Minimum Safe Space Headway (m) under Various Speed Differences (km/h)

0 5 10 15 20 25 30 35 40 45 50

60 41.7 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
65 44.7 48.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a
70 47.8 51.4 54.9 n/a n/a n/a n/a n/a n/a n/a n/a
75 50.8 54.8 58.5 61.9 n/a n/a n/a n/a n/a n/a n/a
80 53.9 58.1 62.1 65.8 69.2 n/a n/a n/a n/a n/a n/a
85 56.9 61.4 65.6 69.6 73.3 76.7 n/a n/a n/a n/a n/a
90 60 64.8 69.2 73.5 77.4 81.1 84.5 n/a n/a n/a n/a
95 63.1 68.1 72.8 77.3 81.6 85.5 89.2 92.6 n/a n/a n/a

100 66.1 71.4 76.4 81.2 85.7 89.9 93.9 97.5 102.0 n/a n/a
105 69.2 74.7 80.0 85.0 89.8 94.3 98.5 102.5 106.3 109.6 n/a
110 72.2 78.1 83.6 88.9 93.9 98.7 103.2 107.4 111.3 115.0 118.5
115 75.3 81.4 87.2 92.8 98.1 103.1 107.8 112.3 116.6 120.5 124.3
120 78.3 84.7 90.8 96.6 102.1 107.5 112.5 117.3 121.8 126.0 129.9

Results show that, with the increase of vehicle-following speed and/or speed differences,
the minimum safe following distances indicate an increasing trend for all four vehicle-following
patterns. Under an identical vehicle-following speed and speed difference, it was found that
the PC-HV vehicle-following pattern requires the largest minimum safe space headway, followed
by the HV-HV, PC-PC, and HV-PC vehicle-following patterns, respectively. This also suggests
that the PC-HV vehicle-following pattern poses the highest crash risk in comparison with other
vehicle-following patterns.

6. Concluding Remarks

This paper employed a video-based speed data collection approach to investigate the impacts
of heavy vehicles on speed variation; ultimately, it assessed the risk of rear-end crashes for different
vehicle-following patterns. Field data revealed that average speed displays a decreasing trend with the
increase of HV percentage; nevertheless, the variation of speed first increases with HV percentage and
reaches the maximum when HV percentage is at around 0.35; then, it shows a decreasing trend with
HV percentage. Based on a binary logistic regression modeling of the collected speed data, this paper
concluded that a high risk of rear-end collision is expected when HV percentage is between 0.19 and
0.5. In comparison, when HV percentage is either below 0.19 or beyond 0.5, a low risk of rear-end
collision is anticipated.
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Then, this paper employed TTC and DRAC as surrogate measures of safety to assess the crash
risk of four vehicle-following patterns. Results show that the PC-HV vehicle-following pattern has
the lowest TTC and the highest DRAC (i.e., the highest risk of rear-end collision), and the HV-PC
vehicle-following pattern has the highest TTC and lowest DRAC (i.e., the lowest rear-end collision
risk). In addition, based on the analytical modeling of the vehicle braking process, this paper develops
models for estimating the minimum safe vehicle-following distances for each vehicle-following pattern
under various travel speeds and speed differences. In general, it was concluded that, for a given travel
speed and speed difference scenario, HVs require a larger safe following distance than PCs. Specifically,
the PC-HV vehicle-following pattern requires the largest minimum safe space headway, following by
the HV-HV, PC-PC, and HV-PC vehicle-following patterns.

In summary, findings from this research reveal that there are diversities in the minimum safe
vehicle-following distance for different vehicle-following patterns, indicating that the crash risks of
different vehicle-following patterns vary. This presents some preliminary insights to transportation
engineers in terms of the development of crash mitigation strategies such as HV access and lane
use management, variable speed limits, and driver’s safety education on the selection of following
headways, etc. In addition, with the increasing popularity of connected vehicle (CV) technology,
the estimated minimum safe vehicle-following headways also present potentials to advance the
development of real-time in-vehicle forward collision warnings to minimize the risk of rear-end crash.

Nevertheless, it is necessary to point out that the traffic flow data used by this research were
collected from one representative freeway segment under normal weather condition, and crash
risks were assessed solely based on vehicles’ speed, vehicle-following headways, and default driver
behavior and vehicle dynamics performances. In practice, vehicle-following behavior under different
demand levels might vary and tends to be affected by a wider range of factors such as roadway
geometry configurations, driver demographical features, post speed limits, and weather conditions,
etc. For instance, drivers usually keep a larger following distance under adverse weather conditions
(e.g., rainy, foggy, snowy, windy weather) than under normal weather condition, and the changes
in driving behavior will affect the safety performance assessment results. Therefore, further works
should further investigate the impacts of these various factors on the safety performance of various
vehicle-following patterns. The presented video-based data collection and extraction procedure could
be used for similar research activities if the adverse weather event does not significantly impact
the visibility of vehicles and pavement markings. In cases where the research site is under severe
weather conditions such as heavy rain, dense fog, heavy snow, etc., this paper recommends using
calibrated machine vision or machine learning technologies to process the capture videos to extract the
vehicle-following headways.
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