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Abstract: With the development of the online platforms and the Internet of Things (IoT),
various transportation services have been provided, and the lifestyle of the general public has
changed significantly. However, the speed of development of technologies and services for the
mobility handicapped has been relatively slow. Accordingly, in this paper, the smart mobility
patent data for the mobility handicapped is subdivided through clustering to derive the mobility
handicapped-related vacant technologies, and the prospect of the vacant technology is verified.
For each cluster, a technology level map is generated in consideration of the technology growth level
and the scope of authority of the vacant technology derived through the generative topographic
map (GTM) patent map, and the level of the vacant technology is checked in terms of quantity and
quality. Both indicators perform time series analyses on superior technology to predict technology
trends and determine the technology’s promisingness. Unlike the precedent studies that focused
only on quantitative analysis methods, this paper identified the usefulness of the technology through
clustering and various verification processes and materialized it as a vacant technology that is
applicable to actual R&D. Accordingly, through this empirical paper, it is possible to understand the
current level of vacant technology in smart mobility for the mobility handicapped and establish an
R&D strategy to prevent monopoly in technology in the future market and maintain competitiveness.
It can also be utilized for new technology development in consideration of convergence with currently
developed technology.

Keywords: smart mobility; patent analysis; vacant technologies; mobility impairment;
promising technologies

1. Introduction

Today, online platforms and the Internet of Things (IoT) are applied to mobility such as automobiles,
trains, and airplanes to form closely connected transportation networks around the world. In this
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paper, technologically sophisticated, fast, and eco-friendly mobility is defined as smart mobility [1,2].
Smart mobility has enriched the living environment of most people. In particular, it is contributing
to the improvement of transportation convenience for mobility impairment such as the elderly,
pregnant women, infants and children. Smart mobility can be more effective for mobility impairment
who have a lot of difficulties in performing natural activities compared to the public. Accordingly,
it is necessary to focus on the technology development of smart mobility for mobility impairment.
However, it is not easy to carry out research and development (R&D) since technology development is
progressing very rapidly and future technologies are unpredictable.

In order to plan R&D for smart mobility technology, technology trend analysis or technology
prediction should be preceded to understand the smart mobility industry and decide the direction of
the technology development [3,4]. For this, patent data have been used to obtain technical insight since
patents are a final result of R&D [5,6]. Patents contain important technical information such as title of
invention, summary, claims, and bibliographic information. Textual information (e.g., title, summary,
claims of invention) can be used to extract new ideas that can apply to new technical R&D plans [7].
Bibliographic information such as patent number, date of patent, and applicant can be used to analyze
technology trend. For this reason, patents have been utilized as an important source in analyzing
rapidly evolving technology trends.

In the future, the field of smart mobility technology for mobility impaired people will be
innovated more and more rapidly. As technology has advanced, competition has intensified in the
market. Therefore, we attempt to empirically analyze using patent information to extract meaningful
insights for predicting new promising technology that can be preoccupied in the future market.
Technologies with high promisingness can be regarded as direction indicators to plan and evaluate
technology development.

2. Literature Review

As deigned by the World Intellectual Property Organization (WIPO), a patent is an exclusive right
granted for an invention corresponding to products or a processes that provides a new method or
technical solution to solve the problems of the prior art. In order to patent, it is required to comply
with standards such as originality and creativity. Many researchers spend a lot of time and effort on
technology R&D, and as a result, patents are authorized as the output of R&D. Patent documents have
been regarded as ample source including abundant technical information, therefore, patent-based
analysis has been applied to identify the trend of technological change over the times and extract ideas
for developing new technology in near future [8–10].

Patent analysis is effective when accurate results are derived [11]. The patent analysis methods
such as deducting and searching for a suitable search formula, clustering, abstraction, visualization,
and result-interpretation are frequently used [12]. In order to implement decision making in each
process, domain expertise is required. However, if an expert does have incomplete knowledge and
skills, the analysis will take a long time and the result will also be implausible. As technology advances,
the number of patents is increasing faster than in the past. So the process of analyzing documents and
deriving meaningful results using data mining such as text mining rather than relying only on experts
is rising. Text mining is a method of extracting the essential keywords in the patent documents and
generating keyword vectors that can be applied to various types of analysis such as trend analysis,
technology prediction, strategic technology planning, and infringement analysis [13,14]. Consequently,
a keyword vector can be generated since each keyword corresponds to a dimension. Therefore, it is
possible to explain patent documents with a keyword vector.

In the previous studies, many researchers employed patent documents in forecasting vacant
technologies. The methods used include patent maps [15,16], deriving vacant technologies through
patent maps [17–21], patent networks [22,23], and keyword-based networks [24]. Text mining extracts
subject-action-object (SAO) structure sentences that explicitly include the technical objectives of patents
from patent data, and constructs a patent map to visualize the overall relationship between patents
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in technology and industry. There is also a way to define potential technologies in the future by
identifying vacant technologies [25]. Vacant technology can be grasped through patent map by
visualizing patent documents in the multi-dimensional space into low-dimensional space. The patent
map can visualize blank areas and occupied areas by analyzing patent documents based on the
keyword vector. Blank areas in the map are regarded as vacant technology fields. Jun et al. (2012)
made predictions of vacant technology using matrix maps and K-medoids clustering based on patent
documents [26]. The top five keywords are firstly extracted to define the cluster and then identify the
vacant technology area in the constructed matrix map.

Patent maps are easy to use for deriving vacant technologies. Principal component analysis (PCA),
self-organizing maps (SOM), and GTM are the representative methods in constructing patent maps to
identify vacant technology fields. PCA was first proposed by Pearson (1901) [27] and formulated by
Hotelling (1933) [28]. It is a dimensional reduction method that converts highly correlated samples
of high-dimensional space into low-dimensional. It is prediction model which works by minimizing
the loss of information or characteristics of the data when reducing the dimension. Lee et al. (2009)
used text mining to extract keyword vectors from patent documents and applied PCA to create a
patent map [17]. Trappey et al. (2012) determined a patent with high potential value through the
kaiser-meyer-olkin (KMO) approach, combining PCA and back propagation networks (BPN) [29].

