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Abstract: Scientific and accurate core competitiveness evaluation of clean energy incubators is of
great significance for improving their burgeoning development. Hence, this paper proposes a hybrid
model on the basis of matter-element extension integrated with TOPSIS and KPCA-NSGA-II-LSSVM.
The core competitiveness evaluation index system of clean energy incubators is established from five
aspects, namely strategic positioning ability, seed selection ability, intelligent transplantation ability,
growth catalytic ability and service value-added ability. Then matter-element extension and TOPSIS
based on entropy weight is applied to index weighting and comprehensive evaluation. For the
purpose of feature dimension reduction, kernel principal component analysis (KPCA) is used to
extract momentous information among variables as the input. The evaluation results can be obtained
by least squares support vector machine (LSSVM) optimized by NSGA-II. The experiment study
validates the precision and applicability of this novel approach, which is conducive to comprehensive
evaluation of the core competitiveness for clean energy incubators and decision-making for more
reasonable operation.

Keywords: clean energy incubator; core competitiveness evaluation; matter-element extension;
TOPSIS; KPCA; NSGA-II; LSSVM

1. Introduction

Clean energy plays an important role in reducing carbon emissions, so more and more countries
vigorously develop clean energy [1]. As a promotion agency of clean energy industrialization,
clean energy incubator has become a crucial part of innovation system. With the burgeoning
development of clean energy incubators in recent years, governments all over the world are introducing
policies to actively encourage their establishment [2]. Whereas, these incubators are faced with the
problems of valuing quantity and neglecting quality. Some incubators still stay in the stage of property
leasing and simple incubation service, but still enjoy the preferential policies of the government and
waste public resources [3]. In addition, the planning of many clean energy business incubators is
mainly oriented towards the layout of hardware and space, and ignores the planning of soft capabilities
such as incubation ability [4]. In order to further play the role of incubators and realize their sustainable
development, it is necessary to make the factors clear which affect the core competitiveness and
propose a feasible evaluation model. The research on the core competitiveness evaluation of clean
energy incubator can help managers find out the deficiencies, and then help managers to improve
these deficiencies. Thus this study can provide suggestions for enhancing competitiveness of clean
energy incubators.
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In 1990, C.K. Prahalad and Gary Hamel, professors of Michigan University and London
Business School, respectively, formally raised the concept of “core competitiveness” for the first
time. They pointed out that core competitiveness was the ability to coordinate different production
skills as well as organically combine various technological schools [5]. Literature [6] discussed how to
integrate technological innovation into the core competitiveness of enterprises. The research held that
it was of great theoretical and practical significance to put the core competitiveness evaluation into
force for sustainable development. Reference [7] considered that environmental adaptability was an
important component of the core competitiveness in photovoltaic module supply enterprises. Thereby,
it provided suggestion in business decision-making. Thirteen influential factors of core competitiveness
were selected in modern circulation industry from market expansion, innovation, circulation efficiency,
sustainable development and circulation effect in reference [8]. The evaluation was achieved through
study on both independent and synergistic effect of the factors. Hence, it becomes a good entry point
to analyze the key resources and capabilities demanded by the sustainable development of enterprises.

At present, scholars have published their significant work on core competitiveness evaluation
of incubators, but few focus on the clean energy enterprise. There are some similarities among these
research subjects, such as the content and components of kernel competence. Thus the existing study
also can provide reference for the research. Reference [9] developed Principal component analysis (PCA)
and SPSS based model to evaluate scientific enterprise incubators of nine cities in Pearl River Delta.
The results showed the ranking and classification of incubators and put forward development plan
accordingly. Literature [10] conducted a questionnaire survey on six chain incubators. The relationship
between quantitative performance and importance was revealed through IPA in competitiveness
evaluation. Reference [11] outlined the assessment approach of enterprise incubator based on PCA and
DEA from the perspective of service and operation efficiency. A comprehensive technique that integrates
questionnaire survey with grey correlation assesses the national incubators regarding knowledge
service capability in [12]. Reference [13] paid close attention to social benefits in core competitiveness
assessment of incubators. The evaluation is executed from five aspects, that is, public service, innovation
and development, social education, labor employment and enterprise cultivation.

Evaluation methods can be separated into two categories: traditional assessment technique and
modern intelligent algorithm. The former needs complex calculation despite its mature development
and accurate results, such as fuzzy comprehensive evaluation method [14] matter-element extension
assessment [15] and TOPSIS [16]. Reference [14] developed an approach to reveal the relationship
between exposure, sensitivity and adaptive capacity for better flood vulnerability assessment, based on
the fuzzy comprehensive evaluation method. Reference [15] utilized the improved fuzzy matter-element
extension assessment model to evaluate urban water ecosystem health effectively. Reference [16]
used the improved TOPSIS model to evaluate the sustainability of power grid construction projects.
Modern intelligent approaches chiefly consist of back propagation neural network [17], extreme learning
machine [18], support vector machine [19], least squares support vector machine (LSSVM) [20]. Thereby,
this paper intends to combine the traditional evaluation model and intelligent algorithm to assess the
core competitiveness of clean energy incubators. Concretely, matter-element extension assessment
is first applied to obtain the results. Then, LSSVM is employed for intelligent evaluation. However,
owing to blind selection of penalty and kernel coefficients, it’s essential to use an appropriate method for
optimization [21]. NSGA-II is a multi-objective model based on the first generation of non dominated
sorting genetic algorithm with the advantage of excellent performance and high efficiency [22].
For example, reference [23] used the NSGA-II algorithm to obtain the multi-objective optimisation of
an interactive buildings-vehicles energy sharing network with high energy flexibility, which achieved
good optimization results. To this end, this paper exploits NSGA-II to automatically decide the
appropriate values in LSSVM.

It is worth noting that there exist many influencing factors on the core competitiveness of
clean energy incubators. Dimension reduction is critical for accuracy on account of strong coupling,
nonlinearity and redundancy in the indicators [24]. PCA, as a multivariate statistical approach, has the
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advantage over dealing with indexes with strong linear relationship [25]. Nevertheless, the relationship
among the core competitiveness indicators of clean energy incubators is mostly nonlinear. PCA is
not able to acquire high-order features which ignores the nonlinear information while reducing the
dimension [26]. As a result, kernel principal component analysis (KPCA) is used in this paper to
map the initial input variables to high-dimensional feature space through nonlinear transformation so
that the input dimension can be reduced on the premise of retaining nonlinear information among
variables [27].

Therefore, this paper establishes the core competitiveness index system of clean energy
incubator and proposes a hybrid model integrated matter-element extension assessment and
KPCA-NSGA-II-LSSVM for evaluation. The rest of paper is organized as follows: Section 2 designs the
indicator system including strategic positioning ability, seed selection ability, intelligent transplantation
ability, growth catalytic ability as well as service value-added ability, and introduces the preprocessing
method. Section 3 presents a brief description of the proposed evaluation technique. In Section 4,
a case study is carried out to validate the established model. Section 5 concludes the paper.

