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Abstract: The rapid economy expansion in China has substantially increased energy consumption.
Under the stringent environmental policy and the requirement of green economy development,
the accurate assessment and analysis of energy efficiency is an increasingly significant issue for energy
development policy making in China. This study uses the weighted slacks-based model (weighted
SBM) considering the energy substitutability to evaluate the regional energy efficiency (EE) in 29
Chinese provinces, from 1991 to 2015, and explores the sustainable evolution characteristics of EE by
comparative and convergence analyses from different perspectives. The empirical results show that
EE has significant geographic differences. On the one hand, EE increases from the west to the east of
China, and its volatility has a rising trend over the period 1991–2015. Only the EE in the eastern area
had a stable rising trend, and the EE differences are difficult to reduce in the short term. On the other
hand, the economic zones in the south of China, such as Central Bohai, Pearl River Delta, and Yangtze
River Delta, have higher EE. We also find a significant EE improvement occurred during the Eleventh
and the Twelfth Five-Year plans. By means of the convergence analysis of energy efficiency across
different areas and economic zones over different time intervals, it is shown that EE in the southeast
coast provinces have a better catching-up effect and adjustment rate toward the efficient frontier, while
the western inland provinces are less effective over the period 1991–2005. Further, we empirically
find that the industry policies including industry transfer policy promote EE globally, but the regional
differences and fluctuations in EE remain serious. Certain policy implications are discussed with
regard to sustainable regional development and an effective industry transfer policy.

Keywords: energy efficiency; energy substitutability; weighted SBM; convergence

1. Introduction

In recent decades, there has been great progress in the economic and social development of China.
However, China’s growth is accompanied by a significant increasing energy consumption due to the
large number of energy-intensive industries. Meanwhile, the energy consumption pattern in China is
dominated by fossil fuels, which has not changed significantly. As noted by Li and Oberheitmann [1],
continually increasing energy consumption will lead to inefficient natural resource utilization and
improving energy efficiency is regarded as a key measure for reconciling the conflict between economic
growth and energy consumption. Therefore, the accurate analysis of Chinese energy efficiency is a
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significant issue for making policies that promote energy development and transform the economic
growth mode in response to these challenges.

As is well known, energy should be accompanied by labor and capital to produce outputs, so we
must employ multiple-factor models to evaluate the energy efficiency of the decision making units
(DMUs). As Rao et al. [2] pointed out, the equal weight assumption is often used in the implementation
of an efficiency model, so almost all previous studies that assess energy efficiency have paid little
attention to the relative importance of different inputs. However, due to the effect of energy scarcity
on economic growth, the input indicators especially for the energy input in the actual production
process have different levels of importance [3]. Therefore, a main objective of this paper is to evaluate
energy efficiency by proposing a new weighted slacks-based measure, in which the weights are
determined by a quantitative method based on energy substitutability estimated from the translog
production function.

In order to achieve the sustainable development of energy, the Chinese government has carried out
a series of energy policies and strategies (e.g., Five-Year plans). However, China’s regional development
is significantly unbalanced, and the implementation of various policies has been tailored to local
conditions, so these policy differences and regional differences may affect regional energy efficiency.
The existing research has mainly analyzed the energy efficiency in three areas of China and found high
efficiency in the east and low efficiency in the west, but most studies do not conduct an in-depth study
on the north–south characteristics of the energy efficiency based on the seven economic zones and
ignore the dynamic evolution of regional differences in energy efficiency. Meanwhile, most studies
have found an increase in energy efficiency over the sample period and studied the influencing
factors, but few studies have compared and analyzed the promotion effects of different energy and
industrial policies (e.g., industrial transfer policy) on energy efficiency. In addition, although some
existing research has analyzed the catching-up effect of energy efficiency, it has not found consistent
evidence. Meanwhile, they ignored the comparisons between different time periods and regional
divisions, and other types of convergence characteristics are not considered. Therefore, another
contribution of this paper is to provide a more detailed analysis of energy efficiency from different
aspects, such as regional divisions, Five-Year energy plans, and industrial transfer policies. We try
to capture the convergence characteristics of energy efficiency by using three major convergence
concepts: β-convergence, σ-convergence, and λ-convergence; this helps to clarify the regional gaps in
the improvement of energy efficiency and allows us to offer practical information for policy makers.

In summary, this paper expands the existing literature through innovation in several aspects.
First, this paper provides a new energy efficiency measurement that employs a weighted slacks-based
model (SBM) method considering energy substitutability; this method overcomes the shortcomings
of the majority of studies on energy efficiency that ignore the relative importance of different input
indicators. Second, according to regional divisions of “three areas” and “seven economic zones”,
this paper investigates the differences in regional energy efficiency. In addition, this paper considers a
long span of 25 years, using data from 1991 to 2015; this helps us to understand the change pattern in
energy efficiency over different Five-Year plans, and provides empirical evidence on the regional effects
caused by different energy and industry policies. Finally, this paper analyzes different convergence
characteristics of regional energy efficiency, such as the catching-up effect, the cross-sectional dispersion
effect, and the adjustment effect toward the best frontier, according to different regional divisions and
time interval divisions. All of these factors and innovations help us better understand the sustainable
evolution characteristics of Chinese regional energy efficiency.

The paper is organized as follows. In Section 2, we review the relevant literature. Section 3
introduces the weighted SBM model and economic implications of the weight, and it then proposes the
method for quantifying input weights based on energy substitutability. Then, the econometric model
for capturing the efficient sustainable evolution characteristics by convergence analysis is presented.
Section 4 offers the estimation process and results for energy substitutability weights in the SBM model,
and it analyzes the evolution trend, differences in regional and economic zones, and the Five-Year
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planning policy effects on Chinese regional energy efficiency. Section 5 provides an analysis of the
convergence characteristics of energy efficiency in different regions, economic zones, and time periods,
and it provides some comparative analysis combined with an energy policy and an industrial transfer
policy. In Section 6, we summarize the conclusions and propose some policy implications.

2. Literature Review

Various parametric or nonparametric methods are often employed to measure the energy efficiency,
and these evaluating models have different improvements based on real-life requirements. In this
section, we review the literature on the most relevant quantitative methods for estimating energy
efficiency, and then summarize certain analytical perspectives and techniques related to our research.

The SFA (Stochastic Frontier Analysis) model based on linear regression is a primary parametric
approach for evaluating energy efficiency [4–6]. However, the approach taken by these studies
demonstrates only a single linear relationship from input variable to output variable, which cannot
completely capture the changing behavior of energy efficiency. Moreover, one may also encounter
difficult problems such as endogeneity [7], residual distribution [8], and heterogeneity [9] in the
parameter estimation process. To solve the problems above, the data envelopment analysis (DEA)
method developed by Charnes et al. [10] has been widely applied in evaluating the energy efficiency
of different regions or countries and monitoring efficiency evolution. As indicated by Liu et al. [11]
and Meng et al. [12], a rapid increase in literature is produced by using the DEA models to evaluate
the energy and technical efficiency of different DMUs in various situations, e.g., industrial sectors
in Wu et al. [13], the construction industry in Feng and Wang [14], the iron and steel industry
in Yang et al. [15], the transport industry in Feng and Wang [16], the environmental efficiency in
Xu et al. [17], and the Chinese regional energy efficiency in Wang et al. [18]. However, the DEA model
treats the internal production process as a “black box” [19] and assumes that it is invariant with respect
to DMUs. In addition, during the process of using DEA models, we need to choose the input-oriented
type or the output-oriented type, which focuses the process on either reducing the inputs given the
outputs or increasing the outputs given the inputs.

