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Abstract: Air pollution is one of the world’s most significant challenges. Predicting air pollution is critical
for air quality research, as it affects public health. The Air Pollution Index (API) is a convenient tool to
describe air quality. Air pollution predictions can provide accurate information on the future pollution
situation, effectively controlling air pollution. Governments have expressed growing concern about
air pollution due to its global effect on human health and sustainable growth. This paper proposes a
novel forecasting model using One-Dimensional Deep Convolutional Neural Network (1D-CNN) and
Exponential Adaptive Gradients (EAG) optimization to predict API for a selected location, Klang, a city
in Malaysia. The proposed 1D-CNN–EAG exponentially accumulates past model gradients to adaptively
tune the learning rate and converge in both convex and non-convex areas. We use hourly air pollution
data over three years (January 2012 to December 2014) for training. Parameter optimization and model
evaluation was accomplished by a grid-search with k-folds cross-validation. Results have confirmed that
the proposed approach achieves better prediction accuracy than the benchmark models in terms of Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and
the Correlation Coefficient (R-Squared) with values of 2.036, 2.354, 4.214 and 0.966, respectively, and time
complexity.

Keywords: air pollution index; artificial intelligence; deep learning; grid search; one dimensional
convolutional neural networks; optimization; urban air pollution

1. Introduction

Air pollution is a rising threat to people’s health and the global environment. Based on [1], the
International Energy Agency (IEA) states that the premature death of approximately 6.5 million people
every year is a result of air pollution. While people are increasingly aware of their health, air pollution
issues in many countries remain unresolved, and world health risks will continue to grow over the next
few decades. Any air material that may threaten or damage the human, plant, animal, and environmental
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life or cause undesirable changes is referred to as the air pollutant [2]. Several sensing devices have
been developed to track air quality in many countries all over the world. One of the essential air quality
indicators used to define the relationship between air pollution and human health has been identified as
the air pollution index [3]. Air quality has become more critical in recent decades due to environmental
health threats caused by high pollution rates [4]. The weather forecast ensures sustainable social and
economic development [5]. In 650 BC, weather predictions started when Babylonians tried to predict the
weather based on cloud observations [6]. However, air pollution control is very complicated. Several
researchers suggested different theories of forecasting. However, these theories have not been sufficient.
Therefore, it was clear that weather from a broader perspective must be understood. Measurements of the
atmosphere were carried out with the invention of new instruments. Different tools, such as telegraphs
and radiosonde, enable better weather monitoring [7]. These tools are currently used for recording weather
changes. These pollutants can be produced as solids, droplets, or gas molecules [8]. Events of air pollution
are primarily caused by human activity. CO2 production in Malaysia in 2000 was 5.4 metric tons, more than
the global average of 3.9 metric tons [9]. Air pollution becomes a public concern [10]. The Department of
the Environment is responsible for providing public information on environmental air quality based on API
information. API is a basic method to explain air quality and provide easily understandable information
on air pollution. Main pollutants consist of five subsets: sulphur dioxide (SO2), particulate matter (PM10),
carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) [11]. The dynamics of air pollution are
generally expressed by various factors, such as temperature, moisture, wind directions, wind speed, etc.
The API data available in Malaysia are measured by the American model, where each pollutant value is
from 1 to infinity [12,13]. Figure 1 shows the location of air pollution monitoring stations. An API value
below 100 corresponds to good air quality, and an API value above 100 indicates higher air pollution. API
knowledge will enable public authorities, policymakers, and individuals to establish plans to mitigate the
effects of air pollution events [14].

Figure 1. Air Quality Monitoring Stations in Klang, Malaysia.

To summarize, API forecasting is a crucial development issue. In this paper, a deep learning model
based on One-Dimensional CNN and Exponential Adaptive Gradient optimization is proposed to forecast
future API concentration. Four measurement indices, MAE, RMSE, MAPE, and R2, have also been used
in the experiments to evaluate the overall performance of the proposed model. On top of that, other
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traditional machine learning algorithms, such as LSTM have been used for model comparison. As for the
aspect of dataset selection, the Klang API dataset has been used.

2. Related Work

Several researchers have studied air pollution problems in Malaysia. Many studies have been carried
out in recent years to measure air quality. Records of air pollution can be made early. Statistical methods,
shallow machine learning models, regression techniques, least absolute shrinkage and selection operator
(LASSO), elastic net, regression tree and regression forest are the most used to solve air-quality prediction
problems [15–19]. Many scientists have tried to use the neural network to predict future air quality [20–22].
Deep learning methods have become an active research field in recent years for prediction of air quality,
with Convolutional Neural Network (CNN) [23], Recurrent Neural Networks (RNN) and their variants
have been widely used [24,25]. RNN models, such as Long Short-Term Memory (LSTM) have been applied
to forecast air quality, especially with different data samples. A very complex LSTM neural network
model will have an enormous predictive potential [26–32]. In addition to deep uncertainty [33], Manifold
Learning [34], and Gated Recurring Unit (GRU) [35] have recently been used and work well on air pollution
forecasting. Moreover, the manifold learning method, deep belief network [34] , and encoder-decoder
model [36] have been also widely used for air pollution forecasting. Both traditional and modern
methods can investigate and forecast API trends. The decision-making process in air quality policy
can be considered significant.