2. Establishment of Evaluation Index System for Core Competitiveness of Clean Energy Incubator

2.1. Selection of Evaluation Index

The kernel function of clean energy incubator is to cultivate corresponding enterprises.
Whether incubator owns core competitiveness resolves its survival rate and growth. The main
workflow includes seed business selection, related incubation service and tracking. Thus, specific
conditions can be employed for judgement whether incubated enterprises are able to graduate or be
obsoleted. These links are closely relevant and interact with each other. The core competitiveness is
dependent on the crucial resource and capabilities required by these parts.

It is obvious that the seed quality is significant. Clean energy incubators must make a choice
subjected to the resource. Furthermore, incubated service is an interactive process limited both by the
ability of incubator and enterprise itself. Enterprises with no development potential can hardly survive
or grow slowly even if they devote quantities of resources. Consequently, the quality of incubated seed
is quite important which is principally determined by strategic positioning ability and seed selection
ability [4].

The service provided by clean energy incubator aims at making the enterprises realize burgeoning
development. Entrepreneurs are mostly confronted with lack resource and systematic knowledge,
weak management capability as well as experience. Service with core competitiveness can be measured
by the following conditions: An entrepreneurial team can become an independent and growing
enterprise after incubation. It means incubator should possess the ability to transfer or graft the pivotal
resource needed by entrepreneurs. In particular, it mainly refers to intelligent transplantation ability,
growth catalytic ability, and service value-added ability.

In brief, the core competitiveness of clean energy incubator is chiefly decided by: strategic
positioning ability, seed selection ability, intelligent transplantation ability, growth catalytic ability,
service value-added ability. Figure 1 shows the established index system.
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Figure 1. Core competitiveness evaluation index system of clean energy incubator.

2.1.1. Subsubsection Strategic Positioning Ability

Strategic positioning ability refers to the location capability of clean energy incubators in industries,
regions and entrepreneurial groups. Incubators should first make strategic positioning for the target
enterprises or customers. The more technology opportunities and better development prospects the
incubators face, the more they match the regional progress. Additionally, strategic positioning ability
displays the positive change with the potential the entrepreneurial group.

(1) Consistency with the direction of global energy revolution: judge whether the leading business
development conforms to the direction of global future energy and whether it belongs to the global
emerging energy industry via the literature on key progress of clean energy assembled from the
United States, the United Kingdom, the European Union, Japan and other developed countries.
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(2) Consistency with the development of national energy industry: considering national economic
planning and policy, identify the key development of clean energy industry in China. Determine
whether the leading industry of the incubator is the key business encouraged by the state.

(3) Matching degree with regional development strategy: provincial and regional energy planning
as well as relevant materials can be used as the foundation to distinguish strategic development.
Thus, matching degree is able to be estimated from the perspective of supporting system and
unique resources through enterprise research and expert interview.

2.1.2. Seed Selection Ability

Seed selection ability represents the capability of incubator to identify the prospects of clean energy
enterprises. If the seed is identical with incubator positioning, development as well as innovation
ability, it declares the seed selection capability is strong.

(1) Consistency of entrepreneurial team positioning with incubators.
(2) Development vision of entrepreneurial team: progress plan and the expected venture capital in

the next five years.
(3) Innovation ability of entrepreneurial team: innovative resources and incentive means.

2.1.3. Intelligent Transplantation Ability

Intelligent transplantation ability stands for the capability to improve intellectual capital of
incubated enterprises including management intelligence development, innovation stimulation and
social capital cultivation.

(1) Management intelligence development ability: number of management consulting labour,
proportion of highly educated employees in management consulting service, management
communication and sharing level.

(2) Innovation stimulation: number of intellectual property applications, innovative culture construction.
(3) Social capital cultivation: stakeholder management, social network management, social

responsibility performance.

2.1.4. Growth Catalytic Ability

Growth catalytic ability can judge whether the incubated enterprises grow rapidly and expand
well which includes financing capability, standardized management ability as well as alliance
development ability.

(1) Financing capability: total incubation fund, financing service capability.
(2) Standardized management ability: technical standardization degree, business process standardization.
(3) Alliance growth ability: outsourcing, cluster development.

2.1.5. Service Value-Added Ability

Service value-added ability reflects the increase of value that incubator brings itself and enterprises,
including brand linkage ability, innovation support ability, achievement transfer ability and tracking
service ability.

(1) Brand linkage ability: industry brand, brand extension, brand feedback.
(2) Innovation support ability: total investment in innovation test platform, number of experts in

innovation team.
(3) Achievement transfer ability: number of successful introduction of external scientific payoffs,

number of scientific research achievements of incubating enterprises successfully transformed.
(4) Tracking service ability: knowledge information service effect, number of scientific and

technological achievements transferred, effect of expert service.
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2.2. Preprocessing of Evaluation Index

There mainly exist three kinds in the indicator system, namely extremely large, extremely
small and interval indexes. For example, extremely large indicators change in accordance with
core competitiveness. In order to make comparison with schemes and obtain the valuation results,
normalization processing should be implemented. In this paper, all the indicators are assigned into
extremely large indexes.

Due to distinguished attribute and quantity level of original data, it is essential to make the
indicators dimensionless as Equation (1):

x∗i j =
xi j√∑m
i=1 xi j2

, i = 1, 2, · · · , m; j = 1, 2, · · · , n (1)

where m and n represent the number of incubators and indexes, respectively.

3. Methodology

3.1. Entropy Weight Method

As a common approach in objective weight calculation, the principle of entropy weight method
derives from thermodynamics. Entropy is a measure of the system uncertainty. The greater entropy means
more chaotic system and less information [28]. Suppose the system locates in n states, the probability of
each state is set as Pi(i = 1→ n) . The entropy of the system is described as Equation (2)

E = −
n∑

i=1

Pi ln pi (2)

where Pi(i = 1→ n) satisfies: 0 ≤ Pi ≤ 1,
n∑

i=1
Pi = 1.

The following procedures are listed:

(1) Establishment of standardized judgment matrix

In accordance with standardized data obtained from Equation (1), the standardized judgment
matrix is acquired.

(2) Calculate the information entropy of each index

H j = −k
m∑

i=1

fi j ln fi j (3)

fi j =
x∗i j∑m

i=1 x∗i j
(4)

k =
1

ln m
(5)

(3) Index weighting

w j =
1−H j∑n

j=1

(
1−H j

) (6)

where 0 ≤ w j ≤ 1,
∑n

j=1 w j = 1.
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3.2. Evaluation Model Integrated Matter-Element Extension with TOPSIS

TOPSIS, also known as approximate ideal solution, firstly draws up two schemes. One of the scheme
presents the best attribute values, called positive ideal solution, while the attributes of the other plan are
all the worst, named negative ideal solution. Then, compare each scheme with the positive as well as
negative ideal solutions, respectively. The optimal programme is selected which is close to the positive
ideal solution and far away from the negative one simultaneously [29]. Hence, this best scheme shows
the highest core competitiveness. Whereas, TOPSIS can not judge the competitiveness level of each plan,
that is, it can’t be decided whether the level belongs to very high, high, general or low [30].