The SBM model proposed by Tone [20] optimizes the objective function by finding slacks (input
excess or output shortfall), which is different from the DEA (CCR or BCC) model of Charnes et al. [10]
and has non-radial and unoriented advantages. Therefore, the SBM model can provide more analysis
information than the DEA model on energy inefficiency. In recent years, the SBM model has become
popular worldwide for its use in energy efficiency assessment, and many studies have applied
SBM models and improved SBM models to examine industrial energy efficiency or regional energy
efficiency [2,21–26]. Rao et al. [2] employed the SBM method to investigate the provincial energy
efficiency and energy saving potential in China during the period 2000–2009 for the first time.
Du et al. [22] constructed a slacks-based measure data envelopment analysis (SBM-DEA) model to
analyze the provincial energy efficiency and its driving factors. Cai et al. [25] found great differences in
regional energy efficiency among Chinese provinces and analyzed the emission reduction potential
based on the hybrid SBM model. Du et al. [26] utilized the super SBM model to analyze the Chinese
energy efficiency of different regions divided based on urban agglomeration and found some kind
of spatial distribution relationship between energy efficiency and urban agglomeration. Lin and
Zhang [27] used a meta-frontier SBM model to evaluate the energy efficiency of the Chinese service
sector and found only the eastern region shows an increasing trend in the energy efficiency. Li and
Shi [21] and Yang et al. [28] used the improved super SBM model to measure the energy efficiency of
Chinese industrial sectors and provinces, respectively. Zhu et al. [29] explored the dynamic evolution of
regional energy efficiency in China with an improved multidirectional efficiency analysis and found the
comprehensive energy efficiency of different provinces were not highly fluid between different levels.
Liu et al. [30] and Cheng et al. [31], respectively, used the DEA-BCC model and meta-frontier method
to estimate China’s energy efficiency at the provincial level, and found a considerable difference in
energy efficiency among provinces.
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However, the literature on energy efficiency measured by SBM models rarely considers the relative
importance of different inputs or different outputs, so the research results obtained may be affected
by this equal weight assumption. Especially in the current situation of energy scarcity, the input
indicators such as labor, investment, and energy obviously have different amounts of importance in the
actual production process. Thus, during the process of estimating energy efficiency, we should focus
on the relative importance of different inputs. Zhou et al. [32,33] used the weighted SBM method to
analyze the environmental efficiency of Chinese industrial sectors, but the energy-input weights were
decided by the energy reserve or information entropy method. Xiong et al. [34] constructed a weighted
zero-sum game data envelopment analysis (ZSG-DEA) model to study the allocation efficiency of
energy consumption. Therefore, in this paper, we propose a new quantitative weighting method based
on the translog production function for the SBM model considering energy substitutability among
different input indicators.

Currently, the regional characteristics (e.g., geographical location and resource endowment) and
macro policy plans (e.g., industrial policy and energy policy) have become increasingly pronounced
for regional energy efficiency, especially in coastal and inland areas or special economic zones (SEZ).
Therefore, we utilize the convergence technique to obtain a more detailed analysis of such regional
differences in energy efficiency. The convergence analysis proposed by Baumol [35] has been deployed
commonly in economic growth theory based on total factor productivity (TFP), but it makes some
restrictive assumptions about input–output conversion that are difficult to verify [36]. Therefore,
convergence analysis based on DEA or SBM models becomes more important from the input–output
perspective. Recently, many studies have examined the convergence characteristics of energy efficiency.
Li and Lin [37], Zhang et al. [38], and Han et al. [39] measured regional energy efficiency using different
methods, but they all examined only the catching-up effect of energy efficiency. Pan et al. [40] tested
the club convergence characteristics of regional energy efficiency using the Markov chain method and
indicated the relationship between regional energy efficiency and regional characteristics.

On the whole, some shortcomings of previous studies are addressed in this paper. First, although
there are various studies analyzing regional energy efficiency, most of them pay little attention to the
relative importance of different input indicators, and there is also no study that uses a quantitative
method to determine the importance of input indicators. Second, in the literature on the empirical
analysis of energy efficiency, most studies ignore the efficiency differences in China’s seven economic
zones, and they do not conduct a comparison analysis of the effects of policy on energy efficiency
improvements. Third, most of the previous research on the convergence analysis of energy efficiency
only explores the catching-up convergence characteristics, and there is no regional study on efficiency
convergence characteristics. To solve these problems, this study provides a new weighted slacks-based
model for measuring energy efficiency that considers energy substitutability. The empirical study
sections of this paper provide the quantitative process used to determine the weights, and it analyzes
the sustainable evolution characteristics of regional energy efficiency by comparative and convergence
analysis from different perspectives, including regional divisions, Five-Year plan guidance, and industry
transfer policy.

3. Methodology

In this section, we provide the economic implication of the improved weighted SBM efficiency
model with weights quantified based on energy substitutability, and then state efficiency convergence
models for the sustainable evolution analysis of energy efficiency. Figure 1 illustrates the whole
research idea of this paper and some key steps.
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Figure 1. Flowchart of the improved energy efficiency (EE) model and the whole empirical analysis steps.

3.1. The Weighted SBM Model

We assume that a production system has n decision making units (DMUs), and the vector
representations of inputs and outputs for each DMU are x ∈ Rm,y ∈ Rs, where m and s denote the
number of indicators for inputs and outputs, respectively. We define the input and output matrices
X, Y(X > 0, Y > 0) as follows:

Xm×n = [x1, x2, · · · , xn] ∈ Rm×n, Ys×n = [y1, y2, · · · , yn] ∈ Rs×n. (1)

Then, under the assumption of strong disposability, the production possibility set P has the
following formula:

P =
{
(x, y)

∣∣∣x ≥ Xλ, y ≤ Yλ,λ ≥ 0
}
, (2)

where λ= (λ1,λ2, · · · ,λn) denotes the intensity vector, and each component of the vector has
a corresponding inequality relationship derived in Equation (2). According to the slack-based
model (SBM) in Tone [19], if the preference or importance of input/output indicators is different,
we impose weights related to the objective function of the SBM model. To evaluate the DMU (x0, y0),
the optimization function value ρ∗ of the following weighted SBM model provides its relative efficiency:

[Weighted SBM] ρ∗ = min ρ =

1− 1
m

m∑
i=1

ωI
i s

I
i

xi0

1 + 1
s

s∑
r=1

ωO
r sO

r
yr0

Subject to

xi0 =
n∑

j=1
λ jxi j + sI

i(i = 1, 2, · · · , m)

yr0 =
n∑

j=1
λ jyrj − sO

r (r = 1, 2, · · · , s)

1
m

m∑
i=1

ωI
i = 1, 1

s

s∑
r=1

ωO
r = 1, sI

i ≥ 0, sO
r ≥ 0,λ j ≥ 0,ωI

i ≥ 0,ωO
r ≥ 0

(3)

where the optimal value of ρ∗ is the efficiency of DMU0; ωI
i and ωO

r denote the weights of input
i and output r, respectively; sI = (sI

1, sI
2, · · · , sI

m) and sO = (sO
1 , sO

2 , · · · , sO
s ) correspond to the input

slack vectors and output slack vectors, respectively. Further, we transfer the above nonlinear
programming problem into a linear programming problem using the Charnes–Cooper transformation.
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Specifically, set 1 + 1
s

s∑
r=1

ωO
r sO

r
yr0

= 1
t , and then we can acquire the following linear programming model

(L-weighted SBM):

[L−weighted SBM] τ∗ = min τ = t−
1
m

m∑
i=1

ωI
iS

I
i

xi0

Subject to

1 = t + 1
s

s∑
r=1

ωO
r SO

r
yr0

xi0t =
n∑

j=1
Λ jxi j + SI

i(i = 1, 2, · · · , m)

yr0t =
n∑

j=1
Λ jyrj − SO

r (r = 1, 2, · · · , s)

1
m

m∑
i=1

ωI
i = 1, 1

s

s∑
r=1

ωO
r = 1, SI

i ≥ 0, SO
r ≥ 0, Λ j ≥ 0,ωI

i ≥ 0,ωO
r ≥ 0

(4)

With the optimized solutions (t∗, Λ∗, SI∗, SO∗) of the L-weighted SBM model, the optimized solution
of the weighted SBM nonlinear equation is (λ∗, sI∗, sO∗) = (Λ∗/t∗, SI∗/t∗, SO∗/t∗).

Given the weighted SBM efficiency model, we focus on how these input indicator weights

affect the efficiency measure of each DMU. Assuming that EI
i =

n∑
j=1

λ∗jxi j/xi0(i = 1, 2, · · · , m) and

EO
r =

n∑
j=1

λ∗jyrj/yr0(r = 1, 2, · · · , s), if the optimal solution is (λ∗, sI∗, sO∗), then the object function in

Equation (3) has the following formula:

ρ∗ = [
1
m

m∑
i=1

ωI
iE

I
i ][

1
s

s∑
r=1

ωO
r EO

r ]

−1

(5)

In this paper, we focus on the substitution relationship between different input indicators,
particularly for capital and energy, as well as for labor and energy; therefore, we give only the economic
implications of the input weights ωI

i by assuming the output weights ωO
r = 1 in Equation (5) for

simplicity. Supposing that the input weights ωI
i have been identified based on the input substitution

relationship, we can then observe the efficiency related to the input weights ωI
i , EI

i , and EO
i from

Equation (5). For example, if a higher (or lower) EI
i happens to be combined with a higher (or lower)

input weight ωI
i for DMU (x0, y0), then the efficiency measured by the weighted SBM model could be

higher (or lower) than the non-weighted SBM model. Hence, this weighted SBM model could improve
the identification ability of the efficiency of different DMUs by considering the relative importance of
different input indicators.