Deep learning [23,37,38] is a type of machine learning that trains computers to perform human-like
tasks. It is characterized by a multi-level hierarchical architecture with subsequent stages in information
processing [39]. Deep learning has two types, Recurrent Neural Networks (RNN) and Convolution Neural
Networks [23]. CNNs are most frequently used with two-dimensional data, such as images [40]. They are
made of at least one hidden layer and a fully-connected layer that is connected to the other network
layers, and each layer contains weights. The hidden layers are typically consisting of convolution, pooling,
and fully-connected layers [23,38]. The network architecture of CNN was mainly designed for 2D data
processing. CNNs achieve greater performance with image processing and speech recognition than other
deep learning architectures [41]. However, recently, CNN has been widely used as a modelling framework
for time series data with multiple variables [39] where layer by layer sparse processing and extraction
is carried out by multiple convolution pooling layers [42]. As an alternative, a modified version of 2D
CNNs, called 1D Convolutional Neural Networks (1D-CNNs), has recently been developed [39,43,44].
In many applications, 1D-CNNs are advantageous and thus preferable to their 2D counterparts in dealing
with 1D signals due to the following reasons: (1) computational complexity of 1D-CNNs is significantly
low; (2) with relatively shallow architectures, 1D-CNNs are able to learn challenging tasks involving 1D
signals; (3) 1D-CNNs are suited for real-time and low-cost applications due to their low computational
requirements. A regular error back-propagation algorithm can be applied to train the CNN networks [23].
It is easier to train CNNs because they have much fewer optimizing parameters than other standard deep
and unidirectional neural networks [45]. Rather than using hand-crafted features, deep learning methods,
specifically CNNs, provide a structure in which both (feature extraction and prediction) are performed
together in a single body block, unlike other traditional methods. The deep learning method is capable
of learning useful characteristics from input signals [39]. According to studies mentioned above, CNN
accuracy increased faster than other time series prediction approaches, such as LSTM, which is gradually
continued to improve slightly due to its nature procedure, which does not make it sufficient for real-time
applications and computational cost.
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3. One Dimensional Convolutional Neural Networks

CNN is among the most successful and popular methods of deep learning, and its network structures
include 1D, 2D, and 3D CNN. 1D-CNNs are primarily used for time series, and audio signal, 2D CNN for
images and text identification, and 3D CNN is mainly used for medical tasks and video recognition [23].
Research has shown that a one-dimensional convolutional neural network (1D-CNN) is desirable and thus
superior for 1D signals to their 2D counterparts [39]. The convolution input layer is fed with time-series
data as the input. The convolution and pool layers are mainly used for features extraction from the input,
where every convolution layer consists of multiple kernels of the same size, followed by the pooling
layer, which will perform (average or max) pooling method and then send the output to the prediction or
fully-connected layer [6,39,43]. The core system consists of 1D-CNN that can merge the two major blocks:
feature the extraction and prediction of a 1D signals task into a single learning system. This prevents
the computing burden and the problems arising from the choice and design of handcrafted features and
maximizes prediction performance [46].

3.1. Convolutional Layer

To create the corresponding feature, 1D-CNN performs convergence over the local area of input
signals. Every kernel has unique characteristics on the Feature Map (FM) in all locations [39]. 1D-CNNs
use weight sharing, which requires fewer parameters to converge with 1D-CNN than traditional neural
network models. This guarantees the convergence of 1D-CNN earlier and faster. Figure 2 shows an
example of 1D convolution operations. The kernel size is set to 3, meaning all weights (w1, w2, w3) will be
shared by every stride of the input layer (x1, x2, · · · , xn), and the outputs (y1, y2, · · · , yn). Input values
multiplied by weights in the kernel window (w1, w2, w3). Values are summed up and used to generate the
features map value. In the example shown, the feature y4 is obtained from y4 = (w1x3 + w2x4 + w3x5).
The output of the convolution layer is not only the output but also the input of the next layer. It also
reflects the characteristics derived by the convolution kernel from training samples. 1D-CNN training
procedure is shown in Algorithm 1.

Algorithm 1. Training procedure for 1D-CNN model.