Matter-element extension evaluation method combined matter-element theory, extension set with
correlation degree for quantitative evaluation. This model divides the data interval of the evaluated
target into several orders and determine their levels. Correlation degree is calculated between each
plan and the grade. The larger the correlation degree is, the higher the membership extent present.
The level of the evaluated target depends on the grade of data interval with the highest membership
degree [31].

Thus, this paper integrates matter-element extension model with TOPSIS for core competitiveness
assessment. TOPSIS is firstly used to determine the positive and negative ideal solutions and divide
the interval into several grades by equal distance. Each grade corresponds to the given level of core
competitiveness. Then calculate the correlation degree between each scheme and the grades. Hence,
the core competitiveness level of the plan can be accordingly judged.

The main measures can be described as follows:

(1) Establishment of standardized index matrix

Suppose the scheme set including n evaluation indicators is M = (M1, M2, · · ·, Mm).
The assessment indexes are presented as D = (D1, D2, · · ·, Dn). The standardized index matrix
C is derived from consistent and dimensionless processing as Equation (7)

C =
(
ci j

)
m×n

=


c11 c12 · · · c1n
c21 c22 · · · c2n

· · · · · · · · · · · ·

cm1 cm2 · · · cmn

 (7)

where ci j = (i = 1, 2, · · ·, m; j = 1, 2, · · ·, n) is the standardized indicator of Di in scheme Mi.

(2) Establishment of weighted standardized matrix

The entropy weight method is applied to calculate the weight of indexes w j. The weighted
standardized matrix is shown as Equation (8)

X =
(
xi j

)
m×n

=


w1c11 w2c12 · · · wnc1n
w1c21 w2c22 · · · wnc2n

· · · · · · · · · · · ·

w1cm1 w2cm2 · · · wncmn

 (8)

(3) Determine positive and negative ideal solutions of each scheme

The positive ideal solution is:

X+ =
{

max
1≤i≤m

xi( j)
∣∣∣∣∣ j ∈ J+, min

1≤i≤m
xi( j)

∣∣∣ j ∈ J−
}

(9)

The negative ideal solution is:

X− =
{

min
1≤i≤m

xi( j)
∣∣∣∣∣ j ∈ J+, max

1≤i≤m
xi( j)

∣∣∣ j ∈ J−
}

(10)
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(4) Division of extremum interval and calculation of closeness degree

The extremum interval composed of negative positive ideal solutions is divided into N layers.
namely, Hit = (h1

it, h2
it), i = 1, 2, · · · , n; t = 1, 2, · · · , N, x−i ≤ h1

it ≤ x+i , x−i ≤ h2
it ≤ x+i , [x−i , x+i ] consists of

h1
it and h2

it.
The closeness degree between each index and evaluation interval in standardized decision matrix

can be obtained according to Equation (11):

E(Ni) =

∣∣∣∣∣∣∣xi j −
h1

jt + h2
jt

2

∣∣∣∣∣∣∣ (11)

Thus, the weighted closeness degree of each evaluation plan can be further derived:

Q j(Ni) = 1−
n∑

j=1

w jE(Ni) (12)

(5) Determine the grade of each scheme

The level that the maximum of Q j(Ni) belongs to can be regarded as the evaluation grade of
the scheme.

3.3. KPCA

PCA is able to merge the original features and reduce the dimension to simplify computation,
especially aiming at strong linear indicators. However PCA is difficult to grab high-order features,
so it ignores nonlinear information during dimension reduction. With consideration of nonlinearity in
core competitiveness of clean energy incubators, kernel principal component analysis (KPCA) is taken
advantage of to extract key factors in this study [32].

This approach can validly reduce the dimension of the input in condition of retaining main
nonlinear information. It is achieved by using nonlinear transformation to map initial input into
high-dimensional feature space. Apparently, KPCA is able to compress the information contained in a
large number of indexes into some comprehensive indicators. The basic steps are presented as follows:

Set a random vector X = {x1, x2, . . . , xn}
T, xk ∈ RN(k = 1, 2, . . . , m), m is the number of input,

namely the original input can be expressed as M = [a1, a2, . . . . . . , an]
T = [b1, b2, . . . . . . , bm]. The dataset

is projected into the space F via nonlinear mapping Φ, M = [φ(b1),φ(b2), . . . . . . ,φ(bm)],
m∑

k=1
φ̃(bi) = 0.

The covariance matrix is shown as follows:

CF =


C11, C12, . . . , C1n

. . . . . .
Cn1, Cn2, . . . , Cnn

 (13)

C =
1
m

m∑
i

φ(bi)φ(bi)
T (14)

The eigenvalue and eigenvector can be obtained as Equation (15)

CFWF = λFWF (15)

where λF is the eigenvalue, WF =
M∑

k=1
αkφ̃(xk) represents the corresponding eigenvector. The symmetric

matrix K is shown in Equation (16):

K(xk, x j) = (φ(xk) ·φ(x j)) (16)
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K̃ can be acquired via matrix centralization:

K̃ = K− InK−KIn + InKIn (17)

where In is n × n matrix, Ii,j = 1/n, Equation (15) can be simplified as:

mλFM = K̃M (18)

Thus the kernel principal component can be calculated with reference to extraction technique of
traditional PCA.

3.4. NGSA-II

NSGA-II optimization algorithm is a novel genetic algorithm on the foundation of NSGA.
Despite Pareto optimum can be derived from individual classification in accordance with non
dominated sorting via NSGA, it needs complicated calculation and given shared radius value.
Therefore, fast non-dominated sorting technique, crowding degree and elite strategy are introduced
into NSGA, namely NSGA-II, to promote the robustness and operation speed [33].

The specific procedures of NSGA-II are described as follows:

(1) Generate initial population Pt and achieve non-dominated sorting as well as given Pareto optimum.
The genetic operation Pt is carried out to form the offspring Qt.

(2) Aamalgamate Pt with Qt to generate the new species Rt. Implement non-dominated ranking on
Rt and calculate the crowding degree di of ri.

(3) A new generation Pt+1 comes into being in line with non-dominated ranking and crowding
degree di.

(4) If t does not reach the maximum number of iteration tmax, t = t + 1. Otherwise, the calculation
will be terminated and the output will be obtained.

The crowding degree (di.) refers to the density of other individuals around each personality in
the population. The individual crowding degree at the boundary is defined as infinite, the crowding
degree at other positions can be calculated as follows:

di =
m∑

j=1

∣∣∣ f j,i+1 − f j,i−1
∣∣∣

f jmax − f jmin
(19)

where di. represents the crowding degree of i, m equals the number of objective functions, fjmax, fjmin are
the maximum and minimum of j-th objective function.

3.5. LSSVM

LSSVM is an extension of SVM. This method makes use of equality constraints to replace the
inequality constraints and employs kernel functions to transform prediction into equation problems,
which contributes to the improvement of evaluation accuracy and speed [34].

In LSSVM, the sample is set as T =
{
(xi, yi)

}N
i=1, N is the number of samples. The regression model

can be established as Equation (20)
y(x) = wT

·ϕ(x) + b (20)

where ϕ(∗) maps the training samples into a highly dimensional space. w and b are the weight vector
and bias, partly.