Furthermore, how to introduce energy substitutability into the weight calculation of input
indicators has become a key procedure of measuring efficiency by the weighted SBM model.
This paper utilizes the substitution elasticity between capital, energy, and labor to identify energy
substitutability and calculate the input weights. For the calculation of the substitution elasticity
coefficient, we refer to the translog production function, which is flexible enough to approximate any
production technology [41]. Assuming that a translog production function is twice differentiable and
relates output (Y) to some common inputs such as capital (K), labor (L), and energy (E), we present it
as follows:

ln Yt = γ+ αK ln Kt + αL ln Lt + αE ln Et + αKL ln Kt ln Lt + αKE ln Kt ln Et

+αLE ln Lt ln Et + αKK(ln Kt)
2 + αLL(ln Lt)

2 + αEE(ln Et)
2 (6)

where α∗ denotes the estimated parameters that correspond to the different input indicators, and γ is a
constant. To determine the substitution elasticity, we first calculate the output elasticity for capital
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ηK = dY/Y
dK/K , labor ηL = dY/Y

dL/L , and energy ηE = dY/Y
dE/E . By simple differential calculations, we acquire the

substitution elasticity coefficients for capital-energy σKE and labor-energy σLE as follows:

σKE =

[
1 +

[
−αKE +

ηK

ηE
αEE

]
(−ηK + ηE)

−1
]−1

, σLE =

[
1 +

[
−αLE +

ηL

ηE
αEE

]
(−ηL + ηE)

−1
]−1

(7)

Based on the substitution elasticity, we consider the impact of different inputs on integrated
efficiency from the weighted SBM model. Usually, the stronger the substitutability, the weaker the
relative importance. Therefore, the input weights of capital, labor, and energy can be constructed in
the following formula:

ωK : ωE : ωL = σKE : 1 : σLE, (8)

where ωK, ωE, and ωL represent the weights related to capital, energy, and labor.

3.2. Modeling the Sustainable Evolution Based on Efficiency Convergence Analysis

To investigate the sustainable evolution characteristics of regional energy efficiency in China,
we utilized popular efficiency convergence analysis methods such as β−convergence, σ−convergence,
and λ−convergence [42,43].

(1) β−convergence can measure the catching-up effect, which is inferred by the following
regression model:

∆yi,t = α+ β ln(yi,t−1) + ρ∆yi,t−1 + εi,t, i = 1, 2, · · · , n, t = 1, 2, · · · , M , (9)

where yi,t indicates the i-th regional efficiency at time t and ∆yi,t = ln(yi,t) − ln(yi,t−1). A significant
β(< 0) means there is a catching-up effect that is enhanced as the absolute value of β increases.

(2) σ−convergence can measure the cross-sectional dispersion effect, which is inferred by the
following regression model:

∆Ei,t = α+ σEi,t−1 + ρ∆Ei,t−1 + εi,t, i = 1, 2, · · · , n, t = 1, 2, · · · , M, (10)

where yt denotes the average efficiency at time t, and Ei,t = ln(yi,t) − ln(yt), ∆Ei,t = Ei,t − Ei,t−1.
A significant σ(< 0) means there is a cross-sectional dispersion effect that is enhanced as the absolute
value of σ increases.

(3) λ−convergence can measure the adjustment effect toward the best frontier, so we infer the
adjustment mechanisms by running the following regression model:

ln(yi,t) = λ ln(yi,t−1) + εi,t, i = 1, 2, · · · , n; t = 1, 2, · · · , M, (11)

where 1−λ could be regarded as an adjustment parameter for measuring the adjustment effect toward
the best frontier, and a negative value of 1−λ means the persistence of inefficiency.

4. Empirical Analysis of Regional Energy Efficiency in China

4.1. Modeling the Sustainable Evolution Based on Efficiency Convergence Analysis

In this paper, we used the annual time series data of input and output indicators during the period
1978–2015 to measure energy substitutability by means of the translog production function, and all of
this data was collected from the Wind database. We considered capital (K), labor (L), and energy (E) as
the input indicators. We denoted the annual Chinese capital stock based on the perpetual inventory
method, the annual Chinese employed persons’ number, and annual total consumed energy as inputs
Kt, Lt, and Et, respectively. For the output indicator Yt, we used the annual Chinese gross domestic
product (GDP), which is obtained by converting current prices into constant prices based on the GDP
implicit price deflator. To calculate the energy substitutability weights, we first obtained the coefficient
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estimators using Equation (6). However, coefficient estimation for this linear regression model relies on
the independence of the variables. Therefore, we first gauged whether or not there is multicollinearity
among the input indicators, as shown in Tables 1 and 2.

Table 1. Pearson correlation coefficients between variables in the translog production function.

Kt Lt Et Kt·Lt Kt·Et Lt·Et Kt·Kt Lt·Lt Et·Et

Kt 1.0000
Lt 0.6097 1.0000
Et 0.9286 0.7775 1.0000

Kt · Lt 0.9999 0.6047 0.9262 1.0000
Kt · Et 0.9943 0.5338 0.8876 0.9949 1.0000
Lt · Et 0.9249 0.7957 0.9994 0.9224 0.8821 1.0000
Kt ·Kt 0.9535 0.4364 0.7800 0.9553 0.9752 0.7749 1.0000
Lt · Lt 0.6440 0.9976 0.8089 0.6391 0.5684 0.8264 0.4676 1.0000
Et · Et 0.9705 0.6672 0.9823 0.9692 0.9478 0.9778 0.8581 0.7031 1.0000

Note: All of the Pearson correlation coefficients are significant at the 1% significance level.

Table 2. Multicollinearity diagnostics results of the variables in the translog production function.

Variables Tolerance VIF Variables Tolerance VIF Variables Tolerance VIF

LnK 0.002 >100 LnK × LnL <0.001 >100 LnK × LnK 0.001 >100
LnL 0.064 16 LnK × LnE <0.001 >100 LnL × LnL <0.002 >100
LnE <0.001 >100 LnL × LnE <0.001 >100 LnE × LnE 0.015 67

From the correlation testing results shown in Table 1, we found some evidence of multicollinearity
among the input indicators, especially for the cross terms among capital, labor, and energy. This means
that it is not feasible to find the parameter estimators of the translog production function using the
OLS (Ordinary Least Square) method. The multicollinearity diagnostic results based on VIF(Variance
Inflation Factor) are presented in Table 2.

The larger VIF in Table 2 shows that there is significant multicollinearity between independent
variables in the translog production function, which will cause the covariance matrix of the OLS
estimators to contain some large values and the parameter estimators to be inefficient. Therefore,
we used a coefficient estimation method that employs ridge regression [44] to handle multicollinearity
in the following section. For the coefficient estimation of the translog production function using ridge
regression, a key procedure is determining the ridge parameter k. We first attempted to estimate the
ridge regression for different values of k, and the optimal value of k depends on whether the estimated
coefficients have achieved stability; for details see Figure 2.
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As shown in Figure 2, the ridge trace curves gradually achieved stability. Hence, we chose the
ridge parameter k = 2.5, and the corresponding parameter estimators of the translog production
function are presented in Table 3.
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Table 3. Estimation results of the translog production function based on ridge regression.

Variable Standardized Coeff. Coeff. t-Statistic p-Value VIF

lnKt 0.0890 0.0539 * 1.8323 0.0776 0.0149
lnLt 0.0241 0.1119 0.5628 0.5781 0.0216
lnEt 0.1727 0.2667 *** 3.6613 0.0010 0.0148

lnKt · lnLt 0.0921 0.0046 * 1.8666 0.0725 0.0093
lnKt · lnEt 0.1271 0.0049 ** 2.5613 0.0161 0.0051
lnLt · lnEt 0.1421 0.0150 *** 2.8777 0.0076 0.0080
lnKt · lnKt 0.1367 0.0041 *** 2.7923 0.0093 0.0102
lnLt · lnLt 0.0286 0.0061 0.6669 0.5103 0.0215
lnEt · lnEt 0.1792 0.0116 *** 3.8533 0.0006 0.0165

Note: The values in the second column are the standardized coefficient estimators computed after centering and
scaling all variables Y and X into Ỹ and X̃, while the values in column Coeff. are the estimation results without
centering and scaling. The notation VIF is the variance inflation factor, which is computed from the diagonal

elements of the matrix (X̃′X̃ + kI)
−1

X̃′X̃(X̃′X̃ + kI)
−1

. The constant of the regression model between X and Y is
−0.9757 and the R2 is 0.9921. The values in parentheses are the test statistics, and *, **, and *** denote 10%, 5%,
and 1% significance levels, respectively.