∗ Input: Training and validation dataset
∗ Output: Trained 1D-CNN model
1 Initialize: weights and biases (randomly, ∼ U (−0.01, 0.01) of the network.
2 For each iteration Do:
3 Process records of the training data
4 Compare actual and predicted values
5 Calculate loss function
6 Backpropagate error and adjust weights
7 If better loss Do:
8 Save network (model, weights)
9 End If
10 End For
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Figure 2. 1D convolution operation.

1D-CNN carries out input signal convolution operations in the local area to get one-dimensional
features, and various kernels extract specific characteristics from the input signals [47]. Every kernel detects
specific characteristics in any location on the input features map, as shown in Figure 2, and weight-sharing
is carried out on the same input FM. This weight-sharing function reduces the number of parameters for
training. Assuming Li is a 1D convolution layer, the formula is demonstrated in Equation (1).

xl
j = f

(
M

∑
i=1

xl−1
i · kl

ij + bl
j

)
(1)

where k is the number of convolution kernels, j indicates the size of kernels, M refers to the channel
input number xl−1

i . Kernel bias is b, the activation function is denoted as f , and (·) represents the
convolution operator.

3.2. Batch Normalization

Two techniques, normalization and standardization, aim to transform the data by putting all the data
points on the same scale in preparation for training [48]. Batch Normalization (BN) is a technique used
to improve neural network efficiency and stability and prevent gradient vanishing and over-fitting [49].
BN is further used in feature maps to fix problems with internal covariance shift [50]. The change in
the internal covariance is a change in the distribution of hidden unit values that slows convergence and
requires careful initialization of network parameters [51]. BN normalizes the previous activation output by
subtracting the batch-mean then dividing by the batch standard deviation. Therefore, each network-layer
will learn a little more independently from other layers. BN enables us to use much higher learning rates
and to take less care of initialization. It also works as a regularizer and eliminates the need for dropout in
some cases and increases a neural network’s stability [52].

BN(xk) = α(
xk − µB√

σB2 + ε
) + β (2)

where, ε is a random noise for (stability), µB represents the mini-batch mean, α is the mini-batch variance,
σ represents a scale parameter, and β is the shifting parameter (offset) for the layer. Both α and β are
trainable and updated in an epoch-wise manner.

3.3. Pooling Layer

Pooling layers are crucial for the CNNs [44]. Methods for pooling can be considered down-samples
to minimize the number of parameters while maintaining the major features to speed up the next stage
since there are more feature maps in the downstream sampling phase, leading to an increased data
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dimensionality, which does not make calculations possible [43]. Therefore each feature map is processed
at this phase with either (average or max) method [53]. The max-pooling method selects the highest
parameters in the default window. At the same time, average-pooling is based on the pre-determined
pooling window size as the output value.

Pooling methods are also intended to solve the issue of over-fitting. Although several pooling
methods in CNNs can be used, the most common approach is max pooling [54]. Figure 3 shows the 1D
max-pooling operation. The map is (6) and the pooling is (2) in size before pooling. The output values
will be reduced to (3), and the max values for the next network layer will be selected.

Figure 3. 1D max pooling operation.

3.4. Dropout Layer

Using the dropout method can often resolve the problem of over-fitting during the training
phase [55,56]. Network input information is transmitted from the input layer and the output layer
passing through various hidden layers [23]. During training, weights are tuned and adjusted, where the
dropout approach involves random neurons to be selected. Neurons are to be disabled during training so
that randomly disabled neurons have no output values or values set to zero [57–59]. Connections are also
temporarily removed from disabled neurons. The neural network can still function well, although some
neurons are temporarily disabled. Over-fitting can be solved effectively with the random “dead neuron”
selection process [41,56].

3.5. Fully Connected Layer

The fully-connected (FC) layer is a very special and vital component of convolutional neural networks,
which have been very successful when it comes to computer vision [60]. The CNN process starts with
convolution and pooling, breaks down the input into a vector of features, then independently analyses
them [61]. This procedure leads to the final decision being fully-connected. The network’s earlier layers
output is reshaped (flattened) into a single vector. Each of them represents the chance that a particular
feature is a class label. Inputs are taken from the feature map, and weights are applied to determine the
correct label. The output layer of FC [62] gives the final probabilities for every label.