The converted optimization problem is shown as follows:

min
1
2

wTw +
1
2
γ

N∑
i=1

ξ2
i (21)
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yi = wTφ(xi) + b + ξi, i = 1, 2, 3, . . .N (22)

where γ equal the regularization parameter applicable to balance the complexity and accuracy in
LSSVM. ξi is the error.

The Lagrange function is defined to address the problem:

L(w, b, ξi,αi) =
1
2

wTw +
1
2
γ

N∑
i=1

ξ2
i −

N∑
i=1

αi
[
wTϕ(xi) + b + ξi − yi

]
(23)

whereαi is Lagrange multipliers. In the light of the Karush-Kuhn-Tucker (KKT) conditions, Equation (24)
is derived: 

∂L
∂w = 0→ w =

N∑
i=1

αiϕ(xi)

∂L
∂b = 0→

N∑
i=1

αi = 0

∂L
∂ξ = 0→ αi = γξi

∂L
∂α = 0→ wT + b + ξi − yi = 0

(24)

The optimization problem is converted into the following matter through eliminating the variables
of w and ξi: [

0 eT
n

en Ω + γ−1
· I

]
·

[
b
a

]
=

[
0
y

]
(25)

where
Ω = ϕT(xi)ϕ(xi) (26)

en = [1, 1, . . . , 1]T (27)

α = [α1,α2, . . . ,αn] (28)

y = [y1, y2, . . . , yn]
T (29)

The final form of LSSVM is displayed in Equation (30):

y(x) =
N∑

i=1

αiK(xi, x) + b (30)

where K(xi, x) equals the kernel function that satisfies Mercer’s condition. The paper selects radial
basis function (RBF) as the kernel function of LSSVM on account of its wide convergence range and
application, as described in Equation (31):

K(xi, x) = exp
{
−‖x− xi‖

2/2σ2
}

(31)

where σ2 is the width of the kernel width.
Evidently, the performance of LSSVM is chiefly decided by two parameters: kernel parameter γ

and regularization parameter σ2.

3.6. Approaches of Matter-Element Extension Combined with TOPSIS and KPCA-NSGA-II-LSSVM

Based on the approach that combines matter-element extension, the core competitiveness
evaluation model incorporating KPCA, NSGA-II, and LSSVM is constructed for clean energy incubators
where KPCA is utilized for the determination of input and NSGA-II is exploited for parameter
optimization in LSSVM. The flowchart of the novel evaluation technique is illustrated in Figure 2.
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Step 1: Parameters initialization and data preprocessing. Suppose the input X = {xi, i = 1, 2, · · · , n}
consists of the aforementioned core competitiveness evaluation indexes of clean energy incubators,
as Table 1 shows. Consistency and standardized processing are implemented on the original input xi.

Step 2: Weight Determination. The entropy weight method is used here. Besides, evaluation
results can be obtained based on matter-element extension integrated with TOPSIS.

Step 3: Input selection. Crucial factors in original input X are extracted via KPCA. Gaussian kernel
function is selected for nonlinear mapping as shown in Equation (32). The kernel principal components
whose cumulative variance contribution is higher than 95% form the new input matrix.

k(x, y) = exp
−‖x− y‖2

2σ2

 (32)

Step 4: Parameter optimization. Initialize the parameters in LSSVM and NSGA-II. Due to the
influence of parameters on training and learning ability in LSSVM, this paper applies NSGA-II to
optimize the two parameters, that is, γ and σ2. Circulation ends at the maximum number of iteration
tmax, thus the optimal parameters can be substituted into LSSVM. Through continuous retraining and
testing, the two parameters are adjusted again and the optimal core competitiveness evaluation model
for clean energy incubator is established.

Step 5: Output the evaluation results. According to the characteristics of the core competitiveness
level of clean energy incubators, the category labels are set as 1, 2, 3 and 4, that corresponds to the
grades of core competitiveness, namely very high, high, general and low, respectively.
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Table 1. The input of evaluation model.

Input Index Input Index

x1
Leading industry is in line with the global

future energy development direction x19 Social network management

x2
Leading industry belongs to the global

emerging energy industry x20 Social responsibility performance

x3
Leading industry is attributed to key industries

encouraged by the state x21 Total incubation fund

x4
Leading industry is ascribed to clean energy

industry x22 Financing service capability

x5
Leading energy industry is the focus of

regional strategic progress x23 Technical standardization degree

x6
Leading energy industry possesses growth

foundation and supporting system x24 Business process standardization

x7
Leading energy industry owns unique

resources x25 Outsourcing

x8
Positioning consistency between

entrepreneurial team and incubator x26 Cluster development

x9 Future five-year plan x27 Industry brand

x10
Future five-year expected venture capital

investment x28 Brand extension

x11 Innovation resources x29 Brand feedback

x12 Innovative incentives x30
Total investment in innovation test

platform
x13 Number of management consulting labour x31 Number of experts in innovation team

x14
Proportion of highly educated employees in

management consulting service x32
Number of successful introduction of

external scientific payoffs

x15 Management communication and sharing level x33

Number of scientific research
achievements of incubating enterprises

successfully transformed
x16 Number of intellectual property applications x34 Knowledge information service effect

x17 Innovative culture construction x35
Number of scientific and technological

achievements transferred
x18 Stakeholder management x36 Effect of expert service

4. Experiment Study

4.1. Input Selection and Preprocessing

In order to verify the performance of the established approach, this paper conducts a study on
core competitiveness evaluation base on 20 clean energy incubators. The type and representative
quantitative index data of 20 incubators are shown in Table 2.

According to the evaluation index system for the core competitiveness of clean energy incubator,
Table 3 shows the indicator properties and attributes. Through field investigation and data collection,
the relevant data are assembled and sorted out. Simultaneously, 15 experts are invited to score the
qualitative indexes in [0, 100]. The corresponding mean value can be considered as the stationary criteria.

In the light of above-mentioned data preprocessing method, the standardized results of the
20 samples are derived as listed in Tables 4 and 5.

Table 2. The type and representative quantitative index data of 20 incubators.

Clean
Energy

Incubator
Type

Future Five-Year
Expected Venture

Capital Investment
(Million Chinese Yuan)

Proportion of Highly
Educated Employees in

Management
Consulting Service (%)

Total Incubation
Fund (Million
Chinese Yuan)

A Solar, hydro,
biomass 59 91 111

B Solar 79 61 98
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Table 2. Cont.

Clean
Energy

Incubator
Type

Future Five-Year
Expected Venture

Capital Investment
(Million Chinese Yuan)

Proportion of Highly
Educated Employees in

Management
Consulting Service (%)

Total Incubation
Fund (Million
Chinese Yuan)

C Wind, solar,
biomass 73 49 68

D Wind, solar, hydro,
biomass 88 95 92

E Solar 87 64 83
F Biomass 71 69 105
G Hydro 46 47 70

H Wind, Solar,
biomass 58 84 86

I Solar, biomass 81 89 77
J Wind, solar, hydro 49 72 87
K Wind, biomass 71 63 74

L Wind, solar, hydro,
biomass 80 72 103

M Wind, solar,
biomass 120 42 98

N Wind, solar, hydro,
biomass 56 73 84

O Wind, solar 59 79 96
P Wind, solar 84 54 101
Q Wind, biomass 79 80 69

R Wind, solar, hydro,
biomass 58 96 94

S Wind, hydro 165 79 94

T Wind, solar, hydro,
biomass 69 57 156

Table 3. Evaluation index properties for core competitiveness of clean energy incubator.