SOM is a method proposed by Kohonen (1990) to perform dimensionality reduction and clustering
at the same time. It is difficult to analyze data due to complicated relationships between variables
through conventional PCA and other methods through nonlinear descriptive methods. It was defined
as more useful for analysis [18,19]. The SOM method is superior to other multivariate approaches
because it can process noisy, irregular, or missing data. PCA analyzes using only a few key components
and analyzes only a portion of the total space, but SOM analyzes simply and intuitively, transforms
the exact similarity values, and uses all available spaces to be more useful for analysis. Wu et al. (2016)
classified patents for solar cells through the SOM, kernel PCA (KPCA), and support vector machines
(SVM) method [30]. Huang et al. (2008) analyzed various chinese patent structures and clustered them
by subject through the SOM method [31]. Segev and Kantola (2012) clustered the patents extracted
based on the United States Patent and Trademarks Office (USPTO)’s 17 topics by applying the term
frequency-inverse document frequency (TF-IDF) and SOM methods and analyzed that SOM was more
effective through comparison with K-Means and density-based spatial clustering of applications with
noise (DBSCAN) methods [32].

However, the SOM method does not include a cost function and lacks the rationale for selecting
adjacent parameters [33]. Bishop et al. (1998) proposed a GTM method, a nonlinear latent variable
model that can determine the parameters of a model using the expectation-maximization algorithm
(EM algorithm) [34]. Therefore, GTM-based patent map can quantitatively derive vacant technology.
GTM analyzes keyword vectors according to patent document and displays the patent document in
latent grid points. In the grid, data classified through latent variables create one node, and by identifying
the generated node, empty space in the grid can be detected. Each data point is mapped based on their
characteristics. The nodes created at this time have the characteristics of the data that make up the
node. Corresponding nodes can be extracted through the inverse function, and the part marked as a
blank node can be identified. Unlike PCA that cannot detect blank areas in the map, GTM-based maps
can detect blank areas automatically since latent grid points represent occupied areas and unoccupied
areas by object. Therefore, it is possible to detect vacant technology fields through the GTM-based
patent map. A GTM-based patent map can also interpret the vacant technology fields since GTM can
be reversed from low-dimensional space into multi-dimensional space. That is, patent documents in
the latent grid points in the map can be transformed into keyword vectors. GTM-based patent maps
can interpret the vacant technology field in the patent vacuums, whereas SOM-based patent maps can
only identify what is the patent vacuums [20,21]. Yoon and Magee (2018) identified vacant areas by
applying GTM to patents visualized in a two-dimensional space, focusing on the detailed direction
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of technology development [35]. Wu et al. (2018) compared the similarity of patent and standard
documents by applying latent dirichlet allocation (LDA) and GTM [36].

GTM is an easy way to grasp vacant technology through the derived map. However, it is
impossible to identify the promisingness of the vacant technologies estimated in the blank area
in the patent map. Therefere, it is necessary to verify whether vacant technologies are promising.
Time series analysis and technology level maps can be applied to identify promisingness of vacant
technologies. Time series analysis can predict the direction wheteher the technology will be in the
future. The technology level map is a method to identify the level of technology by considering the
quantitative and qualitative levels [20,37]. Two methods are applied to analyze vacant technologies
and their promisingness and through process improvement, the risk of misunderstanding is minimized.
In this paper, vacant technologies are extracted using patent maps, and furthermore, the feasibility
of the analyzed technologies is improved by confirming their promising properties. Applying the
corresponding methodology, this paper attempts to predict a promising vacant technology in the field
of smart mobility technology for mobility impairments. It proposes a technology field that is easy to
enter through the analyzed promising technology, and can help in establishing an R&D strategy that
can participate in new markets and strengthen technology competitiveness.

3. Methodology

3.1. Research Framework

Figure 1 shows the research framework to identify vacant technologies. Firstly, patents are collected
from patent databases that is equipped in several countries such as Korea, US and China. The collected
patent data cannot be used directly for analysis because patent documents include unstructured data.
Therefore, preprocessing of patent data is required based on text mining. Consequently, the patent data
can be converted into structured data that can be applied to patent analysis. Secondly, the preprocessed
patent data is clustered by employing the K-medoids that can group the patent documents according
to the same subject. Thirdly, specific keywords for each cluster are extracted by applying the TF-IDF
algorithm that can evaluate the importance of words in the patent documents. Keyword vectors
that can explain the feature of each patent document can be constructed. Fourthly, a GTM-based
patent map is generated based on the keyword vectors. Based on the patented vacuum in the map,
vacant technologies can be identified by inverse mapping from vacant areas to new vector spaces.
Finally, vacant technologies derived from the GTM-based patent map are verified by applying the
technology level map and ARIMA for each cluster. Therefore, we can discover the vacant technology
and identify promising technologies in the field of smart mobility.
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3.2. Data Collection and Preprocessing

As the competitive market becomes global, many countries and companies protect their rights by
applying patents in many countries. In this paper, patent data are extracted through patent databases
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of USPTO, European Patent Office (EPO), Korean Intellectual Property Office (KIPO), Japanese Patent
Office (JPO), and State Intellectual Property Office of the People’s Republic of China (SIPO) within
WIPS ON databases. To remove duplicate patents, patent data are extracted with the patent family
removed. A valid patent selection process is performed based on the extracted patent, and then the
selected valid patent is analyzed. The patent data comprise largely technical content and bibliographic
information. Specifically, the former has summaries and claims, the latter has IPC, Cooperative Patent
Classification (CPC), and application number. In this paper, only the summary is extracted and used
for analysis. As mentioned above, the patent data are unstructured data. The keywords must be
extracted to analysis patent data. There are many keywords in patent documents that are not related to
technology, such as dates, articles, investigations, and conjunctions. In order to derive keywords related
to patent technology, preprocessing is required by removing the above stopwords and converting
the abbreviation expression [33]. In this paper, the following preprocessing is performed through R
programming. First, tokenizing is performed to decompose the original data in sentence form into
individual words. Tokenizing refers to a series of processes that decompose words and undergo
case transformation and remove spaces, numbers, and other symbols. Second, stopwords were
removed through filtering. This process was conducted with experts to increase data reliability. Finally,
prefixes and suffixes are removed to form a document-term matrix.