3.6. Network Optimization

Neural network hyper-parameters shape how the network functions and determine its accuracy
and validity. Hyper-parameters are an unsolved problem [63]. Optimizers are algorithms used to adjust
the neural network properties, such as weight and learning rate, to minimize losses. The most popular
method used to optimize deep learning networks is gradient descent [23]. Stochastic Gradient Descent
(SGD) remains one of the most effective deep neural network optimization algorithms over the past
century [64]. It performs computations across the entire dataset, which have been reported to be redundant
and inefficient [23]. Various strategies and methods for improving the training process have been proposed
to improve SGD performance, such as momentum and Nesterov acceleration [65]. Adaptive optimizations
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have become popular recently as they adjust the learning rates of parameters in different scales instead of
directly regulating the overall phase sizes, resulting in a smoother training process and faster convergence.
The adaptive learning rate is determined by dividing the gradients by a denominator, representing the
square root of the global mean for previous gradient squares [66]. Many studies reported that AdaGrad
gradients usually converge faster than vanilla SGD when the gradients are sparse [67]. However, its
generalization performance is relativity poor [68]. Other adaptive algorithms, such as AdaDelta [69],
RMSProp [70], and Adam [71] were mainly proposed to replace the denominator by the square root of
the exponential moving average of past gradient squares. Adam has recently appeared in most academic
papers since it converges way faster than other adaptive methods. Adam combines the advantages of SGD
extensions, RMSProp, and AdaGrad. Adam and RMSprop have shown better optimization performance
than SGD; they often lead to worse generalization performance [68,72–74].

Unlike Adam, which ignores the past gradients, we propose Exponential Adaptive Gradients (EAG)
optimization, which is a combination of Adam, and AdaBound [74] exponentially accumulates the gradient
information in the past during training to adaptively tune the learning rate and overcome Adam poor
generalization and allow for convergence in both the convex and non-convex settings. Although Adam
shows fast convergence in many tasks, it could lead the algorithm to local minima [75]. EAG does the
exact opposite of Adam by measuring the past gradients exponentially more and progressively reducing
the adaptability to present gradients, as shown in Algorithm 2. Extensive experiments have been made in
the study to evaluate EAG performance compared to Adam and other adaptive methods in the domain of
air pollution forecasting. We thoroughly prove the convergence of it in both the convex and non-convex
settings. The most significant differences between Exponential Adaptive Gradients and Adam is that
the previous gradients are multiplied by a constant greater than 1 and employ dynamic bounds on
learning rates, which means that past information is accumulated rather than forgotten. The idea behind
the Exponential Adaptive Gradients algorithm is to gradually decrease the adaptivity of the second
moment to the latest gradients because when the parameters are close to the optimal points, they become
sparse and noisy. Therefore, to maintain an accurate second moment, we would divide vt by

(
1 + β2)t − 1

in line (7).
Adam : mt = β1 ·mt−1 + (1− β1) · gt (3)

AdaBound : mt = β1t ·mt−1 + (1− β1t) · gt (4)

Adam first momentum has the same form except for the constant 1− β1. Therefore the first order bias
correction term is counter intuitive. Moreover, we have employed dynamic bounds on learning rates based
on [74] to achieve a gradual and smooth transition from adaptive methods to SGD and give a theoretical
proof of convergence in both convex and non-convex settings.

Algorithm 2. Proposed Exponential Adaptive Gradients (EAG) Algorithm.

1 Input: x ∈ F, {αt}T
t=1 , (β1, β2) =

(
0.9, 10−4)

2 Initialize: m0 = 0, v0 = 0
3 For t = 1 to T Do:
4 gt = 5 ft (xt)
5: mt = β1 ·mt−1 + (1− β1) · gt
6 vt = (1 + β2) vt−1 + β2 · g2

t

7 v̂t = vt/
[
(1 + β2)

t − 1
]

and Vt = diag (v̂t)

8 xt+1 = ∏ F,
√

Vt

(
xt − αtmt/

√
Vt
)

9 End For
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4. Experiments

This section provides a description experiments environment, data pre-processing and the
hyper-parameter configurations. All experiments were done on a Linux PC with i5-6300HQ CPU and 8
GB RAM. The use of PC GPU was unnecessary since computational cost of the 1D-CNN architecture is
relatively low. The objective is to offer a model that is not so computationally expensive without affecting
the level of accuracy. Scikit-learn [76] was used for data pre-processing alongside TensorFlow [76,77] to
develop the baseline of all learning models.

4.1. Data Description and Pre-Processing

Air Pollution Index (API) is an effective measure that defines environmental air quality and provides
easily understandable information on air pollution. Particulate matter (PM10), Carbon monoxide (CO),
ozone (O3), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are the main sub-indices included in the
information provided [78]. In terms of quality of air pollution, API had been adopted in Malaysia [79].
The API is a simple number ranged between 0 and ∞ reflecting the air quality levels associated with the
effects on our health [80]. The study considers maximum daily API values received and obtained from
the air monitoring station in Klang, Malaysia. Town of Klang is located approximately 32 km west of
the capital Kuala Lumpur and covers about 573 km2 of land area. The Department of the Environment,
Malaysia, provided the API records at the selected monitoring station. Air quality is not considered
good if the API value is greater than 100 [78]. In contrast, at API values below 100 the air quality is
good [81]. Classification of pollution level is based on (50, 100 , 200, 300 and 300+) breakpoints for APIs
corresponding to (good, moderate, unhealthy, very unhealthy and hazardous), respectively.