Based on the estimation results of Equation (6) in Table 3, the input weights of capital, labor,
and energy constructed from the substitution elasticity by Equation (8) are:

ωK : ωE : ωL = 0.3266:0.3589:0.3145 (12)

4.2. The Input–Output Data for Regional Energy Efficiency and Regional Divisions in Mainland China

This paper investigates Chinese regional energy efficiency by employing panel data from
twenty-nine Chinese municipalities, autonomous regions, and provinces from 1991 to 2015. The data
sample does not consider Tibet because so much data is missing; also, we combined the data from
Sichuan and Chongqing to maintain a consistent statistical scope. The entire sample period covers
different stages of China’s development (i.e., the Eighth Five-Year plan, Ninth Five-Year plan, Tenth
Five-Year plan, Eleventh Five-Year plan, and Twelfth Five-Year plan), which is convenient for discussing
the relationship between energy efficiency and relevant energy or industry policies. For input indicators
in the efficiency models, we considered capital, labor, and energy. We chose the provincial capital stock
in each year as a proxy for the capital input, the number of provincial employed persons in each year
as a proxy for the labor force input, and the amount of provincial energy consumption in each year as
a proxy for the energy input. We used the provincial GDP in each year as the final output indicator.
We used the perpetual inventory method to calculate the capital stock. Compared with the existing
research literature on regional energy efficiency, the sample period of 1991–2015 in this paper is longer,
which covers five Five-Year plan development periods in China. During this period, China’s energy
development has undergone tremendous changes, and energy development policy has undergone
a dramatic shift from extensive energy consumption to intensive low-carbon green environmental
protection. Therefore, with the help of the study on energy efficiency in this sample period, this paper
can analyze the coordination between energy efficiency and energy-industrial policies and clarify the
policy factors that lead to the differences in energy efficiency. All of this annual time series data comes
from the China statistical Yearbook [45] in the Wind database.

Based on geographical location characteristics, we divided China into three areas: eastern, central,
and western areas. From the three areas’ divisions in Table 4, we see that the eastern area contains
three municipalities and eight coastal provinces located mainly in the Yellow River and Yangtze
River Delta areas, while the central area contains eight inland provinces. Obviously, the eastern
area and central area have numerous differences in industry, resources, and economies. In addition,
although the western area covers a large portion of China, this region is relatively underdeveloped for
geographical reasons.
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Table 4. The regional divisions in mainland China.

Region Name (Notation) The Provinces in the Corresponding Division Region

Eastern area (E) Liaoning, Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, Hainan

Three Areas Central area (C) Jilin, Heilongjiang, Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan

Western area (W) Inner Mongolia, Guangxi, Guizhou, Yunnan, Shaanxi, Gansu,
Xinjiang, Sichuan, Qinghai, Ningxia

Central Bohai (CB) Beijing, Tianjin, Hebei, Shandong

Yangtze River Delta (CD) Shanghai, Jiangsu, Zhejiang

Pearl River Delta (PD) Fujian, Guangdong, Hainan

Seven Economic
Zones Northeast (N) Liaoning, Jilin, Heilongjiang

Central Provinces (CP) Anhui, Jiangxi, Henan, Hubei, Hunan, Shanxi

Great Southwest (GS) Guangxi, Guizhou, Yunnan, Sichuan

Great Northwest (GN) Shaanxi, Gansu, Xinjiang, Inner Mongolia, Qinghai, Ningxia

The division of the three areas reflects differences from the perspective of regional functions,
but there are also large differences among the three areas in economic development, energy endowment,
and industrial structure. For example, there are industrial structural differences like “North Heavy and
South Light” and energy endowment differences like “North Coal and South Water”. Therefore, a more
detailed division of mainland China is necessary for a robust energy efficiency analysis. As pointed
out in the Twelfth Five-Year plan, different economic zones may adjust the implemented policies to
promote economic development, so an energy efficiency analysis based on economic zones will help
to clarify the effect of the various relevant industrial policies. According to economic characteristics,
we divided China into seven economic zones, as shown in Table 4.

4.3. Provincial Energy Efficiency Results and Tendency Analysis

Based on the weighted SBM methodology that considers energy substitution that we proposed in
Section 3, we present the corresponding energy efficiency results and tendency analysis across different
years and across different provinces in China; for details, see Table 5.

Table 5. Summary results of provincial energy efficiency in China.

Panel A: Energy Efficiency Across Years

Year Mean Std. dev. Year Mean Std. dev. Year Mean Std. dev.

1991 0.4776 0.2144 2000 0.3807 0.0758 2009 0.3675 0.1305
1992 0.3602 0.0915 2001 0.3817 0.0857 2010 0.3982 0.1433
1993 0.3020 0.0491 2002 0.3739 0.0895 2011 0.4257 0.1561
1994 0.3194 0.0512 2003 0.3547 0.0874 2012 0.4340 0.1719
1995 0.3488 0.0598 2004 0.3581 0.0925 2013 0.4475 0.1784
1996 0.3804 0.1003 2005 0.3578 0.0985 2014 0.4534 0.1817
1997 0.4191 0.1394 2006 0.3589 0.1085 2015 0.4628 0.1902
1998 0.3805 0.0934 2007 0.3707 0.1159 - - -
1999 0.3832 0.0807 2008 0.4273 0.1941 Average 0.3890 0.0843

Panel B: Energy Efficiency Across Provinces

Provinces Mean Std. dev. Provinces Mean Std. dev. Provinces Mean Std. dev.

Beijing 0.5195 0.2358 Zhejiang 0.4513 0.0883 Hainan 0.3866 0.0459
Tianjin 0.4609 0.1417 Anhui 0.3544 0.0540 Sichuan 0.3442 0.0653
Hebei 0.3358 0.0355 Fujian 0.4662 0.0438 Guizhou 0.2899 0.0724
Shanxi 0.3196 0.0470 Jiangxi 0.4621 0.1720 Yunnan 0.3363 0.0956

Inner Mongolia 0.3620 0.0789 Shandong 0.4141 0.0491 Shaanxi 0.3482 0.0486
Liaoning 0.3743 0.0554 Henan 0.3660 0.0313 Gansu 0.2901 0.0371

Jilin 0.3709 0.0542 Hubei 0.3851 0.1382 Qinghai 0.2509 0.0325
Heilongjiang 0.4157 0.0558 Hunan 0.4468 0.1593 Ningxia 0.2372 0.0402

Shanghai 0.5865 0.2535 Guangdong 0.5470 0.1542 Xinjiang 0.2931 0.0408
Jiangsu 0.4554 0.0920 Guangxi 0.4101 0.1339 Average 0.3890 0.0442
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The summary results for energy efficiency in Panel A of Table 5 indicate that Chinese regional
energy efficiency had an upward trend from 1991 to 2015. However, energy efficiency declined to an
average level lower than 0.37 during the period 2002–2006, and then it gradually rose again, which is
consistent with the findings of Bian et al. [23]. In addition, the standard deviations in Panel A also had
a slightly rising trend, which indicates the persistence of the difference in regional energy efficiency.
China has gone through different leapfrog development stages during this period 1991–2015, and we
will give an in-depth analysis in the following subsections.

The summary results of energy efficiency across the twenty-nine provinces are present in Panel B
of Table 5. We found that provinces such as Beijing, Shanghai, and Guangdong had energy efficiency of
greater than 0.5, and provinces with energy efficiency of less than 0.3 were Gansu, Qinghai, Guizhou,
Ningxia, and Xinjiang, which is similar with the findings on the regional ranking of energy efficiency
in Du et al. [22]. Accordingly, there are regional distribution characteristics of differences in energy
efficiency among Chinese provinces. The standard deviations of provincial energy efficiency show that
provinces such as Beijing, Shanghai, Tianjin, Jiangxi, Hubei, Hunan, Guangdong, and Guangxi had a
higher standard deviation. Further, there was an upward trend in energy efficiency in many provinces,
such as Beijing, Shanghai, Tianjin, Zhejiang, Jiangsu, and Guangdong, while the uptrend of energy
efficiency in other provinces was gentler. Hence, the energy efficiency of different provinces shows
different evolution trends. For example, the energy efficiency of Beijing, Shanghai, and Guangdong
had an upward trend with high means and high volatilities, which indicates that energy efficiency
has significantly and rapidly improved during the years 1991–2015 as compared to other provinces.
Although the Chinese government has vigorously promoted the new technology revolution, only a
few provinces with superior access to capital and beneficial locations, such as Beijing, Shanghai,
and Guangdong, have developed a full implementation of new technology and products. Therefore,
the improvement of regional energy efficiency remains unbalanced.