3.3. Clustering

To find the area of vacant technology using information that has been cleaned through data
preprocessing, data with the same subject must be grouped. To this end, this paper applies a clustering
process to the preprocessed data. Clustering is a method of analyzing unlabeled data and classifying it
among data with similar properties [38]. In general, the K-means method and the K-medoids method
are commonly used, and in this paper, the K-medoids method, which is less sensitive to outliers,
was applied [39,40].

K-medoids are not a method of finding the center point of an object as a representative value
of a cluster, but selecting a representative object that can represent a cluster form among objects.
The remaining objects that have not been selected as representatives are assigned to the cluster and
the representative object located closest to their location. This partitioning algorithm follows the
principle of minimizing the sum of the discrepancy values and the difference between each object i
and the representative object of the group to which i belongs is determined based on the absolute
criterion value.

The K-medoids clustering method uses the Partitioning Around Medoids (PAM) algorithm to
find the center of gravity of the cluster [41,42]. Unlike the K-means clustering method, which uses
the average of K data, other distance functions such as Euclidean distance are also used to prevent
data distribution distortion due to outliers. The K-medoids algorithm has a high computational cost;
therefore, the optimal number of clusters is determined by applying the silhouette technique as a
clustering evaluation scale [43]. Optimal number of clusters are computed as shown in Equation (1),

k∑
i=1

m∑
j=1

‖x(i)j −Ci‖
2 (1)

where

k = number of clusters
m = number of objects
xj = object j
ci = centroid of cluster i.

Methods for measuring whether clustering is performed well can be primarily divided into
internal evaluation and external evaluation. Internal evaluation is a method of evaluating data as a
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result of clustering itself. It analyzes by using the cluster’s similarity and gives a high score to the
result with a low similarity between the clusters. Among them, the method is to evaluate clustering
using random data to evaluate the non-uniformity of the data with the data in the cluster in which
it belongs, and with the data in the cluster in which it does not belong as a silhouette technique.
The silhouette technique indicates whether the data were clustered well, with a value between −1 and 1,
indicating that the closer the silhouette value is to 1, the better the clustering is, and the closer the value
is to −1, the more incorrectly classified are the data [44]. For clustering, a text-mining technique was
used to extract only the part of ‘summary’ from the target patent to create a document–word matrix.

3.4. Keyword Extraction

The data separated through the clustering process form each group. To analyze the subject of the
data these groups have and extract the essential keywords, the vacant technology for each subject has
to be analyzed. The process of extracting essential keywords is used to identify the properties of each
data point using the data. Keyword extraction is a technique used to extract the critical words that have
to identify the attributes that the document or other data have in the field of text mining. In general, a
TF-IDF weight model can be used to evaluate the importance of words existing in a document [45].
The TF-IDF model is a principle for expressing documents for information retrieval based on the vector
space model. It is possible to express the relative importance of each word in individual documents,
so it can be used to extract keywords existing in individual documents. A cluster-specific TF-IDF
algorithm is applied to derive the top keywords for each cluster, and based on this, keywords included
in each patent literature, such as Table 1, are generated as 1 or 0 to generate keyword vectors.

Table 1. Example of keyword vector.

Keyword 1 Keyword 2 · · · Keyword n − 1 Keyword n

Patent 1 1 0 · · · 1 1
Patent 2 1 1 · · · 1 1

... 0 0 · · · 0 0

Patent m 0 0 · · · 0 1

3.5. Identification of Vacant Technology

Using the generated keyword vector, one can analyze patent data including each keyword and
identify vacant technology by identifying the characteristics of the data. In this paper, a patent map
analysis method was applied to understand vacant technology. A patent map is a representative tool
used as a useful measure for technical power. The patent map can easily derive useful information
in the patent documents because it visualizes not only dense areas but also blank areas. Therefore,
we can detect patent vacuums and interpret the complex technological properties in the patent. In the
previous studies, what was drawn as a blank area on the map was supposed by patent vacuums,
and each blank area was defined as a new technology and opportunity area to derive vacant technology.
As a method of analyzing vacant technology, PCA, SOM, and GTM were widely used. In particular,
GTM can detect and interpret patent vacuums in an automatic and objective manner [46].

GTM analyzes each patent’s keyword vectors based on GTM parameters, such as the number of
basis functions and late points, and maps the patent into a two-dimensional space [47–49]. Consequently,
if there is a patent in each latent, it is expressed as “o,” and the relatively non-patented latent is
expressed as a vacant, and through Figure 2, reverse keyword vectors of the blank area are generated.
As shown in Figure 2, the keyword vectors corresponding to blank nodes are calculated inversely.
Applying Equation (2) in this process can yield the value of reverse keyword vectors [50,51]. Through the
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extracted keyword vector, you can understand the skills of the node. This allows you to analyze what
technology a node marked as vacant technology has.

y(s; W) = Wϕ(s) (2)

where

W = initial weighting matrix
ϕ(s) = the activation of basis functions for latent variable s
y(s; W) = transforms the latent point x on the map.
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Figure 2. Example of patent-vacant technology.

3.6. Verification of Vacant Technology

The process of deriving blank nodes from the blank area using the GTM algorithm is a quantitative
method. However, it is necessary to verify whether the keywords are promising because the derived
blank keywords do not have viable opportunities for technology development [35]. Accordingly,
this paper validates the vacant technology level derived from the blank node and predicts the promising
vacant technology through time series analysis.