δ1
1 δ2

1 · · · δn
1

δ2
1 δ2

2 · · · δn
2

δ3
1 δ3

3 · · · δn
3

...
...

...
...

δ1
m δ2

m · · · δn
m

 →


r1
1

r2
1

r3
1
...

r1
m

 (5)

where δ
j
i denotes instance of one-dimensional signals feature, ri is a corresponding output, 1 ≤ i ≤ m, 1 ≤

j ≤ n, m is represents the size of the dataset, n is the number of input features.
Figure 4 illustrates the distribution of API concentration, where the API concentration indicates the

horizontal axis, and the vertical axis is the frequency. Meanwhile, the maximum, minimum, median,
average, and standard deviation of API concentration are 7.0, 233.0, 54.0, 56.90, and 25.13, respectively. We
used pre-processing techniques to normalize, split, and transform the data into a required shape to fit the
proposed model.
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Figure 4. Histogram of API values.

Pre-processed data contribute to the improvement of the accuracy of the proposed model. The k-fold
cross-validation (k-cv) [82] is one of the most popular techniques. Usually, in k-cv, the dataset is split into k
folds. The prediction model is trained using k− 1 folds, and the testing model will use the remaining fold.
In k-cv, an Sn dataset is randomly partitioned in similar size k-folds N = { f1, · · · , fn}. Finally, the k-cv
error estimate is the average error value for each fold. Therefore, the k-CV error estimator depends on two
factors: the training set and the folded partitions. Networks are equipped by adjusting the weight and bias
of the connections on each layer. Continuing the training process until actual and the predicted output
value are attained to a minimum error. The performance of the network is measured during training,
validation, and testing.

4.2. Hyper-Parameter Selection

Tuning or optimizing hyper-parameters involves determining the values of each hyper-parameter
that will help the model achieve the highest accuracy [83]. Normally, hyper-parameters used to be tuned
manually by trial and error, which is a time-consuming task since it takes too much time to try the
possible hyper-parameters that might give a good result. This is still very popular among researchers,
and experienced operators may "guess" parameter values that might return a very high accuracy for deep
learning models [23]. Tuning approaches commonly used include experimental methods, such as genetic
algorithm (GA) [84], and particle swarm optimization (PSO) [85,86]. These methods take time because
experimental methods include the approximation of value through numerous experiments [87]. GA and
PSO are heuristic algorithms, and they are limited to dealing with a large-scale network. In this paper, we
used grid search [88] which consisted of dividing hyper-parameter values into several steps to create a
range grid and then cross all grid points to find the best grid hyper-parameter values.

It requires systematically checking several hyper-parameters values by retraining the model
automatically for each parameter value [87]. It is useful because it maps the problem space and gives many
solution choices. There are several hyper-parameters to train the proposed model, such as an optimizer,
learning-rate, and filter size. We can manually search for these parameters. We also can employ advanced
search methods, such as GridSearchCV. A class built on top of the scikit-learn framework, mainly for
model parameters adjustment, is implemented by estimators. This approach searches for the best model
and the best k-cv performance parameters for every training set. The grid-search cross-validation produces
estimates of performance statistics for each point in the grid. Besides, different data split between the folds



Sustainability 2020, 12, 10090 10 of 22

can create various optimal tuning parameters. Thus, the tuning parameter was selected with a mean k−CV
error, and we call it the optimal cross-validation option. Selected hyper-parameters are shown in Table 1.

Table 1. Proposed model detailed parameters.

Layer Type Kernel × Filter Other Parameters

1 Convolution1D 2 × 64 Activation = ReLU, Strides = 2
2 MaxPooling1D — Size = 2, Strides = 2
3 Convolution1D 2 × 128 Activation = ReLU, Strides = 2
4 MaxPooling1D Size = 2, Strides = 2
5 Flatten — —
6 Dense 1 × 128 Activation = ReLU
8 Dropout — Rate = 0.3
9 Dense (Output) {1 × 12} Activation = Hyperbolic Tangent

All experiments reported in this section used a 5-fold cross-validation procedure to produce a fair
comparison with the results. Different architectures have been developed to verify which is the most
convenient to solve the API problem. However, Adam combines the advantages of two SGD extensions,
RMSprop and Adagrad. In many tasks, adaptive optimization techniques generalize poorly compared
to SGD, which led us to evaluate the optimizers’ performances on the proposed model. This led us to
overcome this problem by combining Adam and AdaBound to overcome the poor generalization problem
of adaptive methods. Because of its competitive performance and its ability to work well with limited
tuning, Adam is used in many applications [72]. Adam has shown fast convergence in many runs; however,
Adam’s fast convergence would lead the algorithm to local minimums. Exponential Adaptive Gradients
(EAG) exponentially accumulate the gradient information during training with dynamic bounds on the
learning rate to adaptively tune the learning rate and converge in both the convex and non-convex settings.
Network weights with the lowest validation error were saved during training. Data preprocessing and
hyper-parameters selection are discussed briefly in Section 4. Kernel’s initializer employs dynamic bounds
on learning rates where the lower and upper bound are initialized as zero and infinity, respectively [74].
Several hyper-parameters were used to achieve the best forecast performance. A non-linear hyperbolic
tangent (6) function is used for the final prediction of the output layer. Experiments were carried out to
calculate and record the relevant indicators (MAE, RMSE, MAPE, and R2), as shown in Table 2.