Index Index Properties

Leading industry is in line with the global future energy development direction qualitative indicator
Leading industry belongs to the global emerging energy industry qualitative indicator

Leading industry is attributed to key industries encouraged by the state qualitative indicator
Leading industry is ascribed to clean energy industry qualitative indicator

Leading energy industry is the focus of regional strategic progress qualitative indicator
Leading energy industry possesses growth foundation and supporting system qualitative indicator

Leading energy industry owns unique resources qualitative indicator
Positioning consistency between entrepreneurial team and incubator qualitative indicator

Future five-year plan qualitative indicator
Future five-year expected venture capital investment quantitative indicator

Innovation resources qualitative indicator
Innovative incentives qualitative indicator

Number of management consulting labour quantitative indicator
Proportion of highly educated employees in management consulting service quantitative indicator

Management communication and sharing level qualitative indicator
Number of intellectual property applications quantitative indicator

Innovative culture construction qualitative indicator
Stakeholder management qualitative indicator

Social network management qualitative indicator
Social responsibility performance qualitative indicator

Total incubation fund quantitative indicator
Financing service capability qualitative indicator

Technical standardization degree qualitative indicator
Business process standardization qualitative indicator

Outsourcing qualitative indicator
Cluster development qualitative indicator

Industry brand qualitative indicator
Brand extension qualitative indicator
Brand feedback qualitative indicator
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Table 3. Cont.

Index Index Properties

Total investment in innovation test platform quantitative indicator
Number of experts in innovation team quantitative indicator

Number of successful introduction of external scientific payoffs quantitative indicator
Number of scientific research achievements of incubating enterprises successfully transformed quantitative indicator

Knowledge information service effect qualitative indicator
Number of scientific and technological achievements transferred quantitative indicator

Effect of expert service qualitative indicator

Table 4. Data processing results of core competitiveness evaluation indexes for clean energy incubator (A–J).

Index
Clean Energy Incubator

A B C D E F G H I J

x1 0.1759 0.1699 0.2176 0.2653 0.1580 0.1699 0.1550 0.2176 0.1669 0.2116
x2 0.2106 0.2106 0.2244 0.2494 0.2411 0.2217 0.1690 0.2549 0.2522 0.1607
x3 0.1946 0.1828 0.2270 0.2830 0.2329 0.2299 0.2329 0.2299 0.1533 0.2005
x4 0.1611 0.1845 0.2577 0.2109 0.2314 0.1669 0.1992 0.2577 0.1845 0.1962
x5 0.2542 0.1636 0.1928 0.2571 0.1461 0.1870 0.2308 0.2717 0.2747 0.1636
x6 0.2367 0.2033 0.2200 0.2144 0.1392 0.1922 0.1810 0.1782 0.2367 0.2646
x7 0.1713 0.2156 0.1624 0.1565 0.1477 0.2805 0.2126 0.1595 0.2599 0.1624
x8 0.1923 0.2358 0.2203 0.2637 0.1830 0.1954 0.2575 0.2854 0.2078 0.2296
x9 0.2744 0.1547 0.2481 0.2568 0.1693 0.2043 0.1868 0.2481 0.1780 0.1985
x10 0.1580 0.2534 0.2117 0.2653 0.2743 0.2295 0.1520 0.1818 0.2236 0.1580
x11 0.1849 0.2333 0.1992 0.2561 0.1451 0.2162 0.2134 0.2703 0.2532 0.2504
x12 0.2156 0.1983 0.2529 0.2616 0.1696 0.2414 0.2299 0.1955 0.2443 0.2817
x13 0.1532 0.1763 0.2746 0.2659 0.1705 0.2544 0.2804 0.2341 0.2544 0.1445
x14 0.2644 0.1968 0.1783 0.2829 0.2060 0.1906 0.1568 0.2460 0.2644 0.2306
x15 0.1948 0.1791 0.2765 0.1948 0.1885 0.2137 0.1760 0.2168 0.2639 0.1571
x16 0.2401 0.2075 0.2579 0.2519 0.1838 0.1838 0.1512 0.2312 0.2579 0.2579
x17 0.1985 0.1496 0.1438 0.2761 0.1668 0.2617 0.2013 0.2128 0.1841 0.2646
x18 0.2753 0.1639 0.2227 0.2691 0.1639 0.1547 0.1639 0.1949 0.2011 0.2815
x19 0.2199 0.1789 0.2785 0.2140 0.1554 0.2375 0.2610 0.2140 0.2698 0.2170
x20 0.1850 0.1577 0.2395 0.2426 0.1910 0.2335 0.1941 0.1546 0.2426 0.2880
x21 0.2783 0.2416 0.1529 0.2294 0.1927 0.2661 0.1591 0.2111 0.1743 0.2111
x22 0.1675 0.1764 0.1645 0.2871 0.1884 0.1615 0.2183 0.2422 0.2392 0.1884
x23 0.1934 0.1876 0.1817 0.2726 0.1671 0.1700 0.2579 0.1817 0.2608 0.2491
x24 0.1527 0.2363 0.2392 0.2709 0.2248 0.2162 0.2796 0.1787 0.2248 0.1643
x25 0.1630 0.2673 0.2804 0.2413 0.1924 0.1728 0.2869 0.1663 0.1695 0.2739
x26 0.2383 0.2085 0.1519 0.2234 0.1758 0.1847 0.2800 0.2949 0.1639 0.1609
x27 0.2686 0.1618 0.2773 0.2195 0.2571 0.2282 0.2369 0.2109 0.1878 0.2253
x28 0.1572 0.1659 0.1688 0.2678 0.1717 0.2853 0.1979 0.2445 0.2125 0.2649
x29 0.2057 0.2299 0.2541 0.2814 0.2420 0.2511 0.1694 0.2602 0.2965 0.1634
x30 0.2547 0.2179 0.2009 0.2122 0.1641 0.1472 0.1953 0.2405 0.2377 0.2377
x31 0.1662 0.1543 0.1484 0.2463 0.1721 0.2018 0.2967 0.2077 0.2166 0.2196
x32 0.2060 0.1752 0.2060 0.2367 0.1537 0.1722 0.2336 0.1906 0.2582 0.2859
x33 0.2935 0.1585 0.1585 0.2641 0.1761 0.1819 0.1790 0.1643 0.2406 0.2524
x34 0.2185 0.1742 0.2805 0.2923 0.2067 0.1801 0.1506 0.1978 0.1713 0.2244
x35 0.2219 0.1849 0.1941 0.2435 0.2712 0.1602 0.2496 0.2219 0.2157 0.1849
x36 0.2709 0.1777 0.1602 0.2855 0.2564 0.2156 0.2069 0.2797 0.2535 0.2709
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Table 5. Data processing results of core competitiveness evaluation indexes for clean energy incubator (K–T).