3.6.1. Identification of Vacant Technology Level

The blank node derived through GTM is only a macro-level type of information which means that
the patent vacuums are technological opportunities, so it is not enough to be used as a decision-making
tool for planning and carrying out actual technology development. In addition, the vacant technology
keyword derived from the blank node can more specifically confirm the result with textual information,
but it is difficult to confirm the presence or absence of actual value. Accordingly, verification of the
level of blanking techniques derived is necessary.

Yoon et al. (2019) confirmed the level of technology considering the patents’ quantitative and
qualitative levels. In this paper, the quantity standard was evaluated by the number of patents, and the
quality standard was evaluated by the citation frequency [20]. However, the characteristic of this paper is
that the quality of patents is defined based on the number of patent vacuums claims because the frequency
of citations is low or high. The number of claims refers to the scope of the legal authority of the patent [17],
which can be interpreted as a patent with higher quality because the higher the number of claims, the higher
the technological competitiveness and monopoly authority.

The quantity of patent can be calculated as Equation (3) using the concept of revealed technological
advantage (RTA). The quantity is the ratio of the frequency of patents containing keywords derived
from vacant technology in patent by cluster, which means the level of growth of the vacant technology
in the cluster. The quantitative level of the vacant technology is determined by the gap between the
vacant technology and the other vacant technology. It is calculated by substracting the RTA average of
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the other vacant technologies from the RTA value of the target vacant technologies. It is calculated by
substracting the RTA average of vacant technologies. Subsequently, the quality of the patent uses the
scope of technology (SoT) index Equation (4), which measures the average number of patent claims
containing keywords derived from the cluster-specific patent gap. Consequently, the qualitative level
of each vacant technology is calculated by substracting the average of the SoT values of other vacant
technologies from the SoT value of the target vacant technology. As a result, the technical level of the
derived vacant technologies was defined as shown in Figure 3.

Technology growth =
Ni
N

(3)

where

N = the number of total patents in each Clusters
Ni = the number of patents including keyword i.

Technology scope =
Ci
C

(4)

where

C = the number of total claims in each Clusters
Ci = the number of claims of patents including keyword i.
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Figure 3. Concept of technological levels.

In this paper, quantitative/qualitative superiority technology ( 1O) in Figure 3, which is considered
promising due to its high quantitative and qualitative level, is used as an analysis target, and the
corresponding technology is extracted, and the promising technology is predicted through time
series analysis.

3.6.2. Prediction of Vacant Technological Promisingness

Promisingness of technology has properties such as radical novelty, relatively fast growth,
coherence, noticeable impact, and uncertainty [37]. In particular, the growth rate of technology
can be confirmed through the trend of increasing the frequency of patent filings by year,
conducting autoregressive integrated moving average (ARIMA) analysis by time series data of
patent filing frequency by year, and promisingness of technology through trends derived from the
analysis results. The ARIMA model is combined (Equation (7)) of the auto-regression (AR) model
(Equation (5)) and the moving average (MA) model (Equation (6)). AR model (Equation (5)) is a
model that constructs autocorrelation as a time series model using past values, and the MA model
(Equation (6)) is a model that predicts a specific point in the future based on past time series data.
Using the ARIMA model (Equation (7)) is suitable for predicting the future using past data [52].
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The future trend of the keyword can be predicted through ARIMA analysis, and based on this,
keywords that are likely to become mainstream in the future market can be identified [53].

Yt = α1Yt−1 + α2Yt−2 + · · ·+ αpYt−p , εt ∼ i.i.d, N
(
0, σ2

)
(5)

where

αi = the parameters of the autoregressive part
Yt = lagged values:

Yt = et − β1et−1 − β2et−2 − · · · − βqet−q (6)

βq = moving average coefficient
et = error term at time t:

Yt = α1Yt−1 + α2Yt−2 + · · ·+ αpYt−p + εt, (7)

where

εt = white noise.

4. Deriving Promising Technologies through Patent Analysis: Smart Mobility

4.1. Data Collection and Preprocessing in Smart Mobility

The technical research is conducted as preliminary research in the development process, and its
level can be confirmed through the thesis; research related to ICT smart mobility for mobility handicap
was selected by searching for keywords needed for patent search formulas. Based on the searched 20
papers, 40 keywords such as Artificial Landmark Recognition, Bluetooth, Collaborative, Fuzzy, Geographic
Information, and Infrared Sensor were extracted. Based on these keywords, the search period in USPTO,
EPO, JPO, SIPO, and KIPO database was set to 1990.01.01 to 2020.05.23 to conduct a patent search.
The patent data collection gradually expanded the search formula by adding new keywords from
patents extracted based on initial keywords. The final expanded keywords are shown in Appendix A.
As a result of searching for patents based on the final keywords, 5210 patents were searched. The patents
were collected by ten experts in the field of smart mobility technology to select valid patents related to
this paper; as a result of collecting and analyzing the experts’ judgments, 2619 valid patents for smart
mobility were selected.

For the preprocessing of training data, a document–keyword matrix was created by extracting
only the summary part of the target patent using the text-mining technique. Since it is challenging to
interpret multidimensional variables structurally, it is analyzed by converting them to low dimensions
through principal component analysis. In this paper, the number of principal components for each
country’s patent document is selected so that the principal components’ explanatory power exceeds
90 percent.

In addition, the misspelled words or abbreviations included in the extracted data were corrected
or removed [47]. The original data in sentence format were decomposed into each word and made
lowercase, and spaces, numbers, and other symbols were removed through the tokenizing process.
Subsequently, through filtering, the words that were deemed unnecessary, the prefixes and suffixes
were removed, leaving only the words that formed the document, therefore forming a patent-keyword
Matrix, such as Table 2. Currently, the number of keywords was too large to use all the extracted
keywords; therefore, only the top 500 were extracted to form a 500 by 2619 matrix.
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Table 2. Patent-Keyword Matrix in ICT Smart Mobility.