α (z) =
1

1 + e−z (6)

4.3. Evaluation Metrics

Prediction of API was targeted in this study. In order to assess the accuracy of the developed
model, several statistical measures have been used. In this task, Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Pearson correlation (R2) have been used as evaluation metrics. Each statistical
measurement is shown in (7), (8) and (10) as mathematical representation, respectively, where yi is the
actual value, y

′
i represents the predicted value, p is the number of dataset elements, 1 < i ≤ p. Values of

MAE and RMSE are ranged between (zero and infinity). The closer the forecast to zero, the better the
prediction. Pearson correlation values range from negative to positive 1. The nearer to 1, the better the
forecasts [89,90].

MAE =
1
p

p

∑
i=1
|ŷi − yi| (7)
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RMSE =

√
∑

p
i=1 (ŷi − yi)

2

p
(8)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100 (9)

R2 =
p
(

∑
p
i=1 ŷiyi

)
−
(

∑
p
i=1 ŷi

) (
∑

p
i=1 yi

)
√(

p ∑
p
i=1 y2

i −
(

p ∑
p
i=1 yi

)2
)(

p ∑
p
i=1 ŷ2

i −
(

p ∑
p
i=1 ŷi

)2
) (10)

5. Results and Discussion

One Dimensional CNNs are particularly promising in time series predictions since they can map
the input to output sequences with past contexts in their internal state. They can be described as several
copies of the same neural network. They transmit information to their successor and form a chain-like
architecture, which is naturally connected to the sequences [91]. Moreover, 1D-CNN combines both feature
extraction and prediction into one learning body-block, which solves the problem of handcrafted feature
selection in other networks, thus maximizing prediction performance. The proposed architecture and
hyper-parameter selection, based on cross-validation and grid search, can be shown below in Table 1.

Experiments have shown that the number of filters has a significant impact on feature extraction. Table
2 shows the multi-convolution of the same input against various numbers of filter sizes. We can see that, as
the number of filters increases, the accuracy also improves. However, the improvement comes at the cost of
computational time. Table 2 shows the model performance under a different number of convolution filters.
The performance of the proposed model was empirically improved by determining the optimal filter size
in the range of 64 and 128. Moreover, overall performance was best using 64 filters for all developed
models since it gives satisfactory results with less computational time.

Table 2. Effect of the number of filters on CNN model.

Filters MAE RMSE MAPE R2 Time(s)

32 2.407 2.7015 4.992 0.958 188.83
64 2.069 2.384 4.293 0.966 254.45
128 2.026 2.335 4.184 0.968 363.50
256 2.134 2.431 4.450 0.963 508.97
512 2.186 2.496 4.355 0.963 1013.34

As can be observed in Figure 5, despite the initial fast convergence of Adam, their final loss could
not catch up with EAG. However, other optimizers converged faster than EAG but yielded similar
performances. As observed, although Adam was fast at the beginning, its test accuracy stagnated after
the second learning rate decrease. RMSprop performed even worse than Adam. On the other hand,
EAG converged without increasing the loss in most of the runs. However, more time consumed, as shown
in Figures 5 and 6.

The selected network loss function (MAE) has shown that the training dataset loss function is not
much lower than the validation dataset loss function, meaning that network did not overfit during the
training process. Since we are focusing on one dimensional CNN and it is performing against counterparts
approaches, such as LSTM, a network of other architecture was designed for efficiency comparison of
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the proposed system in the related domain [6]. The outcomes of the comparison results can be shown in
Table 3.

Different optimizers have been selected to optimize the developed model. The performance and
outcomes are displayed in Figures 5 and 6. Adaptive optimization algorithms, such as Adam and RMSprop,
in many cases, have shown better performance. Recent studies, however, indicate that generalization
performance is often worse than SGD, especially for deep neural networks. Adam and RMSprop have
shown a great result in a few runs and unsatisfactory performance in other runs. However, the lack of
generalization performance of adaptive methods, such as Adam and RMSPROP, might be caused by
unstable or extreme learning rates and suggested that the modest learning rates of adaptive methods can
lead to undesirable non-convergence [74]. Adam algorithm was found to be the best optimizer in terms of
speed but not error rate. In addition, the hyperbolic tangent activation function generated better models
than the sigmoid activation function in the output layer. Table 4 shows the MAE, RMSE, MAPE, and R2

overall results obtained by both approaches—LSTM and developed 1D-CNN. The generated 1D-CNN
model revealed an average of MAE of 2.036, RMSE of 2.354, and R2 of 0.966 over the test dataset for 25
independent iterations. The fitness of the developed model 1D-CNN was optimized by EAG and gave
excellent and stable results in all iterations with the lowest average error rate compared to other optimizers.
The prediction results are displayed in Table 4. EAG was selected with a learning rate of α = 0.0114 based
on grid search as a primary optimizer for the developed models.