Index
Clean energy Incubator

K L M N O P Q R S T

x1 0.1908 0.2832 0.2534 0.2623 0.2414 0.2414 0.2265 0.2891 0.1997 0.2891
x2 0.1746 0.2328 0.2716 0.2383 0.2078 0.1773 0.2106 0.2688 0.2189 0.2328
x3 0.2801 0.2948 0.1739 0.1533 0.2299 0.1651 0.1946 0.2859 0.2211 0.2270
x4 0.1464 0.2929 0.1581 0.1523 0.2460 0.2753 0.2665 0.2812 0.2197 0.2812
x5 0.2600 0.2308 0.2425 0.2484 0.1753 0.1812 0.1899 0.2659 0.2338 0.2308
x6 0.2116 0.2673 0.2590 0.1671 0.1894 0.2701 0.2172 0.2089 0.2701 0.2785
x7 0.2510 0.2599 0.2451 0.2185 0.2835 0.2392 0.2303 0.2776 0.2717 0.1683
x8 0.2327 0.1923 0.2047 0.1861 0.1861 0.2078 0.2482 0.1706 0.2761 0.2482
x9 0.2860 0.2919 0.2131 0.2247 0.1722 0.2919 0.1868 0.1605 0.2423 0.1956
x10 0.2146 0.2534 0.2862 0.1848 0.1878 0.2534 0.2206 0.1789 0.2921 0.2117
x11 0.1679 0.2418 0.2731 0.2361 0.1536 0.1849 0.1792 0.2731 0.1878 0.2760
x12 0.2328 0.2472 0.2070 0.2213 0.1667 0.1437 0.1725 0.2817 0.2414 0.2041
x13 0.2544 0.2197 0.2833 0.2601 0.1532 0.1503 0.2457 0.2486 0.1792 0.1590
x14 0.1753 0.2306 0.1599 0.2029 0.2460 0.1753 0.2737 0.2952 0.2491 0.1630
x15 0.1791 0.2828 0.2074 0.1791 0.2168 0.2671 0.2734 0.2514 0.2357 0.2514
x16 0.2193 0.2549 0.1838 0.1719 0.1778 0.1927 0.2342 0.1541 0.2964 0.2845
x17 0.1956 0.2531 0.1639 0.2560 0.2100 0.2704 0.2330 0.1783 0.2819 0.2790
x18 0.2103 0.3062 0.2475 0.2073 0.1980 0.1918 0.1732 0.3093 0.2506 0.1825
x19 0.2082 0.2199 0.1965 0.2698 0.2404 0.1613 0.2639 0.1701 0.1730 0.2580
x20 0.2304 0.2971 0.1607 0.1789 0.1789 0.2850 0.2213 0.2850 0.2426 0.1698
x21 0.1743 0.2600 0.2478 0.1958 0.2386 0.2569 0.1560 0.2355 0.2325 0.2845
x22 0.2452 0.2093 0.1525 0.2452 0.2452 0.2692 0.2063 0.2632 0.2303 0.2931
x23 0.2638 0.2520 0.1465 0.2052 0.2579 0.2403 0.2550 0.2110 0.2257 0.2286
x24 0.1556 0.1989 0.2248 0.2709 0.2767 0.1441 0.1787 0.2680 0.1960 0.2796
x25 0.2641 0.2999 0.1858 0.2282 0.2250 0.1826 0.2152 0.2021 0.1663 0.1989
x26 0.1490 0.2234 0.2443 0.2830 0.2115 0.2443 0.1996 0.2800 0.1966 0.2651
x27 0.2455 0.2744 0.1618 0.1820 0.1762 0.2658 0.2484 0.2195 0.1733 0.1878
x28 0.2009 0.1892 0.2387 0.2212 0.2678 0.1921 0.2503 0.2212 0.2824 0.2009
x29 0.2481 0.2299 0.1967 0.1785 0.1573 0.1815 0.2693 0.2299 0.1936 0.1513
x30 0.2660 0.2660 0.2462 0.1783 0.2717 0.2462 0.2009 0.2151 0.2405 0.1783
x31 0.1721 0.2285 0.2819 0.2819 0.2404 0.1899 0.2522 0.2255 0.2344 0.2552
x32 0.2859 0.2675 0.2183 0.1906 0.1937 0.2798 0.1875 0.2336 0.1845 0.2429
x33 0.1614 0.2348 0.2377 0.1878 0.2817 0.2582 0.2758 0.2612 0.2465 0.1585
x34 0.2510 0.2658 0.1742 0.1919 0.1536 0.2599 0.2923 0.2628 0.2303 0.2038
x35 0.1664 0.2928 0.2589 0.2003 0.2619 0.2280 0.2157 0.2743 0.1695 0.1911
x36 0.1632 0.2185 0.1894 0.2156 0.2098 0.1777 0.2331 0.2506 0.1748 0.1923

4.2. Evaluation and Analysis of Core Competitiveness of Clean Energy Incubator Based on Matter-Element
Extension Model Integrated with TOPSIS

Table 6 presents the indicator weights derived from Equations (2)–(5).
The weighted standardized matrix X can be further obtained as Equation (33):

X =



0.0058 0.0087 0.0078 · · · 0.0088
0.0027 0.0036 0.0042 · · · 0.0036
0.0078 0.0082 0.0048 · · · 0.0063

...
...

... · · ·
...

0.0040 0.0053 0.0046 · · · 0.0047


(33)
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Table 6. Indicator weights.

Index Weight Index Weight

x1 0.0306 x19 0.0230
x2 0.0156 x20 0.0327
x3 0.0278 x21 0.0262
x4 0.0364 x22 0.0278
x5 0.0256 x23 0.0229
x6 0.0236 x24 0.0327
x7 0.0353 x25 0.0312
x8 0.0165 x26 0.0327
x9 0.0306 x27 0.0224
x10 0.0285 x28 0.0246
x11 0.0273 x29 0.0290
x12 0.0223 x30 0.0195
x13 0.0401 x31 0.0283
x14 0.0295 x32 0.0241
x15 0.0232 x33 0.0354
x16 0.0280 x34 0.0314
x17 0.0326 x35 0.0226
x18 0.0358 x36 0.0243

Table 7 manifests the positive ideal solution Z+ as well as the negative one calculated from
Equations (9) and (10). The extremum interval composed of the above results is divided into four
levels, namely low, general, high and very high. Here, x1 is taken as an example, the corresponding
positive and negative ideal solutions are 0.0088 and 0.0047, respectively. The interval can be expressed
as Equation (34). This technique is applicable for other indexes.

H11 = [0.0047, 0.0058]
H12 = [0.0058, 0.0068]
H13 = [0.0068, 0.0078]
H14 = [0.0078, 0.0088]

(34)

Table 7. Positive and negative ideal solutions.