4.4. Energy Efficiency Results and Tendency Analysis of the Three Areas

Based on the division of the three areas, we calculate their energy efficiency from 1991 to 2015,
as shown in Table 6.

Table 6. Energy efficiency of three areas from 1991 to 2015.

Three Areas
Years

1991 1992 1993 1994 1995 1996 1997 1998 1999

Eastern Area 0.4180 0.3344 0.3002 0.3152 0.3362 0.3668 0.3915 0.4014 0.4150
Central Area 0.5856 0.4059 0.3308 0.3485 0.3960 0.4582 0.5084 0.4228 0.4154
Western Area 0.4566 0.3519 0.2811 0.3007 0.3251 0.3331 0.3779 0.3238 0.3226
Overall Area 0.4868 0.3641 0.3040 0.3215 0.3524 0.3860 0.4259 0.3827 0.3843

Three Areas
Years

2000 2001 2002 2003 2004 2005 2006 2007 2008

Eastern Area 0.4274 0.4451 0.4476 0.4265 0.4363 0.4445 0.4582 0.4772 0.5333
Central Area 0.3985 0.3901 0.3758 0.3548 0.3521 0.3424 0.3334 0.3361 0.4224
Western Area 0.3151 0.3053 0.2911 0.2757 0.2769 0.2748 0.2702 0.2812 0.3145
Overall Area 0.3803 0.3802 0.3715 0.3523 0.3551 0.3539 0.3539 0.3649 0.4234

Three Areas
Years

2009 2010 2011 2012 2013 2014 2015 Total Average

Eastern Area 0.4871 0.5280 0.5610 0.5783 0.5980 0.6072 0.6234 0.4543
Central Area 0.3159 0.3417 0.3727 0.3720 0.3850 0.3928 0.3947 0.3901
Western Area 0.2773 0.3006 0.3192 0.3249 0.3321 0.3326 0.3406 0.3162
Overall Area 0.3601 0.3901 0.4176 0.4250 0.4384 0.4442 0.4529 0.3869

Note: The efficiency of overall area is calculated by the average energy efficiency of three areas.

Table 6 indicates that only the energy efficiency of the eastern area had a stable rising trend,
while the energy efficiency of other areas remained at a low level for a long time. During the period
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1991–2015, the energy efficiency of the western and central areas presents a U-type change trend with
a slight decline from 2002 to 2006, which is consistent with the findings on energy efficiency during
the period 2000–2009 in Rao et al. [2]. Moreover, the differences in energy efficiency between the
eastern area and the midwest (central and western) areas expanded slightly, which further verifies
the significantly unbalanced development of regional energy efficiency. This was mainly because the
technology gap ratio between the central and western regions and the eastern region has been gradually
expanding [31]. Energy efficiency indisputably increased in the east versus the west, which may be
due to differences in economy development, industrial structure, and technical and management
level [2,22,31]. The eastern area of China has the most rapid economic growth and geographical
advantages to seize opportunities for industrial technology transfer from developed regions [18]. Thus,
the eastern area has rapidly developed into a focal point for China’s high-tech industries, which leads
to most service industries and foreign technological investment being located in the eastern region.
In the western area, the technology level has long been lower than that of the eastern area, and the
western area has also accepted industrial transfer of certain heavy industries from the eastern area,
which leads to even worse energy efficiency in the west. In recent years, according to guidance on
undertaking industrial transfer in the midwest area, the government has tried to accelerate economic
structural adjustment and change development patterns. However, from the tendency analysis of
energy efficiency, we found that the energy efficiency differences in the eastern and western areas will
be difficult to reduce in the short term, and indeed, they may even grow.

4.5. Energy Efficiency Results and Tendency Analysis of the Seven Economic Zones

As stated above in Section 4.2 on regional divisions, large differences still exist among the seven
economic zones in terms of economic development, energy endowment, and industrial structure.
Therefore, we further analyzed the energy efficiency characteristics of the seven economic zones during
the period 1991–2015 in Table 7.

Table 7. Energy efficiency of seven economic zones from 1991 to 2015.

Economic Zones
Years

1991 1992 1993 1994 1995 1996 1997 1998 1999

Central Bohai 0.3990 0.3129 0.2890 0.3033 0.3184 0.3426 0.3511 0.3591 0.3701
Yangtze River Delta 0.4446 0.3490 0.3107 0.3217 0.3235 0.3540 0.3879 0.4044 0.4293

Pearl River Delta 0.4396 0.3518 0.3093 0.3322 0.3726 0.4086 0.4491 0.4523 0.4579
Northeast 0.4102 0.3429 0.3041 0.3371 0.3603 0.4634 0.4537 0.3977 0.4034

Central Provinces 0.6340 0.4238 0.3367 0.3449 0.4038 0.4420 0.5163 0.4331 0.4227
Great Southwest 0.6935 0.4624 0.3368 0.3463 0.3570 0.3625 0.3878 0.3545 0.3598
Great Northwest 0.2986 0.2782 0.2440 0.2702 0.3038 0.3135 0.3712 0.3033 0.2978

Economic Zones
Years

2000 2001 2002 2003 2004 2005 2006 2007 2008

Central Bohai 0.3883 0.4118 0.4121 0.3939 0.4137 0.4321 0.4411 0.4642 0.4933
Yangtze River Delta 0.4459 0.4591 0.4580 0.4437 0.4587 0.4738 0.5042 0.5330 0.5651

Pearl River Delta 0.4639 0.4854 0.4958 0.4682 0.4806 0.4721 0.4818 0.4902 0.6200
Northeast 0.4077 0.3995 0.3958 0.3856 0.3691 0.3624 0.3488 0.3478 0.3559

Central Provinces 0.3974 0.3898 0.3723 0.3436 0.3393 0.3293 0.3231 0.3281 0.4417
Great Southwest 0.3547 0.3459 0.3362 0.3151 0.3108 0.2982 0.2689 0.2757 0.3235
Great Northwest 0.2886 0.2782 0.2611 0.2494 0.2543 0.2592 0.2710 0.2849 0.3086

Economic Zones
Years

2009 2010 2011 2012 2013 2014 2015 Total Average

Central Bohai 0.4741 0.5143 0.5430 0.5607 0.5929 0.6121 0.6209 0.4326
Yangtze River Delta 0.5678 0.6261 0.6787 0.7121 0.7240 0.7228 0.7459 0.4978

Pearl River Delta 0.4745 0.5040 0.5210 0.5239 0.5336 0.5363 0.5402 0.4666
Northeast 0.3374 0.3593 0.4024 0.4022 0.4225 0.4425 0.4620 0.3869

Central Provinces 0.3084 0.3360 0.3623 0.3633 0.3743 0.3781 0.3812 0.3890
Great Southwest 0.2593 0.2720 0.3007 0.3060 0.3219 0.3279 0.3505 0.3451
Great Northwest 0.2893 0.3196 0.3315 0.3375 0.3389 0.3358 0.3340 0.2969
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From Table 7, we can see that the energy efficiency in economic zones such as the Yangtze River
Delta, Central Bohai, and the Pearl River Delta had a significant rising trend from 1991 to 2015 and
was higher than in other economic zones. The vast majority of provinces in the Yangtze River Delta,
Central Bohai, and Pearl River Delta economic zones are located in the southeast coastal areas, which
have many technology-intensive industries. Therefore, energy efficiency is constantly being optimized.
In addition, the energy efficiency of the Great Northwest economic zone from 1991 to 2015 presented
the U-type changing trend, while the energy efficiency of the Northeast, Central Provinces, and Great
Southwest economic zones had a slight downward trend. The Northeast, Central Provinces, and Great
Southwest economic zones have rich energy resources, so energy-intensive industries have long
accounted for a large proportion of economic growth. The backward economy and poor awareness of
transforming energy consumption patterns cause their low energy efficiency to persist. On the whole,
Chinese regional energy efficiency is characterized by “high in the east and low in the west, high in the
south and low in the north”. This finding presented the regional differences in energy efficiency more
comprehensively than most studies [19,29–31], only considering the regional division of three areas.