Patent 1 Patent 2 Patent 3 · · · Patent 2619

1 tag 1 0 1 · · · 1
2 bluetooth 1 1 1 · · · 1
3 vehicle 0 0 1 · · · 0
4 location 0 0 1 · · · 1
...

... 0 1 0 · · · 0

500 data 1 1 1 · · · 0

4.2. Clustering from Smart Mobility Patent

The K-medoids clustering method was used to determine the optimal number of clusters.
In determining the optimal number of clusters, the distribution of data is likely to be distorted due to
anomaly if clustering is carried out through analysis of principal components, so clustering is carried
out using the K-medoids method, which is robust to ideal values.

In clustering, the silhouette analysis was applied to indicate how well the data were clustered,
and when determining the optimal number of clusters, the number of clusters with a silhouette value
closest to 1 was chosen [45]. As shown in Figure 4, this analysis shows that if there are three clusters,
the silhouette value is the closest cluster to 1, so the optimal number of clusters is chosen as three.
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As a result of clustering, the number of patents corresponding to each cluster consists of 919 for
cluster 1, 1149 for cluster 2, and 551 for cluster 3. GTM was applied to each cluster to understand the
vacant technology of each cluster.

4.3. Keyword Extraction from Smart Mobility Patent

GTM is a method used to identify vacant technologies for specific technologies using patent maps.
A keyword–patent matrix was created by extracting keywords from the data to create a patent map.
In this paper, a keyword–patent matrix was created by extracting the keywords of the clustered groups
to grasp the vacant technology of each clustered group. The keyword vector is composed through the
keyword frequency and TF-IDF weight of the document [54]. To create a keyword–patent matrix for
each cluster and use that matrix to create a patent map, it is recommended to match the number of
keywords in the matrix equally. Among the tf-idf values that can be extracted equally, 0.5, the highest
value, is applied as a standard to enhance explanatory power and enable key technical keywords to be
extracted. As a result, 40 keywords were selected for each group. Each keyword represents a property
of the vector; the keyword vector has 40 dimensions. The purpose of this paper is to judge the vacant
technology and to judge the promising technology for that vacant technology, so only whether the
patents currently have keywords is necessary. Accordingly, we used the binary keyword vector, not the
frequency keyword vector [37]. The keyword–patent matrix indicates whether each patent contains a
keyword. Each patent contains 1 if the keyword is included, otherwise 0.
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4.4. Vacant Technology in Smart Mobility

4.4.1. GTM Performance Results

Based on the completed keyword–patent matrix, the GTM algorithm is applied to derive
vacant technology. The number of nodes (K) is implemented as a variable for GTM map creation.
According to Son et al. (2012), who conducted the patent analysis based on the GTM-based patent
map, an appropriate value of K should be assigned so that the map cannot be too sparse or dense [46].
Therefore, experiments were conducted within the K range of 10 to 17. The value of 14 was judged
to be the most appropriate, consequently, a 14 × 14 map was developed. The GTM-based map was
derived for Cluster 1–3. It should be derived from the vacant technology through the corresponding
patents and keywords, identifying the blank node in the GTM map to verify the patent vacuums.
Figure 5 shows a blank node based on the GTM map of Clusters 1–3.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 22 

 

   

Figure 5. Blank node: (a) Cluster 1, (b) Cluster 2, (c) Cluster 3. 

The GTM map derived 10 blank nodes for Cluster 1, 7 for Cluster 2, and 28 for Cluster 3. The 

blank nodes displayed in the GTM map can derive patents and keywords owned by the node through 

an inverse function. Table 3 shows patents and keywords for blank nodes in each cluster. Table 4 

shows the keywords that should be finally checked by removing duplicate words. 

An analysis of the node-marked vacant technology shows that it is divided into nodes with and 

without keywords. Keywords are extracted if a patent is associated with the vacant technology 

corresponding to the node, but not if there is no relevant patent. The absence of related patents means 

that the technology corresponding to the node has not been studied. In other words, the related patent 

has not been issued, and the keyword cannot be extracted as there is no corresponding patent [54]. 

Table 3. Keywords belonging to the empty nodes of Cluster 1, 2, and 3 1. 

Cluster  Blank Node Keyword 

1 

1 sensor, vehicle, block, tag, digital 

6 intelligent 

9 intelligent, sensor, vehicle, response, computer, radio 

10 location, intelligent, positioning, response, memory, computer 

2 7 bluetooth, location, network 

3 

1 tag, block, data, wireless 

2 tag, beacon, block 

3 beacon, block, data, label 

4 block 

6 electronic, rfid 

8 tag, beacon, label, antenna, wireless 

9 bluetooth, control 

11 tag, block, electronic 

25 bluetooth, electronic, reader 

28 tag, beacon, block, data 

1 No patent exists in the blank node other than the blank node above. 

Table 4. Vacant technology keywords for each cluster. 

Cluster Keyword 

1 
block, computer, digital, intelligent, location, memory, positioning, radio, response, sensor, tag, 

vehicle 

2 bluetooth, location, network 

3 antenna, beacon, block, bluetooth, control, data, electronic, label, reader, rfid, tag, wireless 

4.4.2. SOM Performance Results 

Figure 5. Blank node: (a) Cluster 1, (b) Cluster 2, (c) Cluster 3.

The GTM map derived 10 blank nodes for Cluster 1, 7 for Cluster 2, and 28 for Cluster 3. The blank
nodes displayed in the GTM map can derive patents and keywords owned by the node through an
inverse function. Table 3 shows patents and keywords for blank nodes in each cluster. Table 4 shows
the keywords that should be finally checked by removing duplicate words.

Table 3. Keywords belonging to the empty nodes of Cluster 1, 2, and 3 1.