Index Positive Ideal
Solution

Negative Ideal
Solution Index Positive Ideal

Solution
Negative Ideal

Solution

x1 0.0088 0.0047 x19 0.0064 0.0036
x2 0.0042 0.0025 x20 0.0097 0.0051
x3 0.0082 0.0043 x21 0.0075 0.0040
x4 0.0107 0.0053 x22 0.0081 0.0042
x5 0.0070 0.0037 x23 0.0062 0.0034
x6 0.0066 0.0033 x24 0.0091 0.0047
x7 0.0100 0.0052 x25 0.0094 0.0051
x8 0.0047 0.0028 x26 0.0096 0.0049
x9 0.0089 0.0047 x27 0.0062 0.0036
x10 0.0083 0.0043 x28 0.0070 0.0039
x11 0.0075 0.0040 x29 0.0086 0.0044
x12 0.0063 0.0032 x30 0.0053 0.0029
x13 0.0114 0.0058 x31 0.0084 0.0042
x14 0.0087 0.0046 x32 0.0069 0.0037
x15 0.0066 0.0036 x33 0.0104 0.0056
x16 0.0083 0.0042 x34 0.0092 0.0047
x17 0.0092 0.0047 x35 0.0066 0.0036
x18 0.0111 0.0055 x36 0.0069 0.0039
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Furthermore, the closeness degree E(Ni) between each index in standardized decision matrix and
four evaluation intervals is computed as Equations (35)–(38).

E(N1) =



0.0001 0.0001 0.0014 · · · 0.0036
0.0006 0.0006 0.0008 · · · 0.0009
0.0007 0.0003 0.0016 · · · 0.0016

...
...

... · · ·
...

0.0023 0.0000 0.0004 · · · 0.0004


(35)

E(N2) =



0.0009 0.0011 0.0004 · · · 0.0026
0.0001 0.0001 0.0003 · · · 0.0005
0.0003 0.0007 0.0006 · · · 0.0006

...
...

... · · ·
...

0.0015 0.0007 0.0011 · · · 0.0004


(36)

E(N3) =



0.0019 0.0021 0.0006 · · · 0.0015
0.0003 0.0003 0.0001 · · · 0.0000
0.0013 0.0016 0.0004 · · · 0.0004

...
...

... · · ·
...

0.0008 0.0015 0.0019 · · · 0.0011


(37)

E(N4) =



0.0030 0.0031 0.0017 · · · 0.0005
0.0007 0.0007 0.0005 · · · 0.0004
0.0023 0.0026 0.0014 · · · 0.0014

...
...

... · · ·
...

0.0000 0.0022 0.0027 · · · 0.0019


(38)

Figure 3 and Table 8 illustrate the weighted closeness degree of each evaluation scheme. The level
of the maximum of Qj(Ni) can be determined as the level of the evaluation object.
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Table 8. The weighted closeness degree and valuation level of each evaluation scheme.

Clean Energy
Incubator Q(N1) Q(N2) Q(N3) Q(N4) Max Value Valuation Level

A 0.9987 0.9989 0.9987 0.9981 0.9989 general
B 0.9992 0.9991 0.9986 0.9977 0.9992 low
C 0.9985 0.9988 0.9988 0.9983 0.9988 general
D 0.9976 0.9985 0.9992 0.9992 0.9992 very high
E 0.9992 0.9990 0.9985 0.9976 0.9992 low
F 0.9988 0.9990 0.9988 0.9981 0.9990 general
G 0.9986 0.9988 0.9986 0.9981 0.9988 general
H 0.9985 0.9990 0.9990 0.9983 0.9990 general
I 0.9984 0.9989 0.9990 0.9985 0.9990 high
J 0.9985 0.9988 0.9988 0.9984 0.9988 general
K 0.9986 0.9989 0.9988 0.9983 0.9989 general
L 0.9975 0.9985 0.9991 0.9992 0.9992 very high
M 0.9985 0.9988 0.9988 0.9983 0.9988 high
N 0.9986 0.9990 0.9988 0.9983 0.9990 general
O 0.9986 0.9989 0.9988 0.9983 0.9989 general
P 0.9984 0.9987 0.9988 0.9985 0.9988 high
Q 0.9983 0.9990 0.9991 0.9986 0.9991 high
R 0.9977 0.9984 0.9989 0.9990 0.9990 very high
S 0.9983 0.9990 0.9991 0.9986 0.9991 high
T 0.9984 0.9987 0.9986 0.9983 0.9987 general

4.3. Evaluation and Analysis of Core Competitiveness of Clean Energy Incubator Based on
KPCA-NSGA-II-LSSVM

Exact though it is, the aforementioned techniques are not suitable to address massive data for
their weakness of complex calculation and low efficiency. Thus, the intelligent evaluation model is
proposed in this paper.

4.3.1. Growth Catalytic Ability

In this part, the above 20 clean energy incubators are taken as training sample, and the other
20 incubators are used as testing samples. PCA and KPCA are applied to 36 indicators to attain the
variance contribution rates and cumulative variance contribution rate, as shown in Tables 9 and 10.
Figures 4 and 5 exhibit the results more intuitively.

Table 9. Variance contribution rates and cumulative variance contribution rate of PCA.

Component Variance Contribution Rate/% Cumulative Variance Contribution Rate/%

1 25.68 25.68
2 16.67 42.35
3 8.66 51.01
4 8.56 59.57
5 6.56 66.13
6 6.02 72.15
7 5.22 77.37
8 3.65 81.02
9 3.02 84.04

10 2.66 86.7
11 2.56 89.26
12 2.36 91.62
13 1.88 93.5
14 1.83 95.33
15 1.16 96.49
16 0.96 97.45
17 0.88 98.33
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Table 9. Cont.

Component Variance Contribution Rate/% Cumulative Variance Contribution Rate/%

18 0.52 98.85
19 0.38 99.23
20 0.22 99.45
21 0.18 99.63
22 0.16 99.79
23 0.09 99.88
24 0.06 99.94
25 0.03 99.97
26 0.01 99.98
27 0.01 99.99
28 0.01 100
29 0 100
30 0 100
31 0 100
32 0 100
33 0 100
34 0 100
35 0 100
36 0 100

Table 10. Variance contribution rates and cumulative variance contribution rate of KPCA.

Component Variance Contribution Rate/% Cumulative Variance Contribution Rate/%

1 69.56 69.56
2 18.58 88.14
3 7.56 95.7
4 2.82 98.52
5 0.99 99.51
6 0.26 99.77
7 0.18 99.95
8 0.03 99.98
9 0.02 100

10 0 100
11 0 100
12 0 100
13 0 100
14 0 100
15 0 100
16 0 100
17 0 100
18 0 100
19 0 100
20 0 100
21 0 100
22 0 100
23 0 100
24 0 100
25 0 100
26 0 100
27 0 100
28 0 100
29 0 100
30 0 100
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Table 10. Cont.