4.6. Analysis of Regional Energy Efficiency over Different Five-Year Plans

China’s Five-Year plans are vital to the country’s economic development, and each plan provides
the goal and direction of development for the next five years from all aspects, including the economy,
science and technology, energy, ecology, culture, and so on. Therefore, to capture the energy efficiency
characteristics over different periods of economic development, we explored the changes in regional
energy efficiency during five different Five-Year plans, i.e., from the Eighth Five-Year plan to the
Twelfth Five-Year plan. Meanwhile, we explained the reasons for the changes in energy efficiency
corresponding to the planning contents of each Five-Year plan. The regional energy efficiency over the
different Five-Year planning periods is shown in Table 8.

Table 8. Energy efficiency of each area and economic zone during the five Five-Year plans.

Areas 1991–1995
Eighth-Five

1996–2000
Ninth-Five

2001–2005
Tenth-Five

2006–2010
Eleventh-Five

2011–2015
Twelfth-Five

Eastern Area 0.3408 0.4004 0.4400 0.4968 0.5936
Central Area 0.4133 0.4407 0.3631 0.3499 0.3834
Western Area 0.3431 0.3345 0.2848 0.2888 0.3299
Overall Area 0.3657 0.3919 0.3626 0.3785 0.4356

Economic zones 1991–1995
Eighth-Five

1996–2000
Ninth-Five

2001–2005
Tenth-Five

2006–2010
Eleventh-Five

2011–2015
Twelfth-Five

Central Bohai 0.3245 0.3622 0.4127 0.4774 0.5859
Yangtze River Delta 0.3499 0.4043 0.4587 0.5592 0.7167

Pearl River Delta 0.3611 0.4464 0.4804 0.5141 0.5310
Northeast 0.3509 0.4252 0.3825 0.3499 0.4263

Central Provinces 0.4286 0.4423 0.3548 0.3475 0.3718
Great Southwest 0.4392 0.3639 0.3212 0.2799 0.3214
Great Northwest 0.2790 0.3149 0.2605 0.2947 0.3355

Table 8 indicates that the regional energy efficiency presents a U-type during these five Five-Year
plans, but different areas have their own characteristics. The energy efficiency of the eastern area
maintained a steady upward trend, while the energy efficiency of the central and western areas
continued to be low, except during the Eleventh Five-Year and Twelfth Five-Year plans, which may be
due to the local government that paid more attention to GDP than energy efficiency and environmental
protection in the last 20 years. Moreover, energy efficiency showed a steady upward trend for the
Yangtze River Delta, Central Bohai, and Pearl River Delta economic zones, and the increase rates were
as high as 81%, 105%, and 47%, respectively. The energy efficiency in the Great Northwest economic
zone during these five Five-Year plans presents a U-type, while the energy efficiency in the Northeast,
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Central Provinces, and Great Southwest economic zones did not improve until the Twelfth Five-Year
plan. All of these findings show that the evolutionary trends of Chinese regional energy efficiency
are inconsistent between different Five-Year plan periods, but all have an upward trend during the
Twelfth Five-Year plan period. The reasons from the perspective of energy planning and industrial
policies are as follows.

On the whole, Table 8 shows that regional energy efficiency dropped slightly during the Tenth
Five-Year plan and then improved gradually in the Eleventh Five-Year and Twelfth Five-Year periods.
This is due to the adjustment of product structure and production standards for entering the WTO
(World Trade Organization) [15]. Therefore, the Tenth Five-Year period could be considered a transition
period. Second, the Tenth Five-Year period started to emphasize improving energy efficiency. It paid
more attention to ecological construction, environmental protection, and sustainable economic and
social development, but the focus was inclined to mitigate the contradiction between energy supply
and demand. In addition, the trade agreement signed by the Chinese government with the Association
of Southeast Asian nations in 2002 focused on solving problems in energy-intensive industries, which
affected energy efficiency during this period [46]. Since the Eleventh Five-Year plan, the Chinese
government became aware that China’s energy efficiency was still far behind, as compared with
international levels; therefore, the government proposed to reduce energy consumption by about
20% per unit of GDP during the Eleventh Five-Year period. Third, though the use of clean energy
is gradually increasing, and energy processing and conversion technologies made breakthroughs
during the Eleventh Five-Year plan, there remain many constraints on improving energy efficiency.
The Chinese industrial structure is unsustainable, and energy intensive industries are over-developed
at a low level. For example, steel, nonferrous, building materials, and chemical industries have a high
proportion of energy consumption. During the Twelfth Five-Year period, China made substantial
progress in transforming its growth model, readjusting its industrial structure, and improving its
capacity for independent innovation in energy science and technology. Meanwhile, in order to lessen
the reliance on traditional fossil fuel energy resources, more provinces have obviously paid attention
to the development of clean energy, such as wind energy and solar energy. All of these advances
have contributed to the improvement in energy efficiency. Therefore, the energy planning policy
and industrial development policy in China are gradually playing a positive role in promoting the
sustainable development of the economy and energy efficiency.

5. Convergence Analysis of Chinese Regional Energy Efficiency

To obtain the parameter estimation results for Equation (9) and Equation (10), we considered
two estimation methods: the pooled OLS method and the system generalized method of moments
(SYS-GMM). The difference between the two approaches is that the pooled OLS method does not
include the lagging dependent variable when estimating the convergence rate, while the SYS-GMM
method does consider dynamic behavior. For the full sample and regional sample during the period
1991–2015, we present the estimation results using the above two methods in Tables 9 and 10. For the
full sample and regional sample in different time intervals (e.g., 1991–2005 and 2006–2015), we present
only the estimation results (i.e., Sargan test results), and we considered the dynamic behavior of the
dependent variables for simplicity due to the similar analysis process. For details, see Tables 11–13.
In the following tables, the values in parentheses are the test statistics, and *, **, and *** denote 10%,
5%, and 1% significance levels, respectively.
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Table 9. Estimation results of convergence analysis of energy efficiency for the full sample in the whole
period 1991–2015.

Parameter
β-Convergence σ-Convergence λ-Convergence

Pooled OLS SYS-GMM
Two Step Pooled OLS SYS-GMM

Two Step
SYS-GMM
Two Step

α
−0.0615 ***

(−3.55) - −0.0037
(−0.91)

β
−0.0705 ***

(−4.24)
−0.0697 ***

(−15.56) - - -

σ - - −0.0554 ***
(−3.74)

−0.4834 ***
(−12.55) -

ρ
−0.2275 ***

(−48.34) - −0.1215 ***
(−22.10) -

λ - - - - 0.9440 ***
(94.80)

R2 0.0263 - 0.0206 - -
Sargan test - 1.0000 - 1.0000 1.000

Note: The values in parentheses are the test statistics, and *, **, and *** denote 10%, 5%, and 1% significance
levels, respectively.

Table 10. Estimation results of convergence analysis of energy efficiency for the regional sample in the
whole period 1991–2015.

β-Convergence σ-Convergence λ-Convergence

β
Sargan
Test

Pooled
OLS-R2 σ

Sargan
Test

Pooled
OLS-R2 λ

Sargan
Test

Three
Areas

Eastern −0.0456 ***
(−3.97) 1.00 - −0.4541 **

(−2.41) 1.00 - 0.9376 ***
(26.72) 1.00

Central −0.0325
(−1.20) 1.00 - −0.4904 ***

(−5.35) 1.00 - 0.8858 ***
(10.33) 1.00

Western −0.0390 **
(−2.47) 1.00 - −0.3944 ***

(−5.49) 1.00 - 0.8981 ***
(7.70) 1.00

Seven
Economic
Zones

Central Bohai −0.0950
(−1.04) 1.00 - −0.8983 *

(−1.87) 1.00 0.5817
(0.84) 1.00

Yangtze River
Delta

0.0180
(0.02) 1.00 - 1.6322

(0.48) 1.00 - 0.9402 **
(2014) 1.00

Pearl River Delta −0.1203 **
(−2.21) - 0.07 −0.0993 **

(−2.01) - 0.06 0.7648 **
(2.33) 1.00

Northeast −0.2710 ***
(−3.03) - 0.12 −0.3141 ***

(−3.49) - 0.15 −0.1130
(−0.16) 1.00

Central
Provinces

−0.3734 ***
(−5.79) 0.20 −0.7471 ***

(−3.37) 1.00 - 0.8842 ***
(6.16) 1.00

Great Southwest −0.3028 ***
(−4.71) - 0.20 −0.1758 ***

(−3.95) - 0.15 1.1225 ***
(3.20) 1.00

Great Northwest −0.7528 **
(−2.13) 1.00 - −0.4538 **

(−2.45) 1.00 - 0.8328 ***
(5.15) 1.00

Note: The values in parentheses are the test statistics, and *, **, and *** denote 10%, 5%, and 1% significance
levels, respectively.