Cluster Blank Node Keyword

1

1 sensor, vehicle, block, tag, digital
6 intelligent
9 intelligent, sensor, vehicle, response, computer, radio
10 location, intelligent, positioning, response, memory, computer

2 7 bluetooth, location, network

3

1 tag, block, data, wireless
2 tag, beacon, block
3 beacon, block, data, label
4 block
6 electronic, rfid
8 tag, beacon, label, antenna, wireless
9 bluetooth, control
11 tag, block, electronic
25 bluetooth, electronic, reader
28 tag, beacon, block, data

1 No patent exists in the blank node other than the blank node above.
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Table 4. Vacant technology keywords for each cluster.

Cluster Keyword

1 block, computer, digital, intelligent, location, memory, positioning,
radio, response, sensor, tag, vehicle

2 bluetooth, location, network

3 antenna, beacon, block, bluetooth, control, data, electronic, label, reader,
rfid, tag, wireless

An analysis of the node-marked vacant technology shows that it is divided into nodes with
and without keywords. Keywords are extracted if a patent is associated with the vacant technology
corresponding to the node, but not if there is no relevant patent. The absence of related patents means
that the technology corresponding to the node has not been studied. In other words, the related patent
has not been issued, and the keyword cannot be extracted as there is no corresponding patent [54].

4.4.2. SOM Performance Results

For each cluster, the results of the SOM were derived for comparison with the GTM. Figure 6
shows a blank node based on the SOM map of Clusters 1–3. The nodes displayed in gray on the SOM
map are blank nodes. SOM map derived 17 blank nodes for Cluster 1, 3 for Cluster 2, and 27 for
Cluster 3.
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Figure 6. Blank node: (a) Cluster 1, (b) Cluster 2, (c) Cluster 3.

In the patent map using SOM, there is a limit to analyzing nodes currently marked as blank nodes.
As shown in Figure 7, the node in the SOM map consists of the number of the patent corresponding
to each node. The patent corresponding to that node does not exist, it is displayed as a blank node.
In this case, the blank node cannot be interpreted because there is no patent data that makes up that
node. In this case, the empty node cannot be interpreted using the inverse function, because there are
no patent data constituting the node.
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To interpret the blank node, identify the patents held by the nodes surrounding the blank node.
The common keywords of the corresponding patents are linked to the technology of the blank node.
Therefore, it extracts keywords of surrounding patents and infers blank technology through it. In this
paper, keywords in the top 20% were defined as common keywords by analyzing keywords of
surrounding patents and identifying the frequency of their appearance. This is because it was judged
to be difficult to analyze due to the low frequency and small number of related patents in the case of
the top 20% or less.

In addition, if there is a series of vacuum technologies when performing the analysis, the analysis
was grouped together into one vacuum technology because the neighboring nodes were shared and
the nearby technologies were analyzed. An analysis of the node-marked vacant technology shows
that it is divided into nodes with and without keywords. Table 5 shows patents and keywords for
blank nodes in each cluster. Table 6 shows the keywords that should be finally checked by removing
duplicate words.

Table 5. Keywords belonging to the empty nodes of Cluster 1, 2, and 3 1.

Cluster Blank Node Keyword

1

16 system, intelligent
23 response
46 intelligent, vehicle, sensor

67,68 positioning
83 positioning, robot
93 transmitter
95 transmitter

119 data
121 transmitter

123,137,138 transmitter
150 location, detection, vehicle, transmitter
165 location, detection, transmitter, identification
178 tag, location, transmitter, detection
181 location, robot, detection

2
49 Bluetooth, location
67 Application
90 Bluetooth, location, network

3

17 access, connection
27 antenna, beacon, data, tag
30 connection, reader
51 unit
55 antenna, tag

96,97 antenna
119,120,121 tag

130 beacon, data
137 invention, information

141,142 beacon, tag, data, multiple
147 tag
170 light, data, beacon
179 storage, signal, bluetooth

1 No patent exists in the blank node other than the blank node above.

Table 6. Vacant technology keywords for each cluster.

Cluster Keyword

1 data, detection, identification, intelligent, location, positioning, response, robot, sensor, system, tag, transmitter, vehicle
2 application, bluetooth, location, network
3 access, antenna, beacon, bluetooth, connection, data, information, invention, light, multiple, reader, signal, storage, tag, unit
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4.4.3. Comparative Analysis with GTM and SOM

Tables 4 and 6 analyze vacant technology keywords derived from SOM and GTM as follows.
Analyzed with SOM, the vacant technology keywords derived are 13, 4, and 15, respectively.
Analyzed with GTM, the keywords for vacant technology are derived from 12, 3, and 12, respectively.
This is shown in Table 7. SOM was derived more by analyzing only the total number of keywords,
but this is a keyword analyzed through patents constituting the neighboring nodes, and it is difficult to
analyze as a keyword of a vacant technology that describes the cluster or node. The overall number
of keywords in GTM is small, but it contains more essential content. This is because to interpret a
blank node in SOM, the analyzed vacant technology is inaccurate because the patent constituting the
nodes around the blank node must be identified and inferred through it. Furthremore, the blank node
technologies analyzed are not extracted using data from the node itself, but they are analogous to
other patents around it, so you cannot analyze the promising of the technology. Moreover, the blank
node technologies analyzed are not extracted using data from the node itself, but they are analogous to
other patents around it, so one cannot analyze the promisingness of the technology.

Table 7. Number of vacant technology keywords.

Cluster SOM GTM

1 13 12
2 4 3
3 15 12

In GTM, blank nodes can be interpreted using the inverse function. Each blank node has the
advantage of being more useful in terms of vacant technology analysis than SOM in that it can analyze
its technology more accurately and confirm its promisingness; GTM is applied to this study.