Figure 5. Loss functions (MAE) while training CNN model.
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Figure 6. Loss functions (MAE) while training LSTM model.

Table 3. Effect of the number of iterations on models and convergence time.

Iterations
LSTM CNN

MAE RMSE MAPE R2 MAE RMSE MAPE R2

1 20.699 22.357 35.649 −0.768 9.732 11.491 17.422 0.541
2 8.061 8.616 13.855 0.710 5.336 5.985 10.413 0.847
4 6.440 7.026 11.421 0.819 4.809 5.128 9.622 0.872
8 5.090 5.482 9.340 0.883 3.768 4.106 7.390 0.916

16 4.253 4.443 7.457 0.921 3.100 3.420 6.053 0.941
32 3.005 3.358 5.702 0.950 2.841 3.113 5.550 0.949
64 2.999 3.228 5.624 0.956 2.423 2.714 5.021 0.959
128 2.997 3.277 5.117 0.944 2.291 2.600 4.632 0.962
256 2.951 3.170 5.222 0.955 2.023 2.341 4.212 0.969
512 2.103 2.392 4.266 0.969 2.044 2.367 4.178 0.968

1024 2.636 2.865 4.716 0.963 1.894 2.222 3.765 0.974
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Table 4. Comparison of different optimization algorithms.

Optimizer Evaluation LSTM CNN

Adadelta

MAE (Loss) 3.270 3.118
RMSE 3.480 3.342
MAPE 5.915 5.785

R2 0.947 0.946

Adagrad

MAE (Loss) 3.215 2.934
RMSE 3.430 3.181
MAPE 5.966 6.012

R2 0.952 0.943

Adamax

MAE (Loss) 2.918 2.502
RMSE 3.150 2.784
MAPE 5.016 5.180

R2 0.950 0.957

Nadam

MAE (Loss) 3.142 2.728
RMSE 3.360 2.976
MAPE 5.428 5.616

R2 0.947 0.950

RMSprop

MAE (Loss) 2.609 2.893
RMSE 2.861 3.124
MAPE 4.650 5.419

R2 0.956 0.951

Adam

MAE (Loss) 2.541 2.414
RMSE 2.803 2.677
MAPE 4.641 4.760

R2 0.954 0.959

EAG

MAE (Loss) 2.374 2.034
RMSE 2.631 2.344
MAPE 4.347 4.214

R2 0.954 0.967

The boxplot of the prediction deviation is shown in Figure 7. The height of the box partly reflects the
fluctuation in the deviation data, and the flatter the box, the more centralized the data are. Figure 8
represents the absolute difference between actual and forecasted values for each prediction model.
The number of outliers in the other optimizers and the LSTM model was higher than the number of
outliers in the 1D-CNN model. This can be referred to as the high RMSE obtained. In terms of the
comparison analysis, the proposed method outperforms other models, including mainstream approaches,
such as LSTM, not only in terms of performance but also time complexity and consistency. It fully proves
the effectiveness and superiority of the 1D convects in non-convex optimization. We have demonstrated
that the non-convex optimization performed better in all 25 independent runs, unlike other optimizers that
have shown a big difference in MAE and RMSE in every run, since adaptive methods tend to converge
quickly towards sharper minima. In comparison, flatter minima generalize better than sharper ones.
However, we observed that the solutions found by adaptive methods generalize worse (often significantly
worse) even when these solutions have better training performance. Therefore, as a part of future work,
ensemble techniques could be investigated to combine each optimizer’s efficiencies with building up a
super model.
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Figure 7. Boxplots of the absolute difference between actual and forecasted values for each optimizer.

Figure 8. Boxplots of the absolute difference between CNN and LSTM.

Similarly, Table 4 shows the four measurement indices for each model. The RMSE value of the
proposed 1D-CNN–EAG model is lower than the models. The MAE and RMSE values of both Adam and
RMSprop models are slightly lower than that of LSTM models, which can be clearly shown in Figure 9a,b.
It represents the values of RMSE of each optimizer and show that EAG has the lower average by far than
that of other optimizers. In terms of training time and complexity, 1D-CNN is three times faster on average
for every epoch. LSTM could not keep up the same performance in training time comparison. The average
1D-CNN time was approximately 4–7 s for every epoch, while LSTM took roughly 18–27 s for one epoch.
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(a) LSTM. (b) CNN.