Table 11. Estimation results of convergence analysis of energy efficiency for the full sample in different
time intervals.

β-Convergence σ-Convergence λ-Convergence

β Sargan Test σ Sargan Test λ Sargan Test

1991–2005 −0.0579 ***
(−26.45) 1.00 −0.5424 ***

(−28.23) 1.00 0.9610 ***
(523.41) 1.00

2006–2015 −0.0732 ***
(−67.49) 0.9704 −0.7908 ***

(−43.64) 0.9742 0.9254 ***
(4528.73) 0.9627

Note: The values in parentheses are the test statistics, and *, **, and *** denote 10%, 5%, and 1% significance
levels, respectively.
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Table 12. Estimation results of convergence analysis of energy efficiency for the three areas in different
time intervals.

β-Convergence σ-Convergence λ-Convergence
β Sargan Test σ Sargan Test λ Sargan Test

1991–2005

Eastern −0.0366 ***
(−4.68) 1.00 −0.1271 **

(−2.28) 1.00 0.9340 ***
(98.04) 1.00

Central −0.0407 **
(−2.11) 1.00 −0.4872 **

(−8.94) 1.00 0.9944 ***
(14.84) 1.00

Western −0.0039
(−0.230) 1.00 −0.4227 ***

(−4.84) 1.00 0.9892 ***
(15.82) 1.00

2006–2015

Eastern −0.0931 ***
(−29.36) 1.00 −0.4098 ***

(−4.73) 1.00 0.8917 ***
(37.76) 1.00

Central −0.0640 ***
(−61.40) 1.00 −0.8678 ***

(−18.67) 1.00 0.9012 ***
(39.65) 1.00

Western −0.0580 ***
(−67.85) 1.00 −0.5782 ***

(−12.33) 1.00 0.9690 ***
(56.41) 1.00

Note: The values in parentheses are the test statistics, and *, **, and *** denote 10%, 5%, and 1% significance
levels, respectively.

Table 13. Estimation results of convergence analysis of energy efficiency for the seven economic zones
in different time intervals.

β-Convergence σ-Convergence λ-Convergence
β Sargan Test σ Sargan Test λ Sargan Test

1991–2005

Central Bohai −0.4724
(−1.48) 1.00 −1.3168

(−1.19) 1.00 1.1067 ***
(2.78) 1.00

Yangtze River
Delta

−0.2243
(−1.15) 1.00 −0.3208

(−0.60) 1.00 0.6585
(0.99) 1.00

Pearl River
Delta

−0.5165 *
(−1.94) 1.00 −4.9890

(−1.15) 1.00 0.5969 *
(1.85) 1.00

Northeast −0.2602
(−1.24) 1.00 −1.9425

(−1.32) 1.00 −0.1133
(−0.16) 1.00

Central
Provinces

−0.0299
(−1.00) 1.00 −0.5219 ***

(−3.67) 1.00 1.0233 ***
(10.78) 1.00

Great Southwest −0.0250
(−0.47) 1.00 1.0528

(1.38) 1.00 0.6773 *
(1.65) 1.00

Great
Northwest

−0.0489 **
(−2.29) 1.00 −0.4949 ***

(−2.79) 1.00 0.8001 ***
(4.77) 1.00

β-Convergence σ-Convergence λ-Convergence
β Sargan Test σ Sargan Test λ Sargan Test

2006–2015

Central Bohai −0.0546 ***
(−3.00) 1.00 0.0627

(0.45) 1.00 0.9741 ***
(8.62) 1.00

Yangtze River
Delta

−0.3679 **
(−2.00) 1.00 0.4717

(0.22) 1.00 0.9419 ***
(10.79) 1.00

Pearl River
Delta

−0.0691
(−0.28) 1.00 −0.2203 ***

(−5.82) 1.00 0.9711 ***
(2.57) 1.00

Northeast −0.0690
(−0.13) 1.00 −0.0313

(−0.02) 1.00 0.6240
(1.56) 1.00

Central
Provinces

−0.0651 ***
(−5.90) 1.00 −0.7551 ***

(−9.60) 1.00 0.8689 ***
(22.25) 1.00

Great Southwest −0.0627 ***
(−20.31) 1.00 −0.2481 ***

(−8.37) 1.00 0.9575 ***
(−41.02) 1.00

Great
Northwest

−0.0451 ***
(−3.34) 1.00 0.0836

(0.82) 1.00 0.9747 ***
(10.37) 1.00

Note: The values in parentheses are the test statistics, and *, **, and *** denote 10%, 5%, and 1% significance
levels, respectively.

5.1. Convergence Analysis of Energy Efficiency in the Whole Period

Based on the full sample for the period 1991–2015, we observed the convergence characteristics
of regional energy efficiency in China based on β−convergence, σ−convergence, and λ−convergence.
The estimation results in Table 9 show that the β and σ convergence rates under the pooled OLS and
SYS-GMM methods are all significantly negative at a 1% significance level. This shows that there is a
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catching-up effect and a narrow cross-sectional dispersion effect in energy efficiency across Chinese
provinces, and the catching-up effect from 2000 to 2014 is also verified in Zhang et al. [38], but no
catching-up effect in [31]. However, the smaller absolute value of the β− coefficient means that the
catching-up effect is not sustainable. The σ coefficient shows that the cross-sectional dispersion of
energy efficiency is declining, but it does not mean that the energy efficiency characteristics of each
region are consistent. The energy efficiency of the eastern area continues to improve but with a
gradually decreasing growth rate, while the energy efficiency of the western and central areas remains
low for a long time with a slight increase. The significantly positive coefficient λ(≤ 1) implies that
regional energy efficiency could converge toward the best efficiency frontier. Therefore, Chinese
regional energy efficiency is generally improving over the study period.

To explore the regional convergence characteristics of energy efficiency, we estimated the
convergence model based on the regional data sample for different areas and economic zones,
and the upper panel and bottom panel of Table 10 provide the corresponding estimation results.
From the upper panel in Table 10, we see that the eastern and western areas have a significant
convergence rate for β−convergence, while the β−convergence rate of the central area is negative
but not significant, which is almost consistent with the findings in [31]. The greater absolute value
of the β−convergence rate shows that the energy efficiency of the eastern area presents a stronger
catching-up effect, which verifies that energy efficiency has significantly been improved based on
its upward trend in Section 4.4. For the σ−convergence and λ−convergence, we found significant
convergence characteristics in the three areas. The high σ−convergence rate and low λ−convergence
rate in the central area indicate that the energy efficiency of the central area has converged toward a
better average level. The λ−convergence rates of the central and western areas mean that the energy
efficiency of these two areas has similar upward evolution characteristics, which is consistent with the
results in Section 4.4.

From the bottom panel in Table 10, we found first that the β− coefficients are all significantly
negative, except for the Yangtze River Delta and Central Bohai economic zones, as determined by the
pooled OLS method or the SYS-GMM method, and that there is a greater catching-up effect for the
Great Northwest economic zone. Second, the Central Provinces economic zone has a more significant
and faster convergence effect for reducing the dispersion of energy efficiency. Third, the significant λ
coefficients indicate that the energy efficiency of most of the economic zones (except for the Northeast,
Central Bohai, and Great Southwest) converges toward the efficient frontier, while the λ coefficient for
the Great Southwest economic zone is greater than 1, indicating the persistence of inefficiency. For the
Central Bohai economic zone, the energy efficiency of different provinces shows large differences;
for example, Hebei and Shandong provinces do not demonstrate a sustainable improvement, which
results in the non-significant β− coefficient and λ− coefficient. All provinces in the Yangtze River
Delta economic zone are rapidly promoting energy efficiency, so this zone does not reflect a significant
catching-up effect. The Great Southwest economic zone has rich energy and mineral resources, which
cause the economy to become too dependent on energy consumption. Therefore, the energy efficiency
of the Great Southwest economic zone shows no improvement in the long term, which significantly
affects the regional imbalance in energy efficiency.