4.5. Verification of Vacant Technology in Smart Mobility

4.5.1. Identification of Vacant Technology Level

The current technology level must be checked for patents corresponding to keywords derived
through GTM. Figures 8–10 show the graphs of the vacant technology level for each cluster based on
the number of patent citations and the number of patent claims.
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Identifying the status of the vacant technology level in Cluster 1, six keywords (technology)
corresponding to the high technology growth–high technology scope that is considered promising were
derived. The keywords (technology) are location (10), intelligent (6), sensor (1), vehicle (2), positioning (11),
and block (3) and a prediction needs to be made on whether they are promising technologies for the
future. Conversely, radio (9), digital (5), computer (8), memory (12), and tag(4) are some of the keywords
that fall under low technology growth–low technology scope. Response (7) is derived for the keyword
(technology), which falls under low technology scope–high technology growth.

Identifying the status of the vacant technology level in Cluster 2, only one keyword (technology)
corresponding to the high technology growth–high technology scope considered promising was derived.
The keyword (technology) is Bluetooth (1) and it needs to be predicted whether they are promising
technologies in the future. Conversely, location (2) and network (3) were derived for technologies that
correspond to low technology grouting–low technology scope.

Identifying the status of the vacant technology level in Cluster 3, six keywords (technology)
corresponding to the high technology growth–high technology scope considered promising were
derived. The keywords (technology) are tag (8), beacon (12), data (10), antenna (4), electronic (2), and block
(9) and it needs to be predicted whether they are promising technologies in the future. Conversely,
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wireless (11), control (6), rfid (3), reader (7), and label (1) were derived for technologies that fall under low
technology growth–low technology scope. Bluetooth (5) was derived for the keyword (technology),
which is low technology scope–high technology growth.

4.5.2. Prediction of Vacant Technological Promisingness

Prediction of promising technologies through time series analysis to identify prospectiveness for
technologies that belong to high technology growth–high technology scope among keywords was done
through GTM. For the time series analysis, the ARIMA model was used, and the parameters p, q, r of the
ARIMA model were estimated through R. p, q, and r represent the order of the autoregressive model,
the degree of difference, and the order of the moving average model. The values of p, q, and r used the
auto arima function of R, which adjusts itself so that each result is optimally displayed. Each keyword for
each cluster is drawn in two types, ascending increase and decline through the ARIMA model, as shown in
Table 8. This paper predicts the prospect of vacant technology, the type that rises increase is defined as a
technology with prospects and schematizes the ARIMA results.
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Type 1: Increase Type 2: Decline
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Figures 11–13 shows the ascending type by applying ARIMA to technologies belonging to the high
technology growth–high technology scope. It confirms that the technologies derived from Cluster 1
ascending increase are sensor (1) and vehicle (2). Subsequently, Bluetooth (1) for Cluster 2, and beacon (12)
and data (10) for Cluster 3 were derived.
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4.6. Analysis Result in Smart Mobility

Looking at the analyzed promising technologies for each cluster, Cluster 1 is predicted to be
about a vehicle technology that supports the mobility handicapped and a sensor technology that
recognizes and analyzes surrounding objects to prepare for problems that may occur for the mobility
handicapped. Cluster 2 is predicted to be a Bluetooth technology that can transmit useful information.
Cluster 3 is predicted to be about the data that are useful when delivered to the mobility handicapped,
and a beacon technology installed on facilities which transmits useful information to the mobility
handicapped based on the analysis of their movement.

As a result of deriving blank nodes through the GTM algorithm and deriving vacant technology for
each cluster, twelve vacant technologies were derived for Cluster 1, three for Cluster 2, and twelve for
Cluster 3. To investigate the technology level of vacant technology, a technology growth—technology
scope graph based on the number of patent applications and patent claims of the keyword was created.
For the technologies that were found to be promising through the graph, six vacant technologies in
Cluster 1 were found to have a high prospectiveness, and one in Cluster 2 and seven in Cluster 3
respectively. When applying the time series analysis through the ARIMA model to confirm whether
the technologies are promising in the future, the terms sensor and vehicle are the technologies that are
both vacant technologies and promising in Cluster 1. Respectively, for those of Cluster 2 it is Bluetooth,
and for Cluster 3 they are beacon and data.

Looking at the degree of technology development of these technologies through Figures 11–13,
all five promising technology keywords have fewer than ten patents applied at first, and then the
number of patents increases rapidly at a certain fiducial point. Cluster 1 began to increase in the
number of patents from 2010, Cluster 2 increased from 2005, and finally, Cluster 3 increased from 2008.
From Cluster 2 and 3, Bluetooth, data, and Beacon technologies are analyzed to have increased in
necessity and technology since the mid-2000s. Cluster 1 decreases slightly after a sudden increase and
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then starts to increase again. This is because the vehicle and sensor technologies have been developed
since the early 2010s, and the necessity of going through the process of decrease–increase has resulted
in this graph.

As a whole, the number of patents for clusters 1–3 has increased dramatically over the last 10 to
15 years. Recently, the need for related technologies corresponding to ICT Smart Mobility is gradually
increasing, and many related patents have been applied. The technology is expected to be in the
current development stage based on the number of patents filed and is expected to increase steadily in
the future.

As a result of the analysis, the identification process of promising, vacant technologies, and the
validity of the identified technology area have improved. The promising technologies of ICT smart
mobility can be analyzed through keywords, and the three promising technologies analyzed are as
follows. First, it is a technology that smoothly supports the movement of the mobility handicapped by
notifying the movements of nearby objects and notifying them when problems occur. Furthermore,
it recognizes the movements of objects around the device and recognizes unexpected problems first,
and alerts the surroundings to prepare for unexpected accidents and to support the movement of the
mobility handicapped smoothly. The user’s physical characteristics are recognized through recognition,
the user is guided through a method suitable for the characteristics, and obstacles can be detected
and avoided by additionally recognizing the surrounding environment. In particular, it searches
evacuation routes in the event of a disaster and helps traffic vulnerable people who are more difficult
to respond to emergencies to evacuate. Second, it is an information communication technology that
delivers useful information for the mobility handicapped. It analyzes indoor and outdoor images and
uses various methods to guide the route that is appropriate for pedestrians. It provides a service that
selects and transmits the optimal route for each mobility handicap type. The provisioning method is
also a technology that delivers useful information so that there is no inconvenience when a mobility
handicapped person moves using a mobile phone or public facilities. Finally, it is a wireless positioning
technology to deliver useful information so that there is no discomfort when the traffic weak moves.
It stores information that is useful to the underprivileged, such as ramps, special structures, facilities,
and guide information, by 3D modeling, and provides the information when the traffic underprivileged
approaches. The stored device is a technology that provides information according to the situation
by grasping the movement of the nearby mobility handicapped person through devices such as a
cane after being installed in nearby facilities. Through the three technologies, the movement of the
mobility handicapped can be easily grasped in the future, provide useful information according to the
situation, and understand that the technology that can guide the route and support the movement will
be developed.