Component Variance Contribution Rate/% Cumulative Variance Contribution Rate/%

31 0 100
32 0 100
33 0 100
34 0 100
35 0 100
36 0 100
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From Tables 9 and 10, Figures 4 and 5, it can be seen that the first principal component of KPCA
explains 69.56% of the factors, while the contribution rate of the first principal component in PCA is
only 25.68%. In addition, it needs to extract 14 principal components in PCA or 3 principal components
in KPCA to ensure cumulative contribution rate more than 95%, which can retain enough original data
information. Therefore, the dimension reduction and simplification of KPCA is superior to PCA.
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The selected principal components coefficients are acquired through dividing the principal
component load vectors by the arithmetic square root of the eigenvalues. The output component
matrix is presented in Table 11.

Table 11. Component matrix of KPCA.

Factor
Component

1 2 3

x1 −0.903 −0.933 0.598
x2 0.267 −0.452 0.948
x3 0.471 0.700 0.352
x4 0.862 −0.548 0.821
x5 −0.060 0.708 0.861
x6 0.673 −0.721 0.440
x7 0.443 −0.199 −0.368
x8 0.227 −0.669 −0.607
x9 0.174 −0.645 0.547
x10 −0.399 0.181 0.487
x11 −0.508 −0.852 0.475
x12 −0.167 0.401 0.438
x13 −0.690 0.548 0.379
x14 −0.385 0.568 −0.053
x15 0.750 −0.054 −0.055
x16 −0.125 −0.007 −0.809
x17 −0.475 0.350 0.336
x18 0.958 0.696 0.610
x19 0.901 −0.248 0.948
x20 0.066 −0.182 0.663
x21 0.033 0.991 0.125
x22 0.144 0.006 −0.919
x23 0.378 0.491 0.527
x24 0.518 0.784 0.144
x25 −0.561 0.964 0.333
x26 −0.960 −0.256 −0.828
x27 0.659 0.961 −0.572
x28 −0.814 0.307 0.110
x29 0.717 0.876 0.236
x30 −0.295 −0.077 −0.607
x31 0.600 0.987 −0.400
x32 0.029 0.147 −0.289
x33 0.227 −0.445 0.886
x34 0.867 0.105 0.006
x35 −0.025 −0.826 −0.299
x36 0.546 −0.771 −0.841

4.3.2. Result Analysis

This paper performs on Matlab R2014a with Intel Core i5-6300U, 4G memory and 500G hard disk.
It should be noted that important parameters of the proposed model are obtained by NSGA algorithm
to guarantee the precision. In NSGA-II, the population size is 300, the maximum iteration number
equals 200 and crossover and mutation probability is set as 2. In this way, the optimized parameters of
LSSVM are γ = 36.6786 and σ2 = 16.1816.

The experiment selects several techniques to make comparison so as to examine the performance
of the proposed method. The involved approaches include NSGA-II-LSSVM, GA-LSSVM, LSSVM and
SVM. In LSSVM,γ andσ2 equal 9.8568 and 16.2657 by cross validation, partly. In SVM, penalty parameter
c is 8.659, kernel function parameter g equals 0.299 and loss function parameter p is 2.869.
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The three principal components extracted by KPCA are exploited as input samples. The results of
the test samples are displayed in Table 12 and Figure 6. In order to show the results clearly, the samples
are divided into four groups, which are shown in (a–d) of Figure 6. Here, the relative errors in Table 12
are the results of the test samples and the number 1, 2, 3, 4 in Figure 6 represent the level of very high,
high, general and low, respectively. In addition, the accuracy of 5 models is shown in Figure 7.

Table 12. Results of 5 models in core competitiveness valuation of clean energy incubators.

Clean Energy
Incubator

Valuation
Level

KPCA-NSGA-
II-LSSVM

NSGA-II-
LSSVM

GA-
LSSVM LSSVM SVM

A general general very high general low general
B low low low low low general
C general general general low general general
D very high very high very high very high general very high
E low low low general low low
F general high general general general general
G general general low general high general
H general general general general general general
I high high high high high low
J general general general general general general
K general general general general general low
L very high very high very high very high general very high
M high high high high high general
N general general general general general high
O general general general general general general
P high high high high high high
Q high high high very high high high
R very high very high very high very high very high very high
S high high high high very high high
T general general general general general high
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Figure 6. Results of 5 models in core competitiveness valuation of clean energy incubators. Note: (a)
shows the results from sample A to E; (b) shows the results from sample F to J; (c) shows the results
from sample K to O; (d) shows the results from sample P to T.
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In terms of method performance, the relative error is minimum, only 5% between
KPCA-NSGA-II-LSSVM and matter-element extension model combined with TOPSIS. That is, only one
of the 20 clean energy incubators presents diverse level. Whereas, the relative errors of NSGA-II-LSSVM,
GA-LSSVM, LSSVM and SVM. In LSSVM are 10%, 20%, 25% and 30%, respectively. As a consequence,
the established model in this paper outperforms other approaches with reference to relative error
as well as classification accuracy. Compared with NSGA-II-LSSVM, KPCA overcomes the adverse
effects of redundant factors on LSSVM training. The GA optimization part is inferior to NSGA-II of
the parameters’ setting in LSSVM in aspect of improving its generalization ability and classification
precision. In comparison with SVM, the categorization accuracy is enhanced due to the transformation
of forecasting problems into equations through kernel function. Overall, the evaluation performance can
be ranked from superior to inferior as follows: KPCA-NSGA-II-LSSVM, NSGA-II-LSSVM, GA-LSSVM,
LSSVM, SVM. What’s more, we can also observe the advantages of the proposed model through
Figure 7, where the accuracy of the proposed model is the highest.

Hence, KPCA-NSGA-II-LSSVM is able to be utilized in the field of core competitiveness of clean
energy incubators scientifically and effectively. On the foundation of extension matter-element model
integrated with TOPSIS, the introduction of auxiliary intelligent algorithm can achieve fast calculation
and support the decision-making of relevant investors.

5. Conclusions

This paper designs an evaluation index system for core competitiveness of clean energy incubators
and puts forward an assessment approach based on matter-element extension model integrated with
TOPSIS as well as KPCA-NSGA-II-LSSVM. The indicator system is built from five aspects, that is
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strategic positioning ability, seed selection ability, intelligent transplantation ability, growth catalytic
ability and service value-added ability to respect its core competitiveness. The paper takes advantage of
extension matter-element model and TOPSIS to weight the selected evaluation indexes objectively and
acquires the result from the perspective of traditional approaches. KPCA is manipulated in response to
feature dimension so as to extract important information. Then LSSVM optimized by NSGA-II outputs
the evaluation level concerning modern intelligence. The case study demonstrates the scientificity
and accuracy of the proposed model in this paper, thereinto the traditional technique is able to obtain
exact results while the intelligent evaluation methods can achieve fast calculation and decision-making
support. Research on the evaluation of the core competitiveness of clean energy incubator will help
managers to understand the level and deficiency of their core competitiveness, and then help managers
to carry out more targeted work. To sum up, this research is expected to provide decision-making basis
for more reasonable operation mode of clean energy incubators. However, more sample data is needed
for verification. At the same time, using more intelligent models to evaluate the core competitiveness
of clean energy incubators is also our next work.
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