5.2. Convergence Analysis of Energy Efficiency during Different Time Intervals

Based on the previous analysis, we found that Chinese regional energy efficiency has evolved
differently during different Five-Year planning periods. According to the different stages of energy
structure improvement and technology upgrading, we divided the entire sample period into two
time intervals—1991–2005 and 2006–2015—and then we studied the energy efficiency convergence
characteristics during each time interval. We present the estimation results of the convergence models
during the different time intervals for the full sample and the regional samples in Tables 11–13.

From the estimated convergence rates shown in Table 11, we found that during the
period 2006–2015, β−convergence and σ−convergence rates had greater absolute values, and the
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λ−convergence rate had a smaller value. Therefore, the convergence effects of Chinese regional energy
efficiency based on β−convergence, σ−convergence, and λ−convergence are more significant than
those that occurred during the period 1991–2005. All of these findings indicate that, in the recent ten
years from 2006 to 2015, Chinese regional energy efficiency had a more obvious catching-up effect.
Meanwhile, the adjustment speed of regional energy efficiency toward the efficient frontier has been
accelerating. Through the comparison of energy planning policies between 1991–2005 and 2006–2015,
we found that before the year 2005, energy planning policies focused on the contradiction between
energy supply and energy demand. Some structural adjustment, technology innovation, and system
reform were conducted, but the emphasis was completely different from current energy planning
policies. For example, in the energy planning policies that were released in 2005, structural adjustment
focused on enterprise scale integration, technology innovation focused on the extraction equipment
level of coal, oil, and gas, and system reform focused on whether the market mechanism of energy
prices was optimal. The energy planning policies that were in place after 2005 put greater emphasis
on clean energy consumption, energy processing and transformation technology, and environmental
protection. Therefore, the actual evolutionary trend of regional energy efficiency is consistent with
energy development planning policies, which shows that national energy policies do promote regional
energy efficiency globally across China.

From the estimation results listed in Table 12, we found that all convergence characteristics of
energy efficiency in the three areas during the period 2006–2015 are more evident than during the
period 1991–2005. During the period 1991–2005, the western area has no catching-up effect, and the
energy efficiency of the western and central areas has a very low adjustment speed toward the efficient
frontier. However, during the period 2006–2015, each area demonstrates an obvious catching-up
effect, but the western area still has a very low adjustment speed toward the efficient frontier. All of
these findings indicate that the eastern area has a greater catching-up effect and a faster adjustment
speed toward the efficient frontier during the period 2006–2015, while the central area reduced the
energy efficiency bias across the entire sample period from 1991 to 2015. In addition, the central
area has a λ adjustment speed that is similar to that of the eastern area during the period 2006–2015,
which indicates that the central area has actively adjusted its industrial structure to improve energy
efficiency in the past ten years. However, the energy efficiency of the western area showed a slow
improvement, which expanded the differences in regional energy efficiency. Therefore, the energy
efficiency of different provinces is not highly fluid between different levels in the long run [29], and the
current regional structural characteristics of energy efficiency in the western area are not conducive to
regional equilibrium and sustainable development.

From the estimation results shown in Table 13, we found that many convergence characteristics
of energy efficiency in the seven economic zones during the period 1991–2005 were not significant,
while most of them became significant during the period 2006–2015, especially for the β−convergence
and λ−convergence. The Pearl River Delta had a stronger catching-up effect during the period
1991–2005, while the Yangtze River Delta had a stronger catching-up effect during the period 2006–2015.
Other economic zones had a weak or insignificant catching-up effect. During the period 2006–2015,
the Yangtze River Delta had significant β−convergence and λ−convergence rates, which indicates
that the energy efficiency of the Yangtze River Delta has grown rapidly. Moreover, most of the
economic zones’ energy efficiency converged toward the efficient frontier during the period 2006–2015.
The Central Bohai and Central Provinces economic zones had persistent inefficiency during the period
1991–2005, but the Central Provinces economic zone demonstrated a distinct improvement during
the period 2006–2015. According to the convergence characteristics of the different economic zones,
we found that on the whole, Chinese regional energy efficiency is improving, but the differences in the
evolution characteristics of energy efficiency are still serious.
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6. Conclusions and Policy Implications

In this paper, we have measured regional energy efficiency in China using a new weighted SBM
method based on energy substitutability, which considers the relative importance of the different
input indicators in the production process. By combining the translog production function with an
econometric analysis technique, we were able to estimate the input weights. Empirically, we have
comprehensively analyzed the evolution trends and convergence characteristics of Chinese energy
efficiency from many aspects, including different areas, different economic zones, and different Five-Year
plan periods. Further, we have made a comparative analysis according to different energy planning
policies. All of these findings may provide useful guidance for regional coordinated development in
the future.

From the empirical evidence, we observed that energy efficiencies across years and provinces
in China are significantly different. The volatility of provincial energy efficiency has a rising trend
over the period 1991–2015, and the improvement of energy efficiency is unbalanced across provinces.
Chinese regional energy efficiency increases from west to east, given the advantages of the west in
terms of location and industrial structure, and it is difficult to reduce these differences in the short
term. The Yangtze River Delta, the Central Bohai area, and the Pearl River Delta economic zones have
higher energy efficiency. Therefore, regional energy efficiency in China is characterized by a pattern of
“high in the east and low in the west, and high in the south and low in the north”. Although the energy
efficiency of each area or economic zone has its own change trend during different five Five-Year
planning periods, there are significant improvements during the Eleventh and Twelfth Five-Year plans.
Further, the energy efficiency convergence results show that there are different convergence rates for
different areas and economic zones over different time intervals, by which we discovered the imbalance
of regional energy efficiency at a deeper level. Meanwhile, through a comparative analysis between
energy planning policies and energy efficiency trends, we found that national energy policies do have a
positive effect on the development of energy efficiency globally across China. However, the differences
and fluctuations in regional energy efficiency remain serious, which is not conducive to the sustainable
development of regional economic and energy policies in China.

Comparing our conclusions with the extant literature, we have found some similarities and
differences in the sustainable evolution and convergence characteristics of energy efficiency. All of
these findings are based on the energy efficiency measured by our proposed weighted SBM model
considering energy substitutability. The key energy substitutability weights were computed from the
estimators of the translog production function, which were decided by the ridge parameter. Although
the empirical results of this paper are presented based on a given ridge parameter, the differences in
energy substitutability weights were small between other ridge parameters, so it will not affect the core
conclusions of this paper. In addition, any efficiency measured based on the DEA-SBM framework
would have the problems that the efficient comparators will be weakened by the uncertainty due to
finite sample bias. The long sample period in our paper can help mitigate this sample bias problem
and ensure that the research results on energy efficiency are more robust.

To reduce regional differences and promote sustainable development, the Twelfth Five-Year plan
indicates that China will promote the orderly transfer of industries and optimize industrial layouts
among regions. Although a regional industrial structure has been optimized, the difference in energy
efficiency has not decreased significantly. The approach to industry transfer places emphasis on
the “resource utilization type”, and the eastern area is shifting energy-intensive and labor-intensive
traditional industries to other areas, which has increased the burden of energy consumption for
central and western areas. Therefore, in accordance with current development planning and policies,
we propose some important policy implications based on our research. First, an industry transfer policy
should consider regional characteristics such as resources, environment, and techniques in order to
guide the industry transfer correctly. During the process of industry transfer and upgrading, we should
simultaneously consider low-end and high-end industries and optimize the industrial chain structure
to balance the industrial advantages. Second, central and western areas mainly conduct inefficient
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energy industries such as coal, nonferrous metals, and chemicals; therefore, the differences in energy
efficiency between the eastern, central, and western areas have not decreased. The government should
provide flexible policies that promote effective industry transfer. Meanwhile, the central and western
areas should concentrate the scale of their industrial activity to create a competitive advantage for
high value-added energy products. Moreover, relying on the leading role of “One Belt and One Road”
construction, the local governments of the central and western provinces should actively undertake the
transfer of foreign investment and techniques from international and coastal areas. Third, the southeast
coastal region should utilize technological advantages to foster new industries. Other economic zones
should take advantage of geographical advantage to seek reasonable industrial layouts. Fourth, the lack
of skills and talent has a critical influence on the differences in energy efficiency between the eastern
and western areas, and financial support for talent introduction in the central and western areas is less
than in the eastern area. Therefore, when implementing industry transfer from east to west, enterprises
should establish a talent assistance and sharing mechanism to make up for the lack of talent, and the
government needs to provide corresponding strong support and safeguarding measures.
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