5. Conclusions

In this paper, a reliable method for identifying promising vacant technology areas is provided,
and patent analysis reveals the characteristics and meaningful insights into ICT smart mobility technology.
In many papers, various methodologies have been applied to derive promising vacant technologies.
Among them, the method using GTM was suitable for deriving vacant technologies through a patent map.
In this paper, we further explored the promisingness of vacant technology and analyzed technologies
with great potential for future development. As a result of the analysis, the identification process of
promising, vacant technologies is improved, and the validity of the identified technology area is improved.
The promising technology of ICT smart mobility analyzed through keywords is a (1) vehicle technology
that smoothly supports the movement of the mobility impaired person through notification when there is
a problem by grasping the movement of surrounding objects, (2) information communication technology
to deliver useful information so that there is no inconvenience when the mobility impaired person moves,
(3) wireless positioning technology that is installed in a facility and provides information by identifying the
movement of a nearby mobility impaired person. Through the derived technologies, it can be understood
that in the future, technologies that can recognize mobility handicaps, provide useful information to people
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who have them, and guide paths will be developed. The population of the mobility handicapped will
gradually increase, and the area is expected to continue to grow as its demand increases.

To explore opportunities, it is necessary to invent the core technology in the field or to gain
a competitive edge that differentiates it from other companies or countries. In order to discover
opportunities in the future market and to create ideas that will be useful, we analyzed the vacant
technology area, which is considered promising, and extracted keywords that are assumed to represent
promising technologies. “Sensor”, “vehicle”, “bluetooth”, “beacon” and “data” were identified as the
most superior and promising technologies. These technologies can be analyzed with technologies
related to assistive devices that help mobility impaired people move and prevent problems when using
mobility. Technologies related to smart devices that can recognize mobility impaired people, predict and
prevent possible problems, and provide useful information will be needed, and these technologies will
provide convenience to mobility impaired people. In order to preoccupy opportunities in the future
market, it is necessary to characterize dangerous objects or mobility impaired people when they are
detected and develop strategies related to technologies or products that can transmit the collected
information. For this strategy, the methodology proposed in this paper can be applied to break down
the technologies that have been applied to date and analyze which areas of technology have been
applied mainly. GTM allows to create the patent map for that technology and identify areas of vacant
technology that are not currently applied. The technology level map and ARIMA can then be used
to determine the potential for future development. This research can provide useful information to
managers in developing R&D strategies in ICT smart mobility technologies and can be sufficient data
to plan new project.

The same procedure can be used to identify new business-creating potential. The proposed
methodology is applied, making it easy to identify and analyze vacant technologies that are not
currently developed by visualizing patent data of related technologies in a two-dimensional space.
The possibility of future market development of the derived vacant technology can be grasped, and only
useful information for strategy establishment can be extracted, so that the possibility of technological
development can be grasped and related information can be provided more abundantly. This shortens
the work time for managers and experts and improves operational efficiency.

By applying the methodology suitable for smart mobility, the vacant technology with high potential
for future development beyond the limitations of existing GTM-based patent analysis was identified.
Moreover, using the patent map extends from the macroscopic definition of vacant technology to
provide the promising-ness of vacant technology. Prospects are centered on keywords, which can help
develop a vacant technology development plan. This paper has the effect of improving the process of
identifying either promising or vacant technologies and increasing the effectiveness of the identified
technology areas.

The exploration of new technological opportunities will help companies gain a competitive
advantage and lead to economic growth. To identify and preoccupy new technologies, it is necessary
to predict promising technologies with high potential for development. The proposed method is
suitable for identifying the current vacant technology and analyzing the prospects. Promising areas
analyzed through the proposed method for the development of ICT smart mobility technology will
continue to grow, and ICT smart mobility technology is expected to be more secure and developed.
It provides more detailed information to decision-makers who need to predict promising technologies
in establishing R&D strategies in ICT smart mobility technology.
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Appendix A

Table A1. Smart Mobility Patent search keyword.

Division Keyword

# 3D Modelling
A Artificial Landmark Recognition, Auditory sensor, Automatic Speech Translation
B Beacon, Biosensor, Bluetooth, Bluetooth Low Energy, Braille Block, Building Information Modeling
C Child, CoBoT, Collaborative Robot, Command Recognition, Crowdsourcing
D Dead Reckoning, Distance Sensor
F Fuzzy
G Geographic Information, Geomagnetism, Gesture, Grasping
H Heading Estimation, Human Augmentation
I I/O Interface, Image Matching, Indoor Positioning, Infants Companion, Infrared sensor, IoT
L Language Identification, Laser sensor, LBS, Localization, Location
M Manipulator, Micro wave, Mobile App, Mobility Handicapped, Motion Recognition, Multi modal
N Natural Landmark Recognition, NFC
O Obstacle Avoidance, Opportunistic Signal
P Pedestrian Dead Reckoning, Pregnant Woman
R Radio Mapping, Received Signal Strength Indication, Redundant, RFID

S Senior Citizen, Simultaneous Localization Mapping, SLAM, smart mobility, Smart Stick, Sound Recognition,
Speech Recognition

T Tag, Text Speech, TTS
U Ultrasonic sensor
V Vision Sensor, Voice User Interface
W Walking Stabilization
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