Figure 9. Bar chart of RMSE.

To compare the prediction effect of each model more intuitively, the scatter plots of observed and
predicted API concentrations during the whole test set are illustrated in Figure 10. The distribution between
predicted and observed values can be seen in Figure 10a,b. Apparently, variants of 1D-CNN (Figure 10b)
show better results than LSTM (a). Compared with all the models described above, the proposed model
is more sensitive to sharp changes. Which mainly attributed to the existence of convolution networks
that capture richer local change information. API was correctly forecast on most peaks, especially in days
with very high averages with a good RMSE value. We investigated the influence of epoch size on various
models. By increasing iterations, the model loss gradually decreases, and MAE reaches its lowest at the
value of 1.894 at all experiments runs, as shown in Table 3.

Checkpointing has been utilized to save the network weights only when there is an improvement
in the validation dataset. The weights are stored in a file if and only if the validation accuracy improves.
It will ensure that the best model is saved. Moreover, all models used the early-stopping condition that
stops and interrupts the training if the validation loss on the validation information does not change in 12
epochs of training. We also observed that model error remains unchanged as the lookup size increases.
Finally, results have shown that 1D-CNN and EAG optimizer can learn complex patterns better than other
predictive models. From the above results, we have demonstrated that a 1D-CNN–EAG can successfully
predict the API. Prediction for API time series under different experimental conditions has been carried
out. Although the EAG optimizer obtained the best results, performance in terms of time complexity was
observed. Certain functions with minor changes to our proposed 1D-CNN–EAG architecture may also be
appealing to many other domains.

It has been demonstrated in many applications that 1D-CNNs are relatively easier to train and
deliver minimal computational complexity while achieving cutting-edge performance, especially now
with convergence in both the convex and non-convex settings. This paper demonstrated the benefits of
utilizing machine learning techniques for predictive analytics that will create enormous opportunities for
having deeply beneficial influences on society (healthcare, education, sustainability, etc.). Additionally,
this method could be applied to other contexts in different countries. We are optimistic that researchers
and public agencies can continue to expand and test this method to improve environmental sustainability.

The obtained network training dataset is the key downside of the neural network. Suppose training
data are insufficient and not appropriate. In that case, the network will quickly learn the dataset bias
and generally make poor predictions of data with trends the training data have never seen. Besides,
it is typically more difficult to track back if a network does not function as intended. We have used
only the data provided in this paper for network training, which may lead to bias by overlooking the
effects of unusual situations. Perhaps a more effective approach would be used to train the network in a
semi-supervised fashion to boost network performance on unseen data by using limited actual data and
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data generated during the training. It will also increase data from different sectors, such as transportation
and industry, on air pollutants to improve the learning model. This will be used in our future research
topics [92].

Future work will focus more on effective methods to adjust hyper-parameters and the use of
feature selection [92,93]. It will help to remove redundant features and thus obtain better performance.
Additionally, future work will investigate more accurate methods of hyper-parameter tuning techniques.
Although the grid search can be utilized, the search range needs to be manually updated since values are
always fixed. It will be important to find an adaptive way to automatically adjust the hyper-parameters
searching process and make the neural network architecture evolve by automatically reshaping, adding,
and removing various layers. Additionally, this work will consider hybrid networks [94] to merge the
advantages of different approaches.

(a) LSTM (b) CNN

Figure 10. Scatter plots with the comparison models.

6. Conclusions

Deep One-Dimensional Deep Convolutional Neural Network and Exponential Adaptive Gradient
optimization (1D-CNN–EAG) have been proposed to predict the Air Pollution Index (API) for Klang city,
Malaysia. Thus, using grid search cross-validation to find optimal hyper-parameters for the proposed
model. The performances of the proposed model have been investigated. The prediction process involves
following steps. First, the dataset was normalized and then divided into 5−folds using cross-validation,
a classifier is learned using k − 1 folds, and an error value is calculated by testing the model on the
remaining fold. Thus, using grid search cross-validation to find optimal hyper-parameters for the proposed
model. The performance of the models was evaluated by four indicators—MAE of 2.036, RMSE of 2.354,
and R2 of 0.966 with a 1.14% improvement in overall performance. Besides, these results are compared
with other state-of-the-art approaches. The ability of 1D-CNN–EAG to perform in API prediction was
highlighted in this study and proved the capability of convolutional neural networks to perform a
daily API prediction. The study has shown that the 1D-CNN outperformed all alternative approaches.
Future research involves combining the diversities of the models with ensemble techniques alongside
additional data from different locations and repositories, and looking at a more accurate method of
hyper-parameters selection